Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.147.52.243
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/svgwrite/extensions/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/svgwrite/extensions/shapes.py
"""
Extension to create and manipulate shapes
"""
# Copyright (c) 2019 Christof Hanke (christof.hanke@induhviduals.de)
# License: MIT License
import math


def ngon(num_corners, edge_length=None, radius=None, rotation=0.):
    """
    Returns the corners of a regular polygon as iterable of (x, y) tuples. The polygon size is determined by the
    `edge_length` or the `radius` argument. If both are given `edge_length` will be taken.

    Args:
        num_corners: count of polygon corners
        edge_length: length of polygon side
        radius: circum radius
        rotation: rotation angle in radians

    Returns: iterable of (x, y) tuples

    """
    if num_corners < 3:
        raise ValueError('Argument `num_corners` has to be greater than 2.')
    if edge_length is not None:
        radius = edge_length / 2 / math.sin(math.pi / num_corners)
    elif radius is not None:
        if radius <= 0.:
            raise ValueError('Argument `radius` has to be greater than 0.')
    else:
        raise ValueError('Argument `edge_length` or `radius` required.')

    delta = 2 * math.pi / num_corners
    angle = rotation
    for _ in range(num_corners):
        yield (radius * math.cos(angle), radius * math.sin(angle))
        angle += delta


def star(spikes, r1, r2, rotation=0.):
    """
    Create a star shape as iterable of (x, y) vertices.

    Argument `spikes` defines the count of star spikes, `r1` defines the radius of the "outer" vertices and `r2`
    defines the radius of the "inner" vertices, but this does not mean that `r1` has to greater than `r2`.

    Args:
        spikes: spike count
        r1: radius 1
        r2: radius 2
        rotation: rotation angle in radians

    Returns: iterable of (x, y) tuples

    """
    if spikes < 3:
        raise ValueError('Argument `spikes` has to be greater than 2.')
    if r1 <= 0.:
        raise ValueError('Argument `r1` has to be greater than 0.')
    if r2 <= 0.:
        raise ValueError('Argument `r2` has to be greater than 0.')

    corners1 = ngon(spikes, radius=r1, rotation=rotation)
    corners2 = ngon(spikes, radius=r2, rotation=math.pi/spikes+rotation)
    for s1, s2 in zip(corners1, corners2):
        yield s1
        yield s2


def translate(vertices, delta_x, delta_y):
    """
    Translates `vertices` about `delta_x` and `delta_y`

    Args:
         vertices: iterable of (x, y) tuples
         delta_x: translation in x axis
         delta_y: translation in y axis

    Returns: iterable of (x, y) tuples

    """
    for x, y in vertices:
        yield (x + delta_x, y + delta_y)


def scale(vertices, scale_x, scale_y):
    """
    Scales `vertices` about `scale_x` and `scale_y`

    Args:
         vertices: iterable of (x, y) tuples
         scale_x: scaling factor in x axis direction
         scale_y: scaling factor in y axis direction

    Returns: iterable of (x, y) tuples

    """
    for x, y in vertices:
        yield (x * scale_x, y * scale_y)


def rotate(vertices, delta):
    """
    Rotates `vertices` about `delta` degrees around the origin (0, 0).

    Args:
         vertices: iterable of (x, y) tuples
         delta: rotation angle in radians

    Returns: iterable of (x, y) tuples

    """
    for x, y in vertices:
        r = math.hypot(x, y)
        angle = math.atan2(y, x) + delta
        yield (r * math.cos(angle), r * math.sin(angle))


def centroid(vertices):
    """
    Returns the centroid of a series of `vertices`.

    """
    k, c_x, c_y = 0, 0, 0
    for x, y in vertices:
        c_x += x
        c_y += y
        k += 1
    return c_x / k, c_y / k

Youez - 2016 - github.com/yon3zu
LinuXploit