Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.15.214.238
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/snowballstemmer-2.2.0.dist-info/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/snowballstemmer-2.2.0.dist-info/METADATA
Metadata-Version: 2.1
Name: snowballstemmer
Version: 2.2.0
Summary: This package provides 29 stemmers for 28 languages generated from Snowball algorithms.
Home-page: https://github.com/snowballstem/snowball
Author: Snowball Developers
Author-email: snowball-discuss@lists.tartarus.org
License: BSD-3-Clause
Keywords: stemmer
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Natural Language :: Arabic
Classifier: Natural Language :: Basque
Classifier: Natural Language :: Catalan
Classifier: Natural Language :: Danish
Classifier: Natural Language :: Dutch
Classifier: Natural Language :: English
Classifier: Natural Language :: Finnish
Classifier: Natural Language :: French
Classifier: Natural Language :: German
Classifier: Natural Language :: Greek
Classifier: Natural Language :: Hindi
Classifier: Natural Language :: Hungarian
Classifier: Natural Language :: Indonesian
Classifier: Natural Language :: Irish
Classifier: Natural Language :: Italian
Classifier: Natural Language :: Lithuanian
Classifier: Natural Language :: Nepali
Classifier: Natural Language :: Norwegian
Classifier: Natural Language :: Portuguese
Classifier: Natural Language :: Romanian
Classifier: Natural Language :: Russian
Classifier: Natural Language :: Serbian
Classifier: Natural Language :: Spanish
Classifier: Natural Language :: Swedish
Classifier: Natural Language :: Tamil
Classifier: Natural Language :: Turkish
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Database
Classifier: Topic :: Internet :: WWW/HTTP :: Indexing/Search
Classifier: Topic :: Text Processing :: Indexing
Classifier: Topic :: Text Processing :: Linguistic
Description-Content-Type: text/x-rst
License-File: COPYING

Snowball stemming library collection for Python
===============================================

Python 3 (>= 3.3) is supported.  We no longer actively support Python 2 as
the Python developers stopped supporting it at the start of 2020.  Snowball
2.1.0 was the last release to officially support Python 2.

What is Stemming?
-----------------

Stemming maps different forms of the same word to a common "stem" - for
example, the English stemmer maps *connection*, *connections*, *connective*,
*connected*, and *connecting* to *connect*.  So a searching for *connected*
would also find documents which only have the other forms.

This stem form is often a word itself, but this is not always the case as this
is not a requirement for text search systems, which are the intended field of
use.  We also aim to conflate words with the same meaning, rather than all
words with a common linguistic root (so *awe* and *awful* don't have the same
stem), and over-stemming is more problematic than under-stemming so we tend not
to stem in cases that are hard to resolve.  If you want to always reduce words
to a root form and/or get a root form which is itself a word then Snowball's
stemming algorithms likely aren't the right answer.

How to use library
------------------

The ``snowballstemmer`` module has two functions.

The ``snowballstemmer.algorithms`` function returns a list of available
algorithm names.

The ``snowballstemmer.stemmer`` function takes an algorithm name and returns a
``Stemmer`` object.

``Stemmer`` objects have a ``Stemmer.stemWord(word)`` method and a
``Stemmer.stemWords(word[])`` method.

.. code-block:: python

   import snowballstemmer

   stemmer = snowballstemmer.stemmer('english');
   print(stemmer.stemWords("We are the world".split()));

Automatic Acceleration
----------------------

`PyStemmer <https://pypi.org/project/PyStemmer/>`_ is a wrapper module for
Snowball's ``libstemmer_c`` and should provide results 100% compatible to
**snowballstemmer**.

**PyStemmer** is faster because it wraps generated C versions of the stemmers;
**snowballstemmer** uses generate Python code and is slower but offers a pure
Python solution.

If PyStemmer is installed, ``snowballstemmer.stemmer`` returns a ``PyStemmer``
``Stemmer`` object which provides the same ``Stemmer.stemWord()`` and
``Stemmer.stemWords()`` methods.

Benchmark
~~~~~~~~~

This is a crude benchmark which measures the time for running each stemmer on
every word in its sample vocabulary (10,787,583 words over 26 languages).  It's
not a realistic test of normal use as a real application would do much more
than just stemming.  It's also skewed towards the stemmers which do more work
per word and towards those with larger sample vocabularies.

* Python 2.7 + **snowballstemmer** : 13m00s (15.0 * PyStemmer)
* Python 3.7 + **snowballstemmer** : 12m19s (14.2 * PyStemmer)
* PyPy 7.1.1 (Python 2.7.13) + **snowballstemmer** : 2m14s (2.6 * PyStemmer)
* PyPy 7.1.1 (Python 3.6.1) + **snowballstemmer** : 1m46s (2.0 * PyStemmer)
* Python 2.7 + **PyStemmer** : 52s

For reference the equivalent test for C runs in 9 seconds.

These results are for Snowball 2.0.0.  They're likely to evolve over time as
the code Snowball generates for both Python and C continues to improve (for
a much older test over a different set of stemmers using Python 2.7,
**snowballstemmer** was 30 times slower than **PyStemmer**, or 9 times slower
with **PyPy**).

The message to take away is that if you're stemming a lot of words you should
either install **PyStemmer** (which **snowballstemmer** will then automatically
use for you as described above) or use PyPy.

The TestApp example
-------------------

The ``testapp.py`` example program allows you to run any of the stemmers
on a sample vocabulary.

Usage::

   testapp.py <algorithm> "sentences ... "

.. code-block:: bash

   $ python testapp.py English "sentences... "



Youez - 2016 - github.com/yon3zu
LinuXploit