Server IP : 66.29.132.124 / Your IP : 3.15.198.120 Web Server : LiteSpeed System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : wavevlvu ( 1524) PHP Version : 7.4.33 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/self/root/opt/alt/ruby18/lib64/ruby/1.8/ |
Upload File : |
#!/usr/local/bin/ruby #-- # matrix.rb - # $Release Version: 1.0$ # $Revision: 1.11 $ # $Date: 1999/10/06 11:01:53 $ # Original Version from Smalltalk-80 version # on July 23, 1985 at 8:37:17 am # by Keiju ISHITSUKA #++ # # = matrix.rb # # An implementation of Matrix and Vector classes. # # Author:: Keiju ISHITSUKA # Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly)) # # See classes Matrix and Vector for documentation. # require "e2mmap.rb" module ExceptionForMatrix # :nodoc: extend Exception2MessageMapper def_e2message(TypeError, "wrong argument type %s (expected %s)") def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)") def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch") def_exception("ErrNotRegular", "Not Regular Matrix") def_exception("ErrOperationNotDefined", "This operation(%s) can\\'t defined") end # # The +Matrix+ class represents a mathematical matrix, and provides methods for creating # special-case matrices (zero, identity, diagonal, singular, vector), operating on them # arithmetically and algebraically, and determining their mathematical properties (trace, rank, # inverse, determinant). # # Note that although matrices should theoretically be rectangular, this is not # enforced by the class. # # Also note that the determinant of integer matrices may be incorrectly calculated unless you # also <tt>require 'mathn'</tt>. This may be fixed in the future. # # == Method Catalogue # # To create a matrix: # * <tt> Matrix[*rows] </tt> # * <tt> Matrix.[](*rows) </tt> # * <tt> Matrix.rows(rows, copy = true) </tt> # * <tt> Matrix.columns(columns) </tt> # * <tt> Matrix.diagonal(*values) </tt> # * <tt> Matrix.scalar(n, value) </tt> # * <tt> Matrix.scalar(n, value) </tt> # * <tt> Matrix.identity(n) </tt> # * <tt> Matrix.unit(n) </tt> # * <tt> Matrix.I(n) </tt> # * <tt> Matrix.zero(n) </tt> # * <tt> Matrix.row_vector(row) </tt> # * <tt> Matrix.column_vector(column) </tt> # # To access Matrix elements/columns/rows/submatrices/properties: # * <tt> [](i, j) </tt> # * <tt> #row_size </tt> # * <tt> #column_size </tt> # * <tt> #row(i) </tt> # * <tt> #column(j) </tt> # * <tt> #collect </tt> # * <tt> #map </tt> # * <tt> #minor(*param) </tt> # # Properties of a matrix: # * <tt> #regular? </tt> # * <tt> #singular? </tt> # * <tt> #square? </tt> # # Matrix arithmetic: # * <tt> *(m) </tt> # * <tt> +(m) </tt> # * <tt> -(m) </tt> # * <tt> #/(m) </tt> # * <tt> #inverse </tt> # * <tt> #inv </tt> # * <tt> ** </tt> # # Matrix functions: # * <tt> #determinant </tt> # * <tt> #det </tt> # * <tt> #rank </tt> # * <tt> #trace </tt> # * <tt> #tr </tt> # * <tt> #transpose </tt> # * <tt> #t </tt> # # Conversion to other data types: # * <tt> #coerce(other) </tt> # * <tt> #row_vectors </tt> # * <tt> #column_vectors </tt> # * <tt> #to_a </tt> # # String representations: # * <tt> #to_s </tt> # * <tt> #inspect </tt> # class Matrix @RCS_ID='-$Id: matrix.rb,v 1.11 1999/10/06 11:01:53 keiju Exp keiju $-' # extend Exception2MessageMapper include ExceptionForMatrix # instance creations private_class_method :new # # Creates a matrix where each argument is a row. # Matrix[ [25, 93], [-1, 66] ] # => 25 93 # -1 66 # def Matrix.[](*rows) new(:init_rows, rows, false) end # # Creates a matrix where +rows+ is an array of arrays, each of which is a row # to the matrix. If the optional argument +copy+ is false, use the given # arrays as the internal structure of the matrix without copying. # Matrix.rows([[25, 93], [-1, 66]]) # => 25 93 # -1 66 def Matrix.rows(rows, copy = true) new(:init_rows, rows, copy) end # # Creates a matrix using +columns+ as an array of column vectors. # Matrix.columns([[25, 93], [-1, 66]]) # => 25 -1 # 93 66 # # def Matrix.columns(columns) rows = (0 .. columns[0].size - 1).collect { |i| (0 .. columns.size - 1).collect { |j| columns[j][i] } } Matrix.rows(rows, false) end # # Creates a matrix where the diagonal elements are composed of +values+. # Matrix.diagonal(9, 5, -3) # => 9 0 0 # 0 5 0 # 0 0 -3 # def Matrix.diagonal(*values) size = values.size rows = (0 .. size - 1).collect { |j| row = Array.new(size).fill(0, 0, size) row[j] = values[j] row } rows(rows, false) end # # Creates an +n+ by +n+ diagonal matrix where each diagonal element is # +value+. # Matrix.scalar(2, 5) # => 5 0 # 0 5 # def Matrix.scalar(n, value) Matrix.diagonal(*Array.new(n).fill(value, 0, n)) end # # Creates an +n+ by +n+ identity matrix. # Matrix.identity(2) # => 1 0 # 0 1 # def Matrix.identity(n) Matrix.scalar(n, 1) end class << Matrix alias unit identity alias I identity end # # Creates an +n+ by +n+ zero matrix. # Matrix.zero(2) # => 0 0 # 0 0 # def Matrix.zero(n) Matrix.scalar(n, 0) end # # Creates a single-row matrix where the values of that row are as given in # +row+. # Matrix.row_vector([4,5,6]) # => 4 5 6 # def Matrix.row_vector(row) case row when Vector Matrix.rows([row.to_a], false) when Array Matrix.rows([row.dup], false) else Matrix.rows([[row]], false) end end # # Creates a single-column matrix where the values of that column are as given # in +column+. # Matrix.column_vector([4,5,6]) # => 4 # 5 # 6 # def Matrix.column_vector(column) case column when Vector Matrix.columns([column.to_a]) when Array Matrix.columns([column]) else Matrix.columns([[column]]) end end # # This method is used by the other methods that create matrices, and is of no # use to general users. # def initialize(init_method, *argv) self.send(init_method, *argv) end def init_rows(rows, copy) if copy @rows = rows.collect{|row| row.dup} else @rows = rows end self end private :init_rows # # Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+. # def [](i, j) @rows[i][j] end # # Returns the number of rows. # def row_size @rows.size end # # Returns the number of columns. Note that it is possible to construct a # matrix with uneven columns (e.g. Matrix[ [1,2,3], [4,5] ]), but this is # mathematically unsound. This method uses the first row to determine the # result. # def column_size @rows[0].size end # # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like # an array). When a block is given, the elements of that vector are iterated. # def row(i) # :yield: e if block_given? for e in @rows[i] yield e end else Vector.elements(@rows[i]) end end # # Returns column vector number +j+ of the matrix as a Vector (starting at 0 # like an array). When a block is given, the elements of that vector are # iterated. # def column(j) # :yield: e if block_given? 0.upto(row_size - 1) do |i| yield @rows[i][j] end else col = (0 .. row_size - 1).collect { |i| @rows[i][j] } Vector.elements(col, false) end end # # Returns a matrix that is the result of iteration of the given block over all # elements of the matrix. # Matrix[ [1,2], [3,4] ].collect { |i| i**2 } # => 1 4 # 9 16 # def collect # :yield: e rows = @rows.collect{|row| row.collect{|e| yield e}} Matrix.rows(rows, false) end alias map collect # # Returns a section of the matrix. The parameters are either: # * start_row, nrows, start_col, ncols; OR # * col_range, row_range # # Matrix.diagonal(9, 5, -3).minor(0..1, 0..2) # => 9 0 0 # 0 5 0 # def minor(*param) case param.size when 2 from_row = param[0].first size_row = param[0].end - from_row size_row += 1 unless param[0].exclude_end? from_col = param[1].first size_col = param[1].end - from_col size_col += 1 unless param[1].exclude_end? when 4 from_row = param[0] size_row = param[1] from_col = param[2] size_col = param[3] else Matrix.Raise ArgumentError, param.inspect end rows = @rows[from_row, size_row].collect{ |row| row[from_col, size_col] } Matrix.rows(rows, false) end #-- # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns +true+ if this is a regular matrix. # def regular? square? and rank == column_size end # # Returns +true+ is this is a singular (i.e. non-regular) matrix. # def singular? not regular? end # # Returns +true+ is this is a square matrix. See note in column_size about this # being unreliable, though. # def square? column_size == row_size end #-- # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns +true+ if and only if the two matrices contain equal elements. # def ==(other) return false unless Matrix === other other.compare_by_row_vectors(@rows) end alias eql? == # # Not really intended for general consumption. # def compare_by_row_vectors(rows) return false unless @rows.size == rows.size 0.upto(@rows.size - 1) do |i| return false unless @rows[i] == rows[i] end true end # # Returns a clone of the matrix, so that the contents of each do not reference # identical objects. # def clone Matrix.rows(@rows) end # # Returns a hash-code for the matrix. # def hash value = 0 for row in @rows for e in row value ^= e.hash end end return value end #-- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Matrix multiplication. # Matrix[[2,4], [6,8]] * Matrix.identity(2) # => 2 4 # 6 8 # def *(m) # m is matrix or vector or number case(m) when Numeric rows = @rows.collect { |row| row.collect { |e| e * m } } return Matrix.rows(rows, false) when Vector m = Matrix.column_vector(m) r = self * m return r.column(0) when Matrix Matrix.Raise ErrDimensionMismatch if column_size != m.row_size rows = (0 .. row_size - 1).collect { |i| (0 .. m.column_size - 1).collect { |j| vij = 0 0.upto(column_size - 1) do |k| vij += self[i, k] * m[k, j] end vij } } return Matrix.rows(rows, false) else x, y = m.coerce(self) return x * y end end # # Matrix addition. # Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]] # => 6 0 # -4 12 # def +(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "+" when Vector m = Matrix.column_vector(m) when Matrix else x, y = m.coerce(self) return x + y end Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size rows = (0 .. row_size - 1).collect { |i| (0 .. column_size - 1).collect { |j| self[i, j] + m[i, j] } } Matrix.rows(rows, false) end # # Matrix subtraction. # Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]] # => -8 2 # 8 1 # def -(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "-" when Vector m = Matrix.column_vector(m) when Matrix else x, y = m.coerce(self) return x - y end Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size rows = (0 .. row_size - 1).collect { |i| (0 .. column_size - 1).collect { |j| self[i, j] - m[i, j] } } Matrix.rows(rows, false) end # # Matrix division (multiplication by the inverse). # Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]] # => -7 1 # -3 -6 # def /(other) case other when Numeric rows = @rows.collect { |row| row.collect { |e| e / other } } return Matrix.rows(rows, false) when Matrix return self * other.inverse else x, y = other.coerce(self) rerurn x / y end end # # Returns the inverse of the matrix. # Matrix[[1, 2], [2, 1]].inverse # => -1 1 # 0 -1 # def inverse Matrix.Raise ErrDimensionMismatch unless square? Matrix.I(row_size).inverse_from(self) end alias inv inverse # # Not for public consumption? # def inverse_from(src) size = row_size - 1 a = src.to_a for k in 0..size i = k akk = a[k][k].abs for j in (k+1)..size v = a[j][k].abs if v > akk i = j akk = v end end Matrix.Raise ErrNotRegular if akk == 0 if i != k a[i], a[k] = a[k], a[i] @rows[i], @rows[k] = @rows[k], @rows[i] end akk = a[k][k] for i in 0 .. size next if i == k q = a[i][k] / akk a[i][k] = 0 (k + 1).upto(size) do |j| a[i][j] -= a[k][j] * q end 0.upto(size) do |j| @rows[i][j] -= @rows[k][j] * q end end (k + 1).upto(size) do |j| a[k][j] /= akk end 0.upto(size) do |j| @rows[k][j] /= akk end end self end #alias reciprocal inverse # # Matrix exponentiation. Defined for integer powers only. Equivalent to # multiplying the matrix by itself N times. # Matrix[[7,6], [3,9]] ** 2 # => 67 96 # 48 99 # def ** (other) if other.kind_of?(Integer) x = self if other <= 0 x = self.inverse return Matrix.identity(self.column_size) if other == 0 other = -other end z = x n = other - 1 while n != 0 while (div, mod = n.divmod(2) mod == 0) x = x * x n = div end z *= x n -= 1 end z elsif other.kind_of?(Float) || defined?(Rational) && other.kind_of?(Rational) Matrix.Raise ErrOperationNotDefined, "**" else Matrix.Raise ErrOperationNotDefined, "**" end end #-- # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns the determinant of the matrix. If the matrix is not square, the # result is 0. # Matrix[[7,6], [3,9]].determinant # => 63 # def determinant return 0 unless square? size = row_size - 1 a = to_a det = 1 k = 0 begin if (akk = a[k][k]) == 0 i = k begin return 0 if (i += 1) > size end while a[i][k] == 0 a[i], a[k] = a[k], a[i] akk = a[k][k] det *= -1 end (k + 1).upto(size) do |i| q = a[i][k] / akk (k + 1).upto(size) do |j| a[i][j] -= a[k][j] * q end end det *= akk end while (k += 1) <= size det end alias det determinant # # Returns the rank of the matrix. Beware that using Float values, with their # usual lack of precision, can affect the value returned by this method. Use # Rational values instead if this is important to you. # Matrix[[7,6], [3,9]].rank # => 2 # def rank if column_size > row_size a = transpose.to_a a_column_size = row_size a_row_size = column_size else a = to_a a_column_size = column_size a_row_size = row_size end rank = 0 k = 0 begin if (akk = a[k][k]) == 0 i = k exists = true begin if (i += 1) > a_column_size - 1 exists = false break end end while a[i][k] == 0 if exists a[i], a[k] = a[k], a[i] akk = a[k][k] else i = k exists = true begin if (i += 1) > a_row_size - 1 exists = false break end end while a[k][i] == 0 if exists k.upto(a_column_size - 1) do |j| a[j][k], a[j][i] = a[j][i], a[j][k] end akk = a[k][k] else next end end end (k + 1).upto(a_row_size - 1) do |i| q = a[i][k] / akk (k + 1).upto(a_column_size - 1) do |j| a[i][j] -= a[k][j] * q end end rank += 1 end while (k += 1) <= a_column_size - 1 return rank end # # Returns the trace (sum of diagonal elements) of the matrix. # Matrix[[7,6], [3,9]].trace # => 16 # def trace tr = 0 0.upto(column_size - 1) do |i| tr += @rows[i][i] end tr end alias tr trace # # Returns the transpose of the matrix. # Matrix[[1,2], [3,4], [5,6]] # => 1 2 # 3 4 # 5 6 # Matrix[[1,2], [3,4], [5,6]].transpose # => 1 3 5 # 2 4 6 # def transpose Matrix.columns(@rows) end alias t transpose #-- # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # FIXME: describe #coerce. # def coerce(other) case other when Numeric return Scalar.new(other), self else raise TypeError, "#{self.class} can't be coerced into #{other.class}" end end # # Returns an array of the row vectors of the matrix. See Vector. # def row_vectors rows = (0 .. row_size - 1).collect { |i| row(i) } rows end # # Returns an array of the column vectors of the matrix. See Vector. # def column_vectors columns = (0 .. column_size - 1).collect { |i| column(i) } columns end # # Returns an array of arrays that describe the rows of the matrix. # def to_a @rows.collect{|row| row.collect{|e| e}} end #-- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Overrides Object#to_s # def to_s "Matrix[" + @rows.collect{ |row| "[" + row.collect{|e| e.to_s}.join(", ") + "]" }.join(", ")+"]" end # # Overrides Object#inspect # def inspect "Matrix"+@rows.inspect end # Private CLASS class Scalar < Numeric # :nodoc: include ExceptionForMatrix def initialize(value) @value = value end # ARITHMETIC def +(other) case other when Numeric Scalar.new(@value + other) when Vector, Matrix Scalar.Raise WrongArgType, other.class, "Numeric or Scalar" when Scalar Scalar.new(@value + other.value) else x, y = other.coerce(self) x + y end end def -(other) case other when Numeric Scalar.new(@value - other) when Vector, Matrix Scalar.Raise WrongArgType, other.class, "Numeric or Scalar" when Scalar Scalar.new(@value - other.value) else x, y = other.coerce(self) x - y end end def *(other) case other when Numeric Scalar.new(@value * other) when Vector, Matrix other.collect{|e| @value * e} else x, y = other.coerce(self) x * y end end def / (other) case other when Numeric Scalar.new(@value / other) when Vector Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix" when Matrix self * _M.inverse else x, y = other.coerce(self) x / y end end def ** (other) case other when Numeric Scalar.new(@value ** other) when Vector Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix" when Matrix other.powered_by(self) else x, y = other.coerce(self) x ** y end end end end # # The +Vector+ class represents a mathematical vector, which is useful in its own right, and # also constitutes a row or column of a Matrix. # # == Method Catalogue # # To create a Vector: # * <tt> Vector.[](*array) </tt> # * <tt> Vector.elements(array, copy = true) </tt> # # To access elements: # * <tt> [](i) </tt> # # To enumerate the elements: # * <tt> #each2(v) </tt> # * <tt> #collect2(v) </tt> # # Vector arithmetic: # * <tt> *(x) "is matrix or number" </tt> # * <tt> +(v) </tt> # * <tt> -(v) </tt> # # Vector functions: # * <tt> #inner_product(v) </tt> # * <tt> #collect </tt> # * <tt> #map </tt> # * <tt> #map2(v) </tt> # * <tt> #r </tt> # * <tt> #size </tt> # # Conversion to other data types: # * <tt> #covector </tt> # * <tt> #to_a </tt> # * <tt> #coerce(other) </tt> # # String representations: # * <tt> #to_s </tt> # * <tt> #inspect </tt> # class Vector include ExceptionForMatrix #INSTANCE CREATION private_class_method :new # # Creates a Vector from a list of elements. # Vector[7, 4, ...] # def Vector.[](*array) new(:init_elements, array, copy = false) end # # Creates a vector from an Array. The optional second argument specifies # whether the array itself or a copy is used internally. # def Vector.elements(array, copy = true) new(:init_elements, array, copy) end # # For internal use. # def initialize(method, array, copy) self.send(method, array, copy) end # # For internal use. # def init_elements(array, copy) if copy @elements = array.dup else @elements = array end end # ACCESSING # # Returns element number +i+ (starting at zero) of the vector. # def [](i) @elements[i] end # # Returns the number of elements in the vector. # def size @elements.size end #-- # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Iterate over the elements of this vector and +v+ in conjunction. # def each2(v) # :yield: e1, e2 Vector.Raise ErrDimensionMismatch if size != v.size 0.upto(size - 1) do |i| yield @elements[i], v[i] end end # # Collects (as in Enumerable#collect) over the elements of this vector and +v+ # in conjunction. # def collect2(v) # :yield: e1, e2 Vector.Raise ErrDimensionMismatch if size != v.size (0 .. size - 1).collect do |i| yield @elements[i], v[i] end end #-- # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns +true+ iff the two vectors have the same elements in the same order. # def ==(other) return false unless Vector === other other.compare_by(@elements) end alias eql? == # # For internal use. # def compare_by(elements) @elements == elements end # # Return a copy of the vector. # def clone Vector.elements(@elements) end # # Return a hash-code for the vector. # def hash @elements.hash end #-- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Multiplies the vector by +x+, where +x+ is a number or another vector. # def *(x) case x when Numeric els = @elements.collect{|e| e * x} Vector.elements(els, false) when Matrix Matrix.column_vector(self) * x else s, x = x.coerce(self) s * x end end # # Vector addition. # def +(v) case v when Vector Vector.Raise ErrDimensionMismatch if size != v.size els = collect2(v) { |v1, v2| v1 + v2 } Vector.elements(els, false) when Matrix Matrix.column_vector(self) + v else s, x = v.coerce(self) s + x end end # # Vector subtraction. # def -(v) case v when Vector Vector.Raise ErrDimensionMismatch if size != v.size els = collect2(v) { |v1, v2| v1 - v2 } Vector.elements(els, false) when Matrix Matrix.column_vector(self) - v else s, x = v.coerce(self) s - x end end #-- # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns the inner product of this vector with the other. # Vector[4,7].inner_product Vector[10,1] => 47 # def inner_product(v) Vector.Raise ErrDimensionMismatch if size != v.size p = 0 each2(v) { |v1, v2| p += v1 * v2 } p end # # Like Array#collect. # def collect # :yield: e els = @elements.collect { |v| yield v } Vector.elements(els, false) end alias map collect # # Like Vector#collect2, but returns a Vector instead of an Array. # def map2(v) # :yield: e1, e2 els = collect2(v) { |v1, v2| yield v1, v2 } Vector.elements(els, false) end # # Returns the modulus (Pythagorean distance) of the vector. # Vector[5,8,2].r => 9.643650761 # def r v = 0 for e in @elements v += e*e end return Math.sqrt(v) end #-- # CONVERTING #++ # # Creates a single-row matrix from this vector. # def covector Matrix.row_vector(self) end # # Returns the elements of the vector in an array. # def to_a @elements.dup end # # FIXME: describe Vector#coerce. # def coerce(other) case other when Numeric return Scalar.new(other), self else raise TypeError, "#{self.class} can't be coerced into #{other.class}" end end #-- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Overrides Object#to_s # def to_s "Vector[" + @elements.join(", ") + "]" end # # Overrides Object#inspect # def inspect str = "Vector"+@elements.inspect end end # Documentation comments: # - Matrix#coerce and Vector#coerce need to be documented