Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.189.186.5
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /usr/include/bind9/dns/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/include/bind9/dns/rbt.h
/*
 * Copyright (C) Internet Systems Consortium, Inc. ("ISC")
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, you can obtain one at https://mozilla.org/MPL/2.0/.
 *
 * See the COPYRIGHT file distributed with this work for additional
 * information regarding copyright ownership.
 */


#ifndef DNS_RBT_H
#define DNS_RBT_H 1

/*! \file dns/rbt.h */

#include <inttypes.h>
#include <stdbool.h>

#include <isc/assertions.h>
#include <isc/crc64.h>
#include <isc/lang.h>
#include <isc/magic.h>
#include <isc/refcount.h>

#include <dns/types.h>

ISC_LANG_BEGINDECLS

#define DNS_RBT_USEHASH 1

/*@{*/
/*%
 * Option values for dns_rbt_findnode() and dns_rbt_findname().
 * These are used to form a bitmask.
 */
#define DNS_RBTFIND_NOOPTIONS                   0x00
#define DNS_RBTFIND_EMPTYDATA                   0x01
#define DNS_RBTFIND_NOEXACT                     0x02
#define DNS_RBTFIND_NOPREDECESSOR               0x04
/*@}*/

#ifndef DNS_RBT_USEISCREFCOUNT
#ifdef ISC_REFCOUNT_HAVEATOMIC
#define DNS_RBT_USEISCREFCOUNT 1
#endif
#endif

#define DNS_RBT_USEMAGIC 1

/*
 * These should add up to 30.
 */
#define DNS_RBT_LOCKLENGTH                      10
#define DNS_RBT_REFLENGTH                       20

#define DNS_RBTNODE_MAGIC               ISC_MAGIC('R','B','N','O')
#if DNS_RBT_USEMAGIC
#define DNS_RBTNODE_VALID(n)            ISC_MAGIC_VALID(n, DNS_RBTNODE_MAGIC)
#else
#define DNS_RBTNODE_VALID(n)            true
#endif

/*%
 * This is the structure that is used for each node in the red/black
 * tree of trees.  NOTE WELL:  the implementation manages this as a variable
 * length structure, with the actual wire-format name and other data
 * appended to this structure.  Allocating a contiguous block of memory for
 * multiple dns_rbtnode structures will not work.
 */
typedef struct dns_rbtnode dns_rbtnode_t;
enum {
	DNS_RBT_NSEC_NORMAL=0,      /* in main tree */
	DNS_RBT_NSEC_HAS_NSEC=1,    /* also has node in nsec tree */
	DNS_RBT_NSEC_NSEC=2,        /* in nsec tree */
	DNS_RBT_NSEC_NSEC3=3        /* in nsec3 tree */
};
struct dns_rbtnode {
#if DNS_RBT_USEMAGIC
	unsigned int magic;
#endif
	/*@{*/
	/*!
	 * The following bitfields add up to a total bitwidth of 32.
	 * The range of values necessary for each item is indicated,
	 * but in the case of "attributes" the field is wider to accommodate
	 * possible future expansion.
	 *
	 * In each case below the "range" indicated is what's _necessary_ for
	 * the bitfield to hold, not what it actually _can_ hold.
	 *
	 * Note: Tree lock must be held before modifying these
	 * bit-fields.
	 *
	 * Note: The two "unsigned int :0;" unnamed bitfields on either
	 * side of the bitfields below are scaffolding that border the
	 * set of bitfields which are accessed after acquiring the tree
	 * lock. Please don't insert any other bitfield members between
	 * the unnamed bitfields unless they should also be accessed
	 * after acquiring the tree lock.
	 */
	unsigned int :0;                /* start of bitfields c/o tree lock */
	unsigned int is_root : 1;       /*%< range is 0..1 */
	unsigned int color : 1;         /*%< range is 0..1 */
	unsigned int find_callback : 1; /*%< range is 0..1 */
	unsigned int attributes : 3;    /*%< range is 0..2 */
	unsigned int nsec : 2;          /*%< range is 0..3 */
	unsigned int namelen : 8;       /*%< range is 1..255 */
	unsigned int offsetlen : 8;     /*%< range is 1..128 */
	unsigned int oldnamelen : 8;    /*%< range is 1..255 */
	/*@}*/

	/* flags needed for serialization to file*/
	unsigned int is_mmapped : 1;
	unsigned int parent_is_relative : 1;
	unsigned int left_is_relative : 1;
	unsigned int right_is_relative : 1;
	unsigned int down_is_relative : 1;
	unsigned int data_is_relative : 1;

	/* node needs to be cleaned from rpz */
	unsigned int rpz : 1;
	unsigned int :0;                /* end of bitfields c/o tree lock */

#ifdef DNS_RBT_USEHASH
	unsigned int hashval;
	dns_rbtnode_t *uppernode;
	dns_rbtnode_t *hashnext;
#endif
	dns_rbtnode_t *parent;
	dns_rbtnode_t *left;
	dns_rbtnode_t *right;
	dns_rbtnode_t *down;

	/*%
	 * Used for LRU cache.  This linked list is used to mark nodes which
	 * have no data any longer, but we cannot unlink at that exact moment
	 * because we did not or could not obtain a write lock on the tree.
	 */
	ISC_LINK(dns_rbtnode_t) deadlink;

	/*@{*/
	/*!
	 * These values are used in the RBT DB implementation.  The appropriate
	 * node lock must be held before accessing them.
	 *
	 * Note: The two "unsigned int :0;" unnamed bitfields on either
	 * side of the bitfields below are scaffolding that border the
	 * set of bitfields which are accessed after acquiring the node
	 * lock. Please don't insert any other bitfield members between
	 * the unnamed bitfields unless they should also be accessed
	 * after acquiring the node lock.
	 *
	 * NOTE: Do not merge these fields into bitfields above, as
	 * they'll all be put in the same qword that could be accessed
	 * without the node lock as it shares the qword with other
	 * members. Leave these members here so that they occupy a
	 * separate region of memory.
	 */
	void *data;
	unsigned int locknum;
	unsigned int :0;                /* start of bitfields c/o node lock */
	unsigned int dirty:1;
	unsigned int wild:1;
#ifndef DNS_RBT_USEISCREFCOUNT
	unsigned int references:DNS_RBT_REFLENGTH;
#endif
	unsigned int :0;                /* end of bitfields c/o node lock */
#ifdef DNS_RBT_USEISCREFCOUNT
	isc_refcount_t references; /* note that this is not in the bitfield */
#endif
	/*@}*/
};

typedef isc_result_t (*dns_rbtfindcallback_t)(dns_rbtnode_t *node,
					      dns_name_t *name,
					      void *callback_arg);

typedef isc_result_t (*dns_rbtdatawriter_t)(FILE *file,
					    unsigned char *data,
					    void *arg,
					    uint64_t *crc);

typedef isc_result_t (*dns_rbtdatafixer_t)(dns_rbtnode_t *rbtnode,
					   void *base, size_t offset,
					   void *arg, uint64_t *crc);

typedef void (*dns_rbtdeleter_t)(void *, void *);

/*****
 *****  Chain Info
 *****/

/*!
 * A chain is used to keep track of the sequence of nodes to reach any given
 * node from the root of the tree.  Originally nodes did not have parent
 * pointers in them (for memory usage reasons) so there was no way to find
 * the path back to the root from any given node.  Now that nodes have parent
 * pointers, chains might be going away in a future release, though the
 * movement functionality would remain.
 *
 * Chains may be used to iterate over a tree of trees.  After setting up the
 * chain's structure using dns_rbtnodechain_init(), it needs to be initialized
 * to point to the lexically first or lexically last node in the tree of trees
 * using dns_rbtnodechain_first() or dns_rbtnodechain_last(), respectively.
 * Calling dns_rbtnodechain_next() or dns_rbtnodechain_prev() then moves the
 * chain over to the next or previous node, respectively.
 *
 * In any event, parent information, whether via parent pointers or chains, is
 * necessary information for iterating through the tree or for basic internal
 * tree maintenance issues (ie, the rotations that are done to rebalance the
 * tree when a node is added).  The obvious implication of this is that for a
 * chain to remain valid, the tree has to be locked down against writes for the
 * duration of the useful life of the chain, because additions or removals can
 * change the path from the root to the node the chain has targeted.
 *
 * The dns_rbtnodechain_ functions _first, _last, _prev and _next all take
 * dns_name_t parameters for the name and the origin, which can be NULL.  If
 * non-NULL, 'name' will end up pointing to the name data and offsets that are
 * stored at the node (and thus it will be read-only), so it should be a
 * regular dns_name_t that has been initialized with dns_name_init.  When
 * 'origin' is non-NULL, it will get the name of the origin stored in it, so it
 * needs to have its own buffer space and offsets, which is most easily
 * accomplished with a dns_fixedname_t.  It is _not_ necessary to reinitialize
 * either 'name' or 'origin' between calls to the chain functions.
 *
 * NOTE WELL: even though the name data at the root of the tree of trees will
 * be absolute (typically just "."), it will will be made into a relative name
 * with an origin of "." -- an empty name when the node is ".".  This is
 * because a common on operation on 'name' and 'origin' is to use
 * dns_name_concatenate() on them to generate the complete name.  An empty name
 * can be detected when dns_name_countlabels == 0, and is printed by
 * dns_name_totext()/dns_name_format() as "@", consistent with RFC1035's
 * definition of "@" as the current origin.
 *
 * dns_rbtnodechain_current is similar to the _first, _last, _prev and _next
 * functions but additionally can provide the node to which the chain points.
 */

/*%
 * The number of level blocks to allocate at a time.  Currently the maximum
 * number of levels is allocated directly in the structure, but future
 * revisions of this code might have a static initial block with dynamic
 * growth.  Allocating space for 256 levels when the tree is almost never that
 * deep is wasteful, but it's not clear that it matters, since the waste is
 * only 2MB for 1000 concurrently active chains on a system with 64-bit
 * pointers.
 */
#define DNS_RBT_LEVELBLOCK 254

typedef struct dns_rbtnodechain {
	unsigned int            magic;
	isc_mem_t *             mctx;
	/*%
	 * The terminal node of the chain.  It is not in levels[].
	 * This is ostensibly private ... but in a pinch it could be
	 * used tell that the chain points nowhere without needing to
	 * call dns_rbtnodechain_current().
	 */
	dns_rbtnode_t *         end;
	/*%
	 * The maximum number of labels in a name is 128; bitstrings mean
	 * a conceptually very large number (which I have not bothered to
	 * compute) of logical levels because splitting can potentially occur
	 * at each bit.  However, DNSSEC restricts the number of "logical"
	 * labels in a name to 255, meaning only 254 pointers are needed
	 * in the worst case.
	 */
	dns_rbtnode_t *         levels[DNS_RBT_LEVELBLOCK];
	/*%
	 * level_count indicates how deep the chain points into the
	 * tree of trees, and is the index into the levels[] array.
	 * Thus, levels[level_count - 1] is the last level node stored.
	 * A chain that points to the top level of the tree of trees has
	 * a level_count of 0, the first level has a level_count of 1, and
	 * so on.
	 */
	unsigned int            level_count;
	/*%
	 * level_matches tells how many levels matched above the node
	 * returned by dns_rbt_findnode().  A match (partial or exact) found
	 * in the first level thus results in level_matches being set to 1.
	 * This is used by the rbtdb to set the start point for a recursive
	 * search of superdomains until the RR it is looking for is found.
	 */
	unsigned int            level_matches;
} dns_rbtnodechain_t;

/*****
 ***** Public interfaces.
 *****/
isc_result_t
dns_rbt_create(isc_mem_t *mctx, dns_rbtdeleter_t deleter,
	       void *deleter_arg, dns_rbt_t **rbtp);
/*%<
 * Initialize a red-black tree of trees.
 *
 * Notes:
 *\li   The deleter argument, if non-null, points to a function that is
 *      responsible for cleaning up any memory associated with the data
 *      pointer of a node when the node is deleted.  It is passed the
 *      deleted node's data pointer as its first argument and deleter_arg
 *      as its second argument.
 *
 * Requires:
 * \li  mctx is a pointer to a valid memory context.
 *\li   rbtp != NULL && *rbtp == NULL
 *\li   arg == NULL iff deleter == NULL
 *
 * Ensures:
 *\li   If result is ISC_R_SUCCESS:
 *              *rbtp points to a valid red-black tree manager
 *
 *\li   If result is failure:
 *              *rbtp does not point to a valid red-black tree manager.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS  Success
 *\li   #ISC_R_NOMEMORY Resource limit: Out of Memory
 */

isc_result_t
dns_rbt_addname(dns_rbt_t *rbt, dns_name_t *name, void *data);
/*%<
 * Add 'name' to the tree of trees, associated with 'data'.
 *
 * Notes:
 *\li   'data' is never required to be non-NULL, but specifying it
 *      when the name is added is faster than searching for 'name'
 *      again and then setting the data pointer.  The lack of a data pointer
 *      for a node also has other ramifications regarding whether
 *      dns_rbt_findname considers a node to exist, or dns_rbt_deletename
 *      joins nodes.
 *
 * Requires:
 *\li   rbt is a valid rbt manager.
 *\li   dns_name_isabsolute(name) == TRUE
 *
 * Ensures:
 *\li   'name' is not altered in any way.
 *
 *\li   Any external references to nodes in the tree are unaffected by
 *      node splits that are necessary to insert the new name.
 *
 *\li   If result is #ISC_R_SUCCESS:
 *              'name' is findable in the red/black tree of trees in O(log N).
 *              The data pointer of the node for 'name' is set to 'data'.
 *
 *\li   If result is #ISC_R_EXISTS or #ISC_R_NOSPACE:
 *              The tree of trees is unaltered.
 *
 *\li   If result is #ISC_R_NOMEMORY:
 *              No guarantees.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS  Success
 *\li   #ISC_R_EXISTS   The name already exists with associated data.
 *\li   #ISC_R_NOSPACE  The name had more logical labels than are allowed.
 *\li   #ISC_R_NOMEMORY Resource Limit: Out of Memory
 */

isc_result_t
dns_rbt_addnode(dns_rbt_t *rbt, dns_name_t *name, dns_rbtnode_t **nodep);

/*%<
 * Just like dns_rbt_addname, but returns the address of the node.
 *
 * Requires:
 *\li   rbt is a valid rbt structure.
 *\li   dns_name_isabsolute(name) == TRUE
 *\li   nodep != NULL && *nodep == NULL
 *
 * Ensures:
 *\li   'name' is not altered in any way.
 *
 *\li   Any external references to nodes in the tree are unaffected by
 *      node splits that are necessary to insert the new name.
 *
 *\li   If result is ISC_R_SUCCESS:
 *              'name' is findable in the red/black tree of trees in O(log N).
 *              *nodep is the node that was added for 'name'.
 *
 *\li   If result is ISC_R_EXISTS:
 *              The tree of trees is unaltered.
 *              *nodep is the existing node for 'name'.
 *
 *\li   If result is ISC_R_NOMEMORY:
 *              No guarantees.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS  Success
 *\li   #ISC_R_EXISTS   The name already exists, possibly without data.
 *\li   #ISC_R_NOMEMORY Resource Limit: Out of Memory
 */

isc_result_t
dns_rbt_findname(dns_rbt_t *rbt, const dns_name_t *name, unsigned int options,
		 dns_name_t *foundname, void **data);
/*%<
 * Get the data pointer associated with 'name'.
 *
 * Notes:
 *\li   When #DNS_RBTFIND_NOEXACT is set, the closest matching superdomain is
 *      returned (also subject to #DNS_RBTFIND_EMPTYDATA), even when there is
 *      an exact match in the tree.
 *
 *\li   A node that has no data is considered not to exist for this function,
 *      unless the #DNS_RBTFIND_EMPTYDATA option is set.
 *
 * Requires:
 *\li   rbt is a valid rbt manager.
 *\li   dns_name_isabsolute(name) == TRUE
 *\li   data != NULL && *data == NULL
 *
 * Ensures:
 *\li   'name' and the tree are not altered in any way.
 *
 *\li   If result is ISC_R_SUCCESS:
 *              *data is the data associated with 'name'.
 *
 *\li   If result is DNS_R_PARTIALMATCH:
 *              *data is the data associated with the deepest superdomain
 *              of 'name' which has data.
 *
 *\li   If result is ISC_R_NOTFOUND:
 *              Neither the name nor a superdomain was found with data.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS          Success
 *\li   #DNS_R_PARTIALMATCH     Superdomain found with data
 *\li   #ISC_R_NOTFOUND         No match
 *\li   #ISC_R_NOSPACE          Concatenating nodes to form foundname failed
 */

isc_result_t
dns_rbt_findnode(dns_rbt_t *rbt, const dns_name_t *name, dns_name_t *foundname,
		 dns_rbtnode_t **node, dns_rbtnodechain_t *chain,
		 unsigned int options, dns_rbtfindcallback_t callback,
		 void *callback_arg);
/*%<
 * Find the node for 'name'.
 *
 * Notes:
 *\li   A node that has no data is considered not to exist for this function,
 *      unless the DNS_RBTFIND_EMPTYDATA option is set.  This applies to both
 *      exact matches and partial matches.
 *
 *\li   If the chain parameter is non-NULL, then the path through the tree
 *      to the DNSSEC predecessor of the searched for name is maintained,
 *      unless the DNS_RBTFIND_NOPREDECESSOR or DNS_RBTFIND_NOEXACT option
 *      is used. (For more details on those options, see below.)
 *
 *\li   If there is no predecessor, then the chain will point to nowhere, as
 *      indicated by chain->end being NULL or dns_rbtnodechain_current
 *      returning ISC_R_NOTFOUND.  Note that in a normal Internet DNS RBT
 *      there will always be a predecessor for all names except the root
 *      name, because '.' will exist and '.' is the predecessor of
 *      everything.  But you can certainly construct a trivial tree and a
 *      search for it that has no predecessor.
 *
 *\li   Within the chain structure, the 'levels' member of the structure holds
 *      the root node of each level except the first.
 *
 *\li   The 'level_count' of the chain indicates how deep the chain to the
 *      predecessor name is, as an index into the 'levels[]' array.  It does
 *      not count name elements, per se, but only levels of the tree of trees,
 *      the distinction arising because multiple labels from a name can be
 *      stored on only one level.  It is also does not include the level
 *      that has the node, since that level is not stored in levels[].
 *
 *\li   The chain's 'level_matches' is not directly related to the predecessor.
 *      It is the number of levels above the level of the found 'node',
 *      regardless of whether it was a partial match or exact match.  When
 *      the node is found in the top level tree, or no node is found at all,
 *      level_matches is 0.
 *
 *\li   When DNS_RBTFIND_NOEXACT is set, the closest matching superdomain is
 *      returned (also subject to DNS_RBTFIND_EMPTYDATA), even when
 *      there is an exact match in the tree.  In this case, the chain
 *      will not point to the DNSSEC predecessor, but will instead point
 *      to the exact match, if there was any.  Thus the preceding paragraphs
 *      should have "exact match" substituted for "predecessor" to describe
 *      how the various elements of the chain are set.  This was done to
 *      ensure that the chain's state was sane, and to prevent problems that
 *      occurred when running the predecessor location code under conditions
 *      it was not designed for.  It is not clear *where* the chain should
 *      point when DNS_RBTFIND_NOEXACT is set, so if you end up using a chain
 *      with this option because you want a particular node, let us know
 *      where you want the chain pointed, so this can be made more firm.
 *
 * Requires:
 *\li   rbt is a valid rbt manager.
 *\li   dns_name_isabsolute(name) == TRUE.
 *\li   node != NULL && *node == NULL.
 *\li   #DNS_RBTFIND_NOEXACT and DNS_RBTFIND_NOPREDECESSOR are mutually
 *              exclusive.
 *
 * Ensures:
 *\li   'name' and the tree are not altered in any way.
 *
 *\li   If result is ISC_R_SUCCESS:
 *\verbatim
 *              *node is the terminal node for 'name'.

 *              'foundname' and 'name' represent the same name (though not
 *              the same memory).

 *              'chain' points to the DNSSEC predecessor, if any, of 'name'.
 *
 *              chain->level_matches and chain->level_count are equal.
 *\endverbatim
 *
 *      If result is DNS_R_PARTIALMATCH:
 *\verbatim
 *              *node is the data associated with the deepest superdomain
 *              of 'name' which has data.
 *
 *              'foundname' is the name of deepest superdomain (which has
 *              data, unless the DNS_RBTFIND_EMPTYDATA option is set).
 *
 *              'chain' points to the DNSSEC predecessor, if any, of 'name'.
 *\endverbatim
 *
 *\li   If result is ISC_R_NOTFOUND:
 *\verbatim
 *              Neither the name nor a superdomain was found.  *node is NULL.
 *
 *              'chain' points to the DNSSEC predecessor, if any, of 'name'.
 *
 *              chain->level_matches is 0.
 *\endverbatim
 *
 * Returns:
 *\li   #ISC_R_SUCCESS          Success
 *\li   #DNS_R_PARTIALMATCH     Superdomain found with data
 *\li   #ISC_R_NOTFOUND         No match, or superdomain with no data
 *\li   #ISC_R_NOSPACE Concatenating nodes to form foundname failed
 */

isc_result_t
dns_rbt_deletename(dns_rbt_t *rbt, dns_name_t *name, bool recurse);
/*%<
 * Delete 'name' from the tree of trees.
 *
 * Notes:
 *\li   When 'name' is removed, if recurse is true then all of its
 *      subnames are removed too.
 *
 * Requires:
 *\li   rbt is a valid rbt manager.
 *\li   dns_name_isabsolute(name) == TRUE
 *
 * Ensures:
 *\li   'name' is not altered in any way.
 *
 *\li   Does NOT ensure that any external references to nodes in the tree
 *      are unaffected by node joins.
 *
 *\li   If result is ISC_R_SUCCESS:
 *              'name' does not appear in the tree with data; however,
 *              the node for the name might still exist which can be
 *              found with dns_rbt_findnode (but not dns_rbt_findname).
 *
 *\li   If result is ISC_R_NOTFOUND:
 *              'name' does not appear in the tree with data, because
 *              it did not appear in the tree before the function was called.
 *
 *\li   If result is something else:
 *              See result codes for dns_rbt_findnode (if it fails, the
 *              node is not deleted) or dns_rbt_deletenode (if it fails,
 *              the node is deleted, but the tree is not optimized when
 *              it could have been).
 *
 * Returns:
 *\li   #ISC_R_SUCCESS  Success
 *\li   #ISC_R_NOTFOUND No match
 *\li   something_else  Any return code from dns_rbt_findnode except
 *                      DNS_R_PARTIALMATCH (which causes ISC_R_NOTFOUND
 *                      to be returned instead), and any code from
 *                      dns_rbt_deletenode.
 */

isc_result_t
dns_rbt_deletenode(dns_rbt_t *rbt, dns_rbtnode_t *node, bool recurse);
/*%<
 * Delete 'node' from the tree of trees.
 *
 * Notes:
 *\li   When 'node' is removed, if recurse is true then all nodes
 *      in levels down from it are removed too.
 *
 * Requires:
 *\li   rbt is a valid rbt manager.
 *\li   node != NULL.
 *
 * Ensures:
 *\li   Does NOT ensure that any external references to nodes in the tree
 *      are unaffected by node joins.
 *
 *\li   If result is ISC_R_SUCCESS:
 *              'node' does not appear in the tree with data; however,
 *              the node might still exist if it serves as a pointer to
 *              a lower tree level as long as 'recurse' was false, hence
 *              the node could can be found with dns_rbt_findnode when
 *              that function's empty_data_ok parameter is true.
 *
 *\li   If result is ISC_R_NOMEMORY or ISC_R_NOSPACE:
 *              The node was deleted, but the tree structure was not
 *              optimized.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS  Success
 *\li   #ISC_R_NOMEMORY Resource Limit: Out of Memory when joining nodes.
 *\li   #ISC_R_NOSPACE  dns_name_concatenate failed when joining nodes.
 */

void
dns_rbt_namefromnode(dns_rbtnode_t *node, dns_name_t *name);
/*%<
 * Convert the sequence of labels stored at 'node' into a 'name'.
 *
 * Notes:
 *\li   This function does not return the full name, from the root, but
 *      just the labels at the indicated node.
 *
 *\li   The name data pointed to by 'name' is the information stored
 *      in the node, not a copy.  Altering the data at this pointer
 *      will likely cause grief.
 *
 * Requires:
 * \li  name->offsets == NULL
 *
 * Ensures:
 * \li  'name' is DNS_NAMEATTR_READONLY.
 *
 * \li  'name' will point directly to the labels stored after the
 *      dns_rbtnode_t struct.
 *
 * \li  'name' will have offsets that also point to the information stored
 *      as part of the node.
 */

isc_result_t
dns_rbt_fullnamefromnode(dns_rbtnode_t *node, dns_name_t *name);
/*%<
 * Like dns_rbt_namefromnode, but returns the full name from the root.
 *
 * Notes:
 * \li  Unlike dns_rbt_namefromnode, the name will not point directly
 *      to node data.  Rather, dns_name_concatenate will be used to copy
 *      the name data from each node into the 'name' argument.
 *
 * Requires:
 * \li  name != NULL
 * \li  name has a dedicated buffer.
 *
 * Returns:
 * \li  ISC_R_SUCCESS
 * \li  ISC_R_NOSPACE           (possible via dns_name_concatenate)
 * \li  DNS_R_NAMETOOLONG       (possible via dns_name_concatenate)
 */

char *
dns_rbt_formatnodename(dns_rbtnode_t *node, char *printname,
		       unsigned int size);
/*%<
 * Format the full name of a node for printing, using dns_name_format().
 *
 * Notes:
 * \li  'size' is the length of the printname buffer.  This should be
 *      DNS_NAME_FORMATSIZE or larger.
 *
 * Requires:
 * \li  node and printname are not NULL.
 *
 * Returns:
 * \li  The 'printname' pointer.
 */

unsigned int
dns_rbt_nodecount(dns_rbt_t *rbt);
/*%<
 * Obtain the number of nodes in the tree of trees.
 *
 * Requires:
 * \li  rbt is a valid rbt manager.
 */

size_t
dns_rbt_hashsize(dns_rbt_t *rbt);
/*%<
 * Obtain the current number of buckets in the 'rbt' hash table.
 *
 * Requires:
 * \li  rbt is a valid rbt manager.
 */

void
dns_rbt_destroy(dns_rbt_t **rbtp);
isc_result_t
dns_rbt_destroy2(dns_rbt_t **rbtp, unsigned int quantum);
/*%<
 * Stop working with a red-black tree of trees.
 * If 'quantum' is zero then the entire tree will be destroyed.
 * If 'quantum' is non zero then up to 'quantum' nodes will be destroyed
 * allowing the rbt to be incrementally destroyed by repeated calls to
 * dns_rbt_destroy2().  Once dns_rbt_destroy2() has been called no other
 * operations than dns_rbt_destroy()/dns_rbt_destroy2() should be
 * performed on the tree of trees.
 *
 * Requires:
 * \li  *rbt is a valid rbt manager.
 *
 * Ensures on ISC_R_SUCCESS:
 * \li  All space allocated by the RBT library has been returned.
 *
 * \li  *rbt is invalidated as an rbt manager.
 *
 * Returns:
 * \li  ISC_R_SUCCESS
 * \li  ISC_R_QUOTA if 'quantum' nodes have been destroyed.
 */

off_t
dns_rbt_serialize_align(off_t target);
/*%<
 * Align the provided integer to a pointer-size boundary.
 * This should be used if, during serialization of data to a will-be
 * mmap()ed file, a pointer alignment is needed for some data.
 */

isc_result_t
dns_rbt_serialize_tree(FILE *file, dns_rbt_t *rbt,
		       dns_rbtdatawriter_t datawriter,
		       void *writer_arg, off_t *offset);
/*%<
 * Write out the RBT structure and its data to a file.
 *
 * Notes:
 * \li  The file must be an actual file which allows seek() calls, so it cannot
 *      be a stream.  Returns ISC_R_INVALIDFILE if not.
 */

isc_result_t
dns_rbt_deserialize_tree(void *base_address, size_t filesize,
			 off_t header_offset, isc_mem_t *mctx,
			 dns_rbtdeleter_t deleter, void *deleter_arg,
			 dns_rbtdatafixer_t datafixer, void *fixer_arg,
			 dns_rbtnode_t **originp, dns_rbt_t **rbtp);
/*%<
 * Read a RBT structure and its data from a file.
 *
 * If 'originp' is not NULL, then it is pointed to the root node of the RBT.
 *
 * Notes:
 * \li  The file must be an actual file which allows seek() calls, so it cannot
 *      be a stream.  This condition is not checked in the code.
 */

void
dns_rbt_printtext(dns_rbt_t *rbt,
		  void (*data_printer)(FILE *, void *), FILE *f);
/*%<
 * Print an ASCII representation of the internal structure of the red-black
 * tree of trees to the passed stream.
 *
 * data_printer is a callback function that is called to print the data
 * in a node. It should print it to the passed FILE stream.
 *
 * Notes:
 * \li  The name stored at each node, along with the node's color, is printed.
 *      Then the down pointer, left and right pointers are displayed
 *      recursively in turn.  NULL down pointers are silently omitted;
 *      NULL left and right pointers are printed.
 */

void
dns_rbt_printdot(dns_rbt_t *rbt, bool show_pointers, FILE *f);
/*%<
 * Print a GraphViz dot representation of the internal structure of the
 * red-black tree of trees to the passed stream.
 *
 * If show_pointers is TRUE, pointers are also included in the generated
 * graph.
 *
 * Notes:
 * \li	The name stored at each node, along with the node's color is displayed.
 *	Then the down pointer, left and right pointers are displayed
 *	recursively in turn.  NULL left, right and down pointers are
 *	silently omitted.
 */

void
dns_rbt_printnodeinfo(dns_rbtnode_t *n, FILE *f);
/*%<
 * Print out various information about a node
 *
 * Requires:
 *\li	'n' is a valid pointer.
 *
 *\li	'f' points to a valid open FILE structure that allows writing.
 */


size_t
dns__rbt_getheight(dns_rbt_t *rbt);
/*%<
 * Return the maximum height of sub-root nodes found in the red-black
 * forest.
 *
 * The height of a node is defined as the number of nodes in the longest
 * path from the node to a leaf. For each subtree in the forest, this
 * function determines the height of its root node. Then it returns the
 * maximum such height in the forest.
 *
 * Note: This function exists for testing purposes. Non-test code must
 * not use it.
 *
 * Requires:
 * \li  rbt is a valid rbt manager.
 */

bool
dns__rbt_checkproperties(dns_rbt_t *rbt);
/*%<
 * Check red-black properties of the forest.
 *
 * Note: This function exists for testing purposes. Non-test code must
 * not use it.
 *
 * Requires:
 * \li  rbt is a valid rbt manager.
 */

size_t
dns__rbtnode_getdistance(dns_rbtnode_t *node);
/*%<
 * Return the distance (in nodes) from the node to its upper node of its
 * subtree. The root node has a distance of 1. A child of the root node
 * has a distance of 2.
 */

/*****
 ***** Chain Functions
 *****/

void
dns_rbtnodechain_init(dns_rbtnodechain_t *chain, isc_mem_t *mctx);
/*%<
 * Initialize 'chain'.
 *
 * Requires:
 *\li   'chain' is a valid pointer.
 *
 *\li   'mctx' is a valid memory context.
 *
 * Ensures:
 *\li   'chain' is suitable for use.
 */

void
dns_rbtnodechain_reset(dns_rbtnodechain_t *chain);
/*%<
 * Free any dynamic storage associated with 'chain', and then reinitialize
 * 'chain'.
 *
 * Requires:
 *\li   'chain' is a valid pointer.
 *
 * Ensures:
 *\li   'chain' is suitable for use, and uses no dynamic storage.
 */

void
dns_rbtnodechain_invalidate(dns_rbtnodechain_t *chain);
/*%<
 * Free any dynamic storage associated with 'chain', and then invalidates it.
 *
 * Notes:
 *\li   Future calls to any dns_rbtnodechain_ function will need to call
 *      dns_rbtnodechain_init on the chain first (except, of course,
 *      dns_rbtnodechain_init itself).
 *
 * Requires:
 *\li   'chain' is a valid chain.
 *
 * Ensures:
 *\li   'chain' is no longer suitable for use, and uses no dynamic storage.
 */

isc_result_t
dns_rbtnodechain_current(dns_rbtnodechain_t *chain, dns_name_t *name,
			 dns_name_t *origin, dns_rbtnode_t **node);
/*%<
 * Provide the name, origin and node to which the chain is currently pointed.
 *
 * Notes:
 *\li   The tree need not have be locked against additions for the chain
 *      to remain valid, however there are no guarantees if any deletion
 *      has been made since the chain was established.
 *
 * Requires:
 *\li   'chain' is a valid chain.
 *
 * Ensures:
 *\li   'node', if non-NULL, is the node to which the chain was pointed
 *      by dns_rbt_findnode, dns_rbtnodechain_first or dns_rbtnodechain_last.
 *      If none were called for the chain since it was initialized or reset,
 *      or if the was no predecessor to the name searched for with
 *      dns_rbt_findnode, then '*node' is NULL and ISC_R_NOTFOUND is returned.
 *
 *\li   'name', if non-NULL, is the name stored at the terminal level of
 *      the chain.  This is typically a single label, like the "www" of
 *      "www.isc.org", but need not be so.  At the root of the tree of trees,
 *      if the node is "." then 'name' is ".", otherwise it is relative to ".".
 *      (Minimalist and atypical case:  if the tree has just the name
 *      "isc.org." then the root node's stored name is "isc.org." but 'name'
 *      will be "isc.org".)
 *
 *\li   'origin', if non-NULL, is the sequence of labels in the levels
 *      above the terminal level, such as "isc.org." in the above example.
 *      'origin' is always "." for the root node.
 *
 *
 * Returns:
 *\li   #ISC_R_SUCCESS          name, origin & node were successfully set.
 *\li   #ISC_R_NOTFOUND         The chain does not point to any node.
 *\li   &lt;something_else>     Any error return from dns_name_concatenate.
 */

isc_result_t
dns_rbtnodechain_first(dns_rbtnodechain_t *chain, dns_rbt_t *rbt,
		       dns_name_t *name, dns_name_t *origin);
/*%<
 * Set the chain to the lexically first node in the tree of trees.
 *
 * Notes:
 *\li   By the definition of ordering for DNS names, the root of the tree of
 *      trees is the very first node, since everything else in the megatree
 *      uses it as a common suffix.
 *
 * Requires:
 *\li   'chain' is a valid chain.
 *\li   'rbt' is a valid rbt manager.
 *
 * Ensures:
 *\li   The chain points to the very first node of the tree.
 *
 *\li   'name' and 'origin', if non-NULL, are set as described for
 *      dns_rbtnodechain_current.  Thus 'origin' will always be ".".
 *
 * Returns:
 *\li   #DNS_R_NEWORIGIN                The name & origin were successfully set.
 *\li   &lt;something_else>     Any error result from dns_rbtnodechain_current.
 */

isc_result_t
dns_rbtnodechain_last(dns_rbtnodechain_t *chain, dns_rbt_t *rbt,
		       dns_name_t *name, dns_name_t *origin);
/*%<
 * Set the chain to the lexically last node in the tree of trees.
 *
 * Requires:
 *\li   'chain' is a valid chain.
 *\li   'rbt' is a valid rbt manager.
 *
 * Ensures:
 *\li   The chain points to the very last node of the tree.
 *
 *\li   'name' and 'origin', if non-NULL, are set as described for
 *      dns_rbtnodechain_current.
 *
 * Returns:
 *\li   #DNS_R_NEWORIGIN                The name & origin were successfully set.
 *\li   #ISC_R_NOMEMORY         Resource Limit: Out of Memory building chain.
 *\li   &lt;something_else>     Any error result from dns_name_concatenate.
 */

isc_result_t
dns_rbtnodechain_prev(dns_rbtnodechain_t *chain, dns_name_t *name,
		      dns_name_t *origin);
/*%<
 * Adjusts chain to point the DNSSEC predecessor of the name to which it
 * is currently pointed.
 *
 * Requires:
 *\li   'chain' is a valid chain.
 *\li   'chain' has been pointed somewhere in the tree with dns_rbt_findnode,
 *      dns_rbtnodechain_first or dns_rbtnodechain_last -- and remember that
 *      dns_rbt_findnode is not guaranteed to point the chain somewhere,
 *      since there may have been no predecessor to the searched for name.
 *
 * Ensures:
 *\li   The chain is pointed to the predecessor of its current target.
 *
 *\li   'name' and 'origin', if non-NULL, are set as described for
 *      dns_rbtnodechain_current.
 *
 *\li   'origin' is only if a new origin was found.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS          The predecessor was found and 'name' was set.
 *\li   #DNS_R_NEWORIGIN                The predecessor was found with a different
 *                              origin and 'name' and 'origin' were set.
 *\li   #ISC_R_NOMORE           There was no predecessor.
 *\li   &lt;something_else>     Any error result from dns_rbtnodechain_current.
 */

isc_result_t
dns_rbtnodechain_next(dns_rbtnodechain_t *chain, dns_name_t *name,
		      dns_name_t *origin);
/*%<
 * Adjusts chain to point the DNSSEC successor of the name to which it
 * is currently pointed.
 *
 * Requires:
 *\li   'chain' is a valid chain.
 *\li   'chain' has been pointed somewhere in the tree with dns_rbt_findnode,
 *      dns_rbtnodechain_first or dns_rbtnodechain_last -- and remember that
 *      dns_rbt_findnode is not guaranteed to point the chain somewhere,
 *      since there may have been no predecessor to the searched for name.
 *
 * Ensures:
 *\li   The chain is pointed to the successor of its current target.
 *
 *\li   'name' and 'origin', if non-NULL, are set as described for
 *      dns_rbtnodechain_current.
 *
 *\li   'origin' is only if a new origin was found.
 *
 * Returns:
 *\li   #ISC_R_SUCCESS          The successor was found and 'name' was set.
 *\li   #DNS_R_NEWORIGIN                The successor was found with a different
 *                              origin and 'name' and 'origin' were set.
 *\li   #ISC_R_NOMORE           There was no successor.
 *\li   &lt;something_else>     Any error result from dns_name_concatenate.
 */

isc_result_t
dns_rbtnodechain_down(dns_rbtnodechain_t *chain, dns_name_t *name,
		      dns_name_t *origin);
/*%<
 * Descend down if possible.
 */

isc_result_t
dns_rbtnodechain_nextflat(dns_rbtnodechain_t *chain, dns_name_t *name);
/*%<
 * Find the next node at the current depth in DNSSEC order.
 */

/*
 * Wrapper macros for manipulating the rbtnode reference counter:
 *   Since we selectively use isc_refcount_t for the reference counter of
 *   a rbtnode, operations on the counter depend on the actual type of it.
 *   The following macros provide a common interface to these operations,
 *   hiding the back-end.  The usage is the same as that of isc_refcount_xxx().
 */
#ifdef DNS_RBT_USEISCREFCOUNT
#define dns_rbtnode_refinit(node, n)                            \
	do {                                                    \
		isc_refcount_init(&(node)->references, (n));    \
	} while (0)
#define dns_rbtnode_refdestroy(node)                            \
	do {                                                    \
		isc_refcount_destroy(&(node)->references);      \
	} while (0)
#define dns_rbtnode_refcurrent(node)                            \
	isc_refcount_current(&(node)->references)
#define dns_rbtnode_refincrement0(node, refs)                   \
	do {                                                    \
		isc_refcount_increment0(&(node)->references, (refs)); \
	} while (0)
#define dns_rbtnode_refincrement(node, refs)                    \
	do {                                                    \
		isc_refcount_increment(&(node)->references, (refs)); \
	} while (0)
#define dns_rbtnode_refdecrement(node, refs)                    \
	do {                                                    \
		isc_refcount_decrement(&(node)->references, (refs)); \
	} while (0)
#else  /* DNS_RBT_USEISCREFCOUNT */
#define dns_rbtnode_refinit(node, n)    ((node)->references = (n))
#define dns_rbtnode_refdestroy(node)    ISC_REQUIRE((node)->references == 0)
#define dns_rbtnode_refcurrent(node)    ((node)->references)

#if (__STDC_VERSION__ + 0) >= 199901L || defined __GNUC__
static inline void
dns_rbtnode_refincrement0(dns_rbtnode_t *node, unsigned int *refs) {
	node->references++;
	if (refs != NULL)
		*refs = node->references;
}

static inline void
dns_rbtnode_refincrement(dns_rbtnode_t *node, unsigned int *refs) {
	ISC_REQUIRE(node->references > 0);
	node->references++;
	if (refs != NULL)
		*refs = node->references;
}

static inline void
dns_rbtnode_refdecrement(dns_rbtnode_t *node, unsigned int *refs) {
	ISC_REQUIRE(node->references > 0);
	node->references--;
	if (refs != NULL)
		*refs = node->references;
}
#else
#define dns_rbtnode_refincrement0(node, refs)                   \
	do {                                                    \
		unsigned int *_tmp = (unsigned int *)(refs);    \
		(node)->references++;                           \
		if ((_tmp) != NULL)                             \
			(*_tmp) = (node)->references;           \
	} while (0)
#define dns_rbtnode_refincrement(node, refs)                    \
	do {                                                    \
		ISC_REQUIRE((node)->references > 0);                \
		(node)->references++;                           \
		if ((refs) != NULL)                             \
			(*refs) = (node)->references;           \
	} while (0)
#define dns_rbtnode_refdecrement(node, refs)                    \
	do {                                                    \
		ISC_REQUIRE((node)->references > 0);                \
		(node)->references--;                           \
		if ((refs) != NULL)                             \
			(*refs) = (node)->references;           \
	} while (0)
#endif
#endif /* DNS_RBT_USEISCREFCOUNT */

void
dns_rbtnode_nodename(dns_rbtnode_t *node, dns_name_t *name);

dns_rbtnode_t *
dns_rbt_root(dns_rbt_t *rbt);

ISC_LANG_ENDDECLS

#endif /* DNS_RBT_H */

Youez - 2016 - github.com/yon3zu
LinuXploit