Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 52.15.241.87
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/alt/ruby24/lib64/ruby/2.4.0/matrix/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/alt/ruby24/lib64/ruby/2.4.0/matrix/eigenvalue_decomposition.rb
# frozen_string_literal: false
class Matrix
  # Adapted from JAMA: http://math.nist.gov/javanumerics/jama/

  # Eigenvalues and eigenvectors of a real matrix.
  #
  # Computes the eigenvalues and eigenvectors of a matrix A.
  #
  # If A is diagonalizable, this provides matrices V and D
  # such that A = V*D*V.inv, where D is the diagonal matrix with entries
  # equal to the eigenvalues and V is formed by the eigenvectors.
  #
  # If A is symmetric, then V is orthogonal and thus A = V*D*V.t

  class EigenvalueDecomposition

    # Constructs the eigenvalue decomposition for a square matrix +A+
    #
    def initialize(a)
      # @d, @e: Arrays for internal storage of eigenvalues.
      # @v: Array for internal storage of eigenvectors.
      # @h: Array for internal storage of nonsymmetric Hessenberg form.
      raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
      @size = a.row_count
      @d = Array.new(@size, 0)
      @e = Array.new(@size, 0)

      if (@symmetric = a.symmetric?)
        @v = a.to_a
        tridiagonalize
        diagonalize
      else
        @v = Array.new(@size) { Array.new(@size, 0) }
        @h = a.to_a
        @ort = Array.new(@size, 0)
        reduce_to_hessenberg
        hessenberg_to_real_schur
      end
    end

    # Returns the eigenvector matrix +V+
    #
    def eigenvector_matrix
      Matrix.send(:new, build_eigenvectors.transpose)
    end
    alias v eigenvector_matrix

    # Returns the inverse of the eigenvector matrix +V+
    #
    def eigenvector_matrix_inv
      r = Matrix.send(:new, build_eigenvectors)
      r = r.transpose.inverse unless @symmetric
      r
    end
    alias v_inv eigenvector_matrix_inv

    # Returns the eigenvalues in an array
    #
    def eigenvalues
      values = @d.dup
      @e.each_with_index{|imag, i| values[i] = Complex(values[i], imag) unless imag == 0}
      values
    end

    # Returns an array of the eigenvectors
    #
    def eigenvectors
      build_eigenvectors.map{|ev| Vector.send(:new, ev)}
    end

    # Returns the block diagonal eigenvalue matrix +D+
    #
    def eigenvalue_matrix
      Matrix.diagonal(*eigenvalues)
    end
    alias d eigenvalue_matrix

    # Returns [eigenvector_matrix, eigenvalue_matrix, eigenvector_matrix_inv]
    #
    def to_ary
      [v, d, v_inv]
    end
    alias_method :to_a, :to_ary

  private
    def build_eigenvectors
      # JAMA stores complex eigenvectors in a strange way
      # See http://web.archive.org/web/20111016032731/http://cio.nist.gov/esd/emaildir/lists/jama/msg01021.html
      @e.each_with_index.map do |imag, i|
        if imag == 0
          Array.new(@size){|j| @v[j][i]}
        elsif imag > 0
          Array.new(@size){|j| Complex(@v[j][i], @v[j][i+1])}
        else
          Array.new(@size){|j| Complex(@v[j][i-1], -@v[j][i])}
        end
      end
    end
    # Complex scalar division.

    def cdiv(xr, xi, yr, yi)
      if (yr.abs > yi.abs)
        r = yi/yr
        d = yr + r*yi
        [(xr + r*xi)/d, (xi - r*xr)/d]
      else
        r = yr/yi
        d = yi + r*yr
        [(r*xr + xi)/d, (r*xi - xr)/d]
      end
    end


    # Symmetric Householder reduction to tridiagonal form.

    def tridiagonalize

      #  This is derived from the Algol procedures tred2 by
      #  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
      #  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
      #  Fortran subroutine in EISPACK.

      @size.times do |j|
        @d[j] = @v[@size-1][j]
      end

      # Householder reduction to tridiagonal form.

      (@size-1).downto(0+1) do |i|

        # Scale to avoid under/overflow.

        scale = 0.0
        h = 0.0
        i.times do |k|
          scale = scale + @d[k].abs
        end
        if (scale == 0.0)
          @e[i] = @d[i-1]
          i.times do |j|
            @d[j] = @v[i-1][j]
            @v[i][j] = 0.0
            @v[j][i] = 0.0
          end
        else

          # Generate Householder vector.

          i.times do |k|
            @d[k] /= scale
            h += @d[k] * @d[k]
          end
          f = @d[i-1]
          g = Math.sqrt(h)
          if (f > 0)
            g = -g
          end
          @e[i] = scale * g
          h -= f * g
          @d[i-1] = f - g
          i.times do |j|
            @e[j] = 0.0
          end

          # Apply similarity transformation to remaining columns.

          i.times do |j|
            f = @d[j]
            @v[j][i] = f
            g = @e[j] + @v[j][j] * f
            (j+1).upto(i-1) do |k|
              g += @v[k][j] * @d[k]
              @e[k] += @v[k][j] * f
            end
            @e[j] = g
          end
          f = 0.0
          i.times do |j|
            @e[j] /= h
            f += @e[j] * @d[j]
          end
          hh = f / (h + h)
          i.times do |j|
            @e[j] -= hh * @d[j]
          end
          i.times do |j|
            f = @d[j]
            g = @e[j]
            j.upto(i-1) do |k|
              @v[k][j] -= (f * @e[k] + g * @d[k])
            end
            @d[j] = @v[i-1][j]
            @v[i][j] = 0.0
          end
        end
        @d[i] = h
      end

      # Accumulate transformations.

      0.upto(@size-1-1) do |i|
        @v[@size-1][i] = @v[i][i]
        @v[i][i] = 1.0
        h = @d[i+1]
        if (h != 0.0)
          0.upto(i) do |k|
            @d[k] = @v[k][i+1] / h
          end
          0.upto(i) do |j|
            g = 0.0
            0.upto(i) do |k|
              g += @v[k][i+1] * @v[k][j]
            end
            0.upto(i) do |k|
              @v[k][j] -= g * @d[k]
            end
          end
        end
        0.upto(i) do |k|
          @v[k][i+1] = 0.0
        end
      end
      @size.times do |j|
        @d[j] = @v[@size-1][j]
        @v[@size-1][j] = 0.0
      end
      @v[@size-1][@size-1] = 1.0
      @e[0] = 0.0
    end


    # Symmetric tridiagonal QL algorithm.

    def diagonalize
      #  This is derived from the Algol procedures tql2, by
      #  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
      #  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
      #  Fortran subroutine in EISPACK.

      1.upto(@size-1) do |i|
        @e[i-1] = @e[i]
      end
      @e[@size-1] = 0.0

      f = 0.0
      tst1 = 0.0
      eps = Float::EPSILON
      @size.times do |l|

        # Find small subdiagonal element

        tst1 = [tst1, @d[l].abs + @e[l].abs].max
        m = l
        while (m < @size) do
          if (@e[m].abs <= eps*tst1)
            break
          end
          m+=1
        end

        # If m == l, @d[l] is an eigenvalue,
        # otherwise, iterate.

        if (m > l)
          iter = 0
          begin
            iter = iter + 1  # (Could check iteration count here.)

            # Compute implicit shift

            g = @d[l]
            p = (@d[l+1] - g) / (2.0 * @e[l])
            r = Math.hypot(p, 1.0)
            if (p < 0)
              r = -r
            end
            @d[l] = @e[l] / (p + r)
            @d[l+1] = @e[l] * (p + r)
            dl1 = @d[l+1]
            h = g - @d[l]
            (l+2).upto(@size-1) do |i|
              @d[i] -= h
            end
            f += h

            # Implicit QL transformation.

            p = @d[m]
            c = 1.0
            c2 = c
            c3 = c
            el1 = @e[l+1]
            s = 0.0
            s2 = 0.0
            (m-1).downto(l) do |i|
              c3 = c2
              c2 = c
              s2 = s
              g = c * @e[i]
              h = c * p
              r = Math.hypot(p, @e[i])
              @e[i+1] = s * r
              s = @e[i] / r
              c = p / r
              p = c * @d[i] - s * g
              @d[i+1] = h + s * (c * g + s * @d[i])

              # Accumulate transformation.

              @size.times do |k|
                h = @v[k][i+1]
                @v[k][i+1] = s * @v[k][i] + c * h
                @v[k][i] = c * @v[k][i] - s * h
              end
            end
            p = -s * s2 * c3 * el1 * @e[l] / dl1
            @e[l] = s * p
            @d[l] = c * p

            # Check for convergence.

          end while (@e[l].abs > eps*tst1)
        end
        @d[l] = @d[l] + f
        @e[l] = 0.0
      end

      # Sort eigenvalues and corresponding vectors.

      0.upto(@size-2) do |i|
        k = i
        p = @d[i]
        (i+1).upto(@size-1) do |j|
          if (@d[j] < p)
            k = j
            p = @d[j]
          end
        end
        if (k != i)
          @d[k] = @d[i]
          @d[i] = p
          @size.times do |j|
            p = @v[j][i]
            @v[j][i] = @v[j][k]
            @v[j][k] = p
          end
        end
      end
    end

    # Nonsymmetric reduction to Hessenberg form.

    def reduce_to_hessenberg
      #  This is derived from the Algol procedures orthes and ortran,
      #  by Martin and Wilkinson, Handbook for Auto. Comp.,
      #  Vol.ii-Linear Algebra, and the corresponding
      #  Fortran subroutines in EISPACK.

      low = 0
      high = @size-1

      (low+1).upto(high-1) do |m|

        # Scale column.

        scale = 0.0
        m.upto(high) do |i|
          scale = scale + @h[i][m-1].abs
        end
        if (scale != 0.0)

          # Compute Householder transformation.

          h = 0.0
          high.downto(m) do |i|
            @ort[i] = @h[i][m-1]/scale
            h += @ort[i] * @ort[i]
          end
          g = Math.sqrt(h)
          if (@ort[m] > 0)
            g = -g
          end
          h -= @ort[m] * g
          @ort[m] = @ort[m] - g

          # Apply Householder similarity transformation
          # @h = (I-u*u'/h)*@h*(I-u*u')/h)

          m.upto(@size-1) do |j|
            f = 0.0
            high.downto(m) do |i|
              f += @ort[i]*@h[i][j]
            end
            f = f/h
            m.upto(high) do |i|
              @h[i][j] -= f*@ort[i]
            end
          end

          0.upto(high) do |i|
            f = 0.0
            high.downto(m) do |j|
              f += @ort[j]*@h[i][j]
            end
            f = f/h
            m.upto(high) do |j|
              @h[i][j] -= f*@ort[j]
            end
          end
          @ort[m] = scale*@ort[m]
          @h[m][m-1] = scale*g
        end
      end

      # Accumulate transformations (Algol's ortran).

      @size.times do |i|
        @size.times do |j|
          @v[i][j] = (i == j ? 1.0 : 0.0)
        end
      end

      (high-1).downto(low+1) do |m|
        if (@h[m][m-1] != 0.0)
          (m+1).upto(high) do |i|
            @ort[i] = @h[i][m-1]
          end
          m.upto(high) do |j|
            g = 0.0
            m.upto(high) do |i|
              g += @ort[i] * @v[i][j]
            end
            # Double division avoids possible underflow
            g = (g / @ort[m]) / @h[m][m-1]
            m.upto(high) do |i|
              @v[i][j] += g * @ort[i]
            end
          end
        end
      end
    end



    # Nonsymmetric reduction from Hessenberg to real Schur form.

    def hessenberg_to_real_schur

      #  This is derived from the Algol procedure hqr2,
      #  by Martin and Wilkinson, Handbook for Auto. Comp.,
      #  Vol.ii-Linear Algebra, and the corresponding
      #  Fortran subroutine in EISPACK.

      # Initialize

      nn = @size
      n = nn-1
      low = 0
      high = nn-1
      eps = Float::EPSILON
      exshift = 0.0
      p = q = r = s = z = 0

      # Store roots isolated by balanc and compute matrix norm

      norm = 0.0
      nn.times do |i|
        if (i < low || i > high)
          @d[i] = @h[i][i]
          @e[i] = 0.0
        end
        ([i-1, 0].max).upto(nn-1) do |j|
          norm = norm + @h[i][j].abs
        end
      end

      # Outer loop over eigenvalue index

      iter = 0
      while (n >= low) do

        # Look for single small sub-diagonal element

        l = n
        while (l > low) do
          s = @h[l-1][l-1].abs + @h[l][l].abs
          if (s == 0.0)
            s = norm
          end
          if (@h[l][l-1].abs < eps * s)
            break
          end
          l-=1
        end

        # Check for convergence
        # One root found

        if (l == n)
          @h[n][n] = @h[n][n] + exshift
          @d[n] = @h[n][n]
          @e[n] = 0.0
          n-=1
          iter = 0

        # Two roots found

        elsif (l == n-1)
          w = @h[n][n-1] * @h[n-1][n]
          p = (@h[n-1][n-1] - @h[n][n]) / 2.0
          q = p * p + w
          z = Math.sqrt(q.abs)
          @h[n][n] = @h[n][n] + exshift
          @h[n-1][n-1] = @h[n-1][n-1] + exshift
          x = @h[n][n]

          # Real pair

          if (q >= 0)
            if (p >= 0)
              z = p + z
            else
              z = p - z
            end
            @d[n-1] = x + z
            @d[n] = @d[n-1]
            if (z != 0.0)
              @d[n] = x - w / z
            end
            @e[n-1] = 0.0
            @e[n] = 0.0
            x = @h[n][n-1]
            s = x.abs + z.abs
            p = x / s
            q = z / s
            r = Math.sqrt(p * p+q * q)
            p /= r
            q /= r

            # Row modification

            (n-1).upto(nn-1) do |j|
              z = @h[n-1][j]
              @h[n-1][j] = q * z + p * @h[n][j]
              @h[n][j] = q * @h[n][j] - p * z
            end

            # Column modification

            0.upto(n) do |i|
              z = @h[i][n-1]
              @h[i][n-1] = q * z + p * @h[i][n]
              @h[i][n] = q * @h[i][n] - p * z
            end

            # Accumulate transformations

            low.upto(high) do |i|
              z = @v[i][n-1]
              @v[i][n-1] = q * z + p * @v[i][n]
              @v[i][n] = q * @v[i][n] - p * z
            end

          # Complex pair

          else
            @d[n-1] = x + p
            @d[n] = x + p
            @e[n-1] = z
            @e[n] = -z
          end
          n -= 2
          iter = 0

        # No convergence yet

        else

          # Form shift

          x = @h[n][n]
          y = 0.0
          w = 0.0
          if (l < n)
            y = @h[n-1][n-1]
            w = @h[n][n-1] * @h[n-1][n]
          end

          # Wilkinson's original ad hoc shift

          if (iter == 10)
            exshift += x
            low.upto(n) do |i|
              @h[i][i] -= x
            end
            s = @h[n][n-1].abs + @h[n-1][n-2].abs
            x = y = 0.75 * s
            w = -0.4375 * s * s
          end

          # MATLAB's new ad hoc shift

          if (iter == 30)
             s = (y - x) / 2.0
             s *= s + w
             if (s > 0)
                s = Math.sqrt(s)
                if (y < x)
                  s = -s
                end
                s = x - w / ((y - x) / 2.0 + s)
                low.upto(n) do |i|
                  @h[i][i] -= s
                end
                exshift += s
                x = y = w = 0.964
             end
          end

          iter = iter + 1  # (Could check iteration count here.)

          # Look for two consecutive small sub-diagonal elements

          m = n-2
          while (m >= l) do
            z = @h[m][m]
            r = x - z
            s = y - z
            p = (r * s - w) / @h[m+1][m] + @h[m][m+1]
            q = @h[m+1][m+1] - z - r - s
            r = @h[m+2][m+1]
            s = p.abs + q.abs + r.abs
            p /= s
            q /= s
            r /= s
            if (m == l)
              break
            end
            if (@h[m][m-1].abs * (q.abs + r.abs) <
              eps * (p.abs * (@h[m-1][m-1].abs + z.abs +
              @h[m+1][m+1].abs)))
                break
            end
            m-=1
          end

          (m+2).upto(n) do |i|
            @h[i][i-2] = 0.0
            if (i > m+2)
              @h[i][i-3] = 0.0
            end
          end

          # Double QR step involving rows l:n and columns m:n

          m.upto(n-1) do |k|
            notlast = (k != n-1)
            if (k != m)
              p = @h[k][k-1]
              q = @h[k+1][k-1]
              r = (notlast ? @h[k+2][k-1] : 0.0)
              x = p.abs + q.abs + r.abs
              next if x == 0
              p /= x
              q /= x
              r /= x
            end
            s = Math.sqrt(p * p + q * q + r * r)
            if (p < 0)
              s = -s
            end
            if (s != 0)
              if (k != m)
                @h[k][k-1] = -s * x
              elsif (l != m)
                @h[k][k-1] = -@h[k][k-1]
              end
              p += s
              x = p / s
              y = q / s
              z = r / s
              q /= p
              r /= p

              # Row modification

              k.upto(nn-1) do |j|
                p = @h[k][j] + q * @h[k+1][j]
                if (notlast)
                  p += r * @h[k+2][j]
                  @h[k+2][j] = @h[k+2][j] - p * z
                end
                @h[k][j] = @h[k][j] - p * x
                @h[k+1][j] = @h[k+1][j] - p * y
              end

              # Column modification

              0.upto([n, k+3].min) do |i|
                p = x * @h[i][k] + y * @h[i][k+1]
                if (notlast)
                  p += z * @h[i][k+2]
                  @h[i][k+2] = @h[i][k+2] - p * r
                end
                @h[i][k] = @h[i][k] - p
                @h[i][k+1] = @h[i][k+1] - p * q
              end

              # Accumulate transformations

              low.upto(high) do |i|
                p = x * @v[i][k] + y * @v[i][k+1]
                if (notlast)
                  p += z * @v[i][k+2]
                  @v[i][k+2] = @v[i][k+2] - p * r
                end
                @v[i][k] = @v[i][k] - p
                @v[i][k+1] = @v[i][k+1] - p * q
              end
            end  # (s != 0)
          end  # k loop
        end  # check convergence
      end  # while (n >= low)

      # Backsubstitute to find vectors of upper triangular form

      if (norm == 0.0)
        return
      end

      (nn-1).downto(0) do |k|
        p = @d[k]
        q = @e[k]

        # Real vector

        if (q == 0)
          l = k
          @h[k][k] = 1.0
          (k-1).downto(0) do |i|
            w = @h[i][i] - p
            r = 0.0
            l.upto(k) do |j|
              r += @h[i][j] * @h[j][k]
            end
            if (@e[i] < 0.0)
              z = w
              s = r
            else
              l = i
              if (@e[i] == 0.0)
                if (w != 0.0)
                  @h[i][k] = -r / w
                else
                  @h[i][k] = -r / (eps * norm)
                end

              # Solve real equations

              else
                x = @h[i][i+1]
                y = @h[i+1][i]
                q = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i]
                t = (x * s - z * r) / q
                @h[i][k] = t
                if (x.abs > z.abs)
                  @h[i+1][k] = (-r - w * t) / x
                else
                  @h[i+1][k] = (-s - y * t) / z
                end
              end

              # Overflow control

              t = @h[i][k].abs
              if ((eps * t) * t > 1)
                i.upto(k) do |j|
                  @h[j][k] = @h[j][k] / t
                end
              end
            end
          end

        # Complex vector

        elsif (q < 0)
          l = n-1

          # Last vector component imaginary so matrix is triangular

          if (@h[n][n-1].abs > @h[n-1][n].abs)
            @h[n-1][n-1] = q / @h[n][n-1]
            @h[n-1][n] = -(@h[n][n] - p) / @h[n][n-1]
          else
            cdivr, cdivi = cdiv(0.0, -@h[n-1][n], @h[n-1][n-1]-p, q)
            @h[n-1][n-1] = cdivr
            @h[n-1][n] = cdivi
          end
          @h[n][n-1] = 0.0
          @h[n][n] = 1.0
          (n-2).downto(0) do |i|
            ra = 0.0
            sa = 0.0
            l.upto(n) do |j|
              ra = ra + @h[i][j] * @h[j][n-1]
              sa = sa + @h[i][j] * @h[j][n]
            end
            w = @h[i][i] - p

            if (@e[i] < 0.0)
              z = w
              r = ra
              s = sa
            else
              l = i
              if (@e[i] == 0)
                cdivr, cdivi = cdiv(-ra, -sa, w, q)
                @h[i][n-1] = cdivr
                @h[i][n] = cdivi
              else

                # Solve complex equations

                x = @h[i][i+1]
                y = @h[i+1][i]
                vr = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i] - q * q
                vi = (@d[i] - p) * 2.0 * q
                if (vr == 0.0 && vi == 0.0)
                  vr = eps * norm * (w.abs + q.abs +
                  x.abs + y.abs + z.abs)
                end
                cdivr, cdivi = cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi)
                @h[i][n-1] = cdivr
                @h[i][n] = cdivi
                if (x.abs > (z.abs + q.abs))
                  @h[i+1][n-1] = (-ra - w * @h[i][n-1] + q * @h[i][n]) / x
                  @h[i+1][n] = (-sa - w * @h[i][n] - q * @h[i][n-1]) / x
                else
                  cdivr, cdivi = cdiv(-r-y*@h[i][n-1], -s-y*@h[i][n], z, q)
                  @h[i+1][n-1] = cdivr
                  @h[i+1][n] = cdivi
                end
              end

              # Overflow control

              t = [@h[i][n-1].abs, @h[i][n].abs].max
              if ((eps * t) * t > 1)
                i.upto(n) do |j|
                  @h[j][n-1] = @h[j][n-1] / t
                  @h[j][n] = @h[j][n] / t
                end
              end
            end
          end
        end
      end

      # Vectors of isolated roots

      nn.times do |i|
        if (i < low || i > high)
          i.upto(nn-1) do |j|
            @v[i][j] = @h[i][j]
          end
        end
      end

      # Back transformation to get eigenvectors of original matrix

      (nn-1).downto(low) do |j|
        low.upto(high) do |i|
          z = 0.0
          low.upto([j, high].min) do |k|
            z += @v[i][k] * @h[k][j]
          end
          @v[i][j] = z
        end
      end
    end

  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit