Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.118.126.69
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic_core/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic_core/core_schema.py
"""
This module contains definitions to build schemas which `pydantic_core` can
validate and serialize.
"""

from __future__ import annotations as _annotations

import sys
import warnings
from collections.abc import Mapping
from datetime import date, datetime, time, timedelta
from decimal import Decimal
from typing import TYPE_CHECKING, Any, Callable, Dict, Hashable, List, Set, Tuple, Type, Union

from typing_extensions import deprecated

if sys.version_info < (3, 12):
    from typing_extensions import TypedDict
else:
    from typing import TypedDict

if sys.version_info < (3, 11):
    from typing_extensions import Protocol, Required, TypeAlias
else:
    from typing import Protocol, Required, TypeAlias

if sys.version_info < (3, 9):
    from typing_extensions import Literal
else:
    from typing import Literal

if TYPE_CHECKING:
    from pydantic_core import PydanticUndefined
else:
    # The initial build of pydantic_core requires PydanticUndefined to generate
    # the core schema; so we need to conditionally skip it. mypy doesn't like
    # this at all, hence the TYPE_CHECKING branch above.
    try:
        from pydantic_core import PydanticUndefined
    except ImportError:
        PydanticUndefined = object()


ExtraBehavior = Literal['allow', 'forbid', 'ignore']


class CoreConfig(TypedDict, total=False):
    """
    Base class for schema configuration options.

    Attributes:
        title: The name of the configuration.
        strict: Whether the configuration should strictly adhere to specified rules.
        extra_fields_behavior: The behavior for handling extra fields.
        typed_dict_total: Whether the TypedDict should be considered total. Default is `True`.
        from_attributes: Whether to use attributes for models, dataclasses, and tagged union keys.
        loc_by_alias: Whether to use the used alias (or first alias for "field required" errors) instead of
            `field_names` to construct error `loc`s. Default is `True`.
        revalidate_instances: Whether instances of models and dataclasses should re-validate. Default is 'never'.
        validate_default: Whether to validate default values during validation. Default is `False`.
        populate_by_name: Whether an aliased field may be populated by its name as given by the model attribute,
            as well as the alias. (Replaces 'allow_population_by_field_name' in Pydantic v1.) Default is `False`.
        str_max_length: The maximum length for string fields.
        str_min_length: The minimum length for string fields.
        str_strip_whitespace: Whether to strip whitespace from string fields.
        str_to_lower: Whether to convert string fields to lowercase.
        str_to_upper: Whether to convert string fields to uppercase.
        allow_inf_nan: Whether to allow infinity and NaN values for float fields. Default is `True`.
        ser_json_timedelta: The serialization option for `timedelta` values. Default is 'iso8601'.
        ser_json_bytes: The serialization option for `bytes` values. Default is 'utf8'.
        hide_input_in_errors: Whether to hide input data from `ValidationError` representation.
        validation_error_cause: Whether to add user-python excs to the __cause__ of a ValidationError.
            Requires exceptiongroup backport pre Python 3.11.
        coerce_numbers_to_str: Whether to enable coercion of any `Number` type to `str` (not applicable in `strict` mode).
        regex_engine: The regex engine to use for regex pattern validation. Default is 'rust-regex'. See `StringSchema`.
    """

    title: str
    strict: bool
    # settings related to typed dicts, model fields, dataclass fields
    extra_fields_behavior: ExtraBehavior
    typed_dict_total: bool  # default: True
    # used for models, dataclasses, and tagged union keys
    from_attributes: bool
    # whether to use the used alias (or first alias for "field required" errors) instead of field_names
    # to construct error `loc`s, default True
    loc_by_alias: bool
    # whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never'
    revalidate_instances: Literal['always', 'never', 'subclass-instances']
    # whether to validate default values during validation, default False
    validate_default: bool
    # used on typed-dicts and arguments
    populate_by_name: bool  # replaces `allow_population_by_field_name` in pydantic v1
    # fields related to string fields only
    str_max_length: int
    str_min_length: int
    str_strip_whitespace: bool
    str_to_lower: bool
    str_to_upper: bool
    # fields related to float fields only
    allow_inf_nan: bool  # default: True
    # the config options are used to customise serialization to JSON
    ser_json_timedelta: Literal['iso8601', 'float']  # default: 'iso8601'
    ser_json_bytes: Literal['utf8', 'base64']  # default: 'utf8'
    # used to hide input data from ValidationError repr
    hide_input_in_errors: bool
    validation_error_cause: bool  # default: False
    coerce_numbers_to_str: bool  # default: False


IncExCall: TypeAlias = 'set[int | str] | dict[int | str, IncExCall] | None'


class SerializationInfo(Protocol):
    @property
    def include(self) -> IncExCall:
        ...

    @property
    def exclude(self) -> IncExCall:
        ...

    @property
    def mode(self) -> str:
        ...

    @property
    def by_alias(self) -> bool:
        ...

    @property
    def exclude_unset(self) -> bool:
        ...

    @property
    def exclude_defaults(self) -> bool:
        ...

    @property
    def exclude_none(self) -> bool:
        ...

    @property
    def round_trip(self) -> bool:
        ...

    def mode_is_json(self) -> bool:
        ...

    def __str__(self) -> str:
        ...

    def __repr__(self) -> str:
        ...


class FieldSerializationInfo(SerializationInfo, Protocol):
    @property
    def field_name(self) -> str:
        ...


class ValidationInfo(Protocol):
    """
    Argument passed to validation functions.
    """

    @property
    def context(self) -> Any | None:
        """Current validation context."""
        ...

    @property
    def config(self) -> CoreConfig | None:
        """The CoreConfig that applies to this validation."""
        ...

    @property
    def mode(self) -> Literal['python', 'json']:
        """The type of input data we are currently validating"""
        ...

    @property
    def data(self) -> Dict[str, Any]:
        """The data being validated for this model."""
        ...

    @property
    def field_name(self) -> str | None:
        """
        The name of the current field being validated if this validator is
        attached to a model field.
        """
        ...


ExpectedSerializationTypes = Literal[
    'none',
    'int',
    'bool',
    'float',
    'str',
    'bytes',
    'bytearray',
    'list',
    'tuple',
    'set',
    'frozenset',
    'generator',
    'dict',
    'datetime',
    'date',
    'time',
    'timedelta',
    'url',
    'multi-host-url',
    'json',
    'uuid',
]


class SimpleSerSchema(TypedDict, total=False):
    type: Required[ExpectedSerializationTypes]


def simple_ser_schema(type: ExpectedSerializationTypes) -> SimpleSerSchema:
    """
    Returns a schema for serialization with a custom type.

    Args:
        type: The type to use for serialization
    """
    return SimpleSerSchema(type=type)


# (__input_value: Any) -> Any
GeneralPlainNoInfoSerializerFunction = Callable[[Any], Any]
# (__input_value: Any, __info: FieldSerializationInfo) -> Any
GeneralPlainInfoSerializerFunction = Callable[[Any, SerializationInfo], Any]
# (__model: Any, __input_value: Any) -> Any
FieldPlainNoInfoSerializerFunction = Callable[[Any, Any], Any]
# (__model: Any, __input_value: Any, __info: FieldSerializationInfo) -> Any
FieldPlainInfoSerializerFunction = Callable[[Any, Any, FieldSerializationInfo], Any]
SerializerFunction = Union[
    GeneralPlainNoInfoSerializerFunction,
    GeneralPlainInfoSerializerFunction,
    FieldPlainNoInfoSerializerFunction,
    FieldPlainInfoSerializerFunction,
]

WhenUsed = Literal['always', 'unless-none', 'json', 'json-unless-none']
"""
Values have the following meanings:

* `'always'` means always use
* `'unless-none'` means use unless the value is `None`
* `'json'` means use when serializing to JSON
* `'json-unless-none'` means use when serializing to JSON and the value is not `None`
"""


class PlainSerializerFunctionSerSchema(TypedDict, total=False):
    type: Required[Literal['function-plain']]
    function: Required[SerializerFunction]
    is_field_serializer: bool  # default False
    info_arg: bool  # default False
    return_schema: CoreSchema  # if omitted, AnySchema is used
    when_used: WhenUsed  # default: 'always'


def plain_serializer_function_ser_schema(
    function: SerializerFunction,
    *,
    is_field_serializer: bool | None = None,
    info_arg: bool | None = None,
    return_schema: CoreSchema | None = None,
    when_used: WhenUsed = 'always',
) -> PlainSerializerFunctionSerSchema:
    """
    Returns a schema for serialization with a function, can be either a "general" or "field" function.

    Args:
        function: The function to use for serialization
        is_field_serializer: Whether the serializer is for a field, e.g. takes `model` as the first argument,
            and `info` includes `field_name`
        info_arg: Whether the function takes an `__info` argument
        return_schema: Schema to use for serializing return value
        when_used: When the function should be called
    """
    if when_used == 'always':
        # just to avoid extra elements in schema, and to use the actual default defined in rust
        when_used = None  # type: ignore
    return _dict_not_none(
        type='function-plain',
        function=function,
        is_field_serializer=is_field_serializer,
        info_arg=info_arg,
        return_schema=return_schema,
        when_used=when_used,
    )


class SerializerFunctionWrapHandler(Protocol):  # pragma: no cover
    def __call__(self, __input_value: Any, __index_key: int | str | None = None) -> Any:
        ...


# (__input_value: Any, __serializer: SerializerFunctionWrapHandler) -> Any
GeneralWrapNoInfoSerializerFunction = Callable[[Any, SerializerFunctionWrapHandler], Any]
# (__input_value: Any, __serializer: SerializerFunctionWrapHandler, __info: SerializationInfo) -> Any
GeneralWrapInfoSerializerFunction = Callable[[Any, SerializerFunctionWrapHandler, SerializationInfo], Any]
# (__model: Any, __input_value: Any, __serializer: SerializerFunctionWrapHandler) -> Any
FieldWrapNoInfoSerializerFunction = Callable[[Any, Any, SerializerFunctionWrapHandler], Any]
# (__model: Any, __input_value: Any, __serializer: SerializerFunctionWrapHandler, __info: FieldSerializationInfo) -> Any
FieldWrapInfoSerializerFunction = Callable[[Any, Any, SerializerFunctionWrapHandler, FieldSerializationInfo], Any]
WrapSerializerFunction = Union[
    GeneralWrapNoInfoSerializerFunction,
    GeneralWrapInfoSerializerFunction,
    FieldWrapNoInfoSerializerFunction,
    FieldWrapInfoSerializerFunction,
]


class WrapSerializerFunctionSerSchema(TypedDict, total=False):
    type: Required[Literal['function-wrap']]
    function: Required[WrapSerializerFunction]
    is_field_serializer: bool  # default False
    info_arg: bool  # default False
    schema: CoreSchema  # if omitted, the schema on which this serializer is defined is used
    return_schema: CoreSchema  # if omitted, AnySchema is used
    when_used: WhenUsed  # default: 'always'


def wrap_serializer_function_ser_schema(
    function: WrapSerializerFunction,
    *,
    is_field_serializer: bool | None = None,
    info_arg: bool | None = None,
    schema: CoreSchema | None = None,
    return_schema: CoreSchema | None = None,
    when_used: WhenUsed = 'always',
) -> WrapSerializerFunctionSerSchema:
    """
    Returns a schema for serialization with a wrap function, can be either a "general" or "field" function.

    Args:
        function: The function to use for serialization
        is_field_serializer: Whether the serializer is for a field, e.g. takes `model` as the first argument,
            and `info` includes `field_name`
        info_arg: Whether the function takes an `__info` argument
        schema: The schema to use for the inner serialization
        return_schema: Schema to use for serializing return value
        when_used: When the function should be called
    """
    if when_used == 'always':
        # just to avoid extra elements in schema, and to use the actual default defined in rust
        when_used = None  # type: ignore
    return _dict_not_none(
        type='function-wrap',
        function=function,
        is_field_serializer=is_field_serializer,
        info_arg=info_arg,
        schema=schema,
        return_schema=return_schema,
        when_used=when_used,
    )


class FormatSerSchema(TypedDict, total=False):
    type: Required[Literal['format']]
    formatting_string: Required[str]
    when_used: WhenUsed  # default: 'json-unless-none'


def format_ser_schema(formatting_string: str, *, when_used: WhenUsed = 'json-unless-none') -> FormatSerSchema:
    """
    Returns a schema for serialization using python's `format` method.

    Args:
        formatting_string: String defining the format to use
        when_used: Same meaning as for [general_function_plain_ser_schema], but with a different default
    """
    if when_used == 'json-unless-none':
        # just to avoid extra elements in schema, and to use the actual default defined in rust
        when_used = None  # type: ignore
    return _dict_not_none(type='format', formatting_string=formatting_string, when_used=when_used)


class ToStringSerSchema(TypedDict, total=False):
    type: Required[Literal['to-string']]
    when_used: WhenUsed  # default: 'json-unless-none'


def to_string_ser_schema(*, when_used: WhenUsed = 'json-unless-none') -> ToStringSerSchema:
    """
    Returns a schema for serialization using python's `str()` / `__str__` method.

    Args:
        when_used: Same meaning as for [general_function_plain_ser_schema], but with a different default
    """
    s = dict(type='to-string')
    if when_used != 'json-unless-none':
        # just to avoid extra elements in schema, and to use the actual default defined in rust
        s['when_used'] = when_used
    return s  # type: ignore


class ModelSerSchema(TypedDict, total=False):
    type: Required[Literal['model']]
    cls: Required[Type[Any]]
    schema: Required[CoreSchema]


def model_ser_schema(cls: Type[Any], schema: CoreSchema) -> ModelSerSchema:
    """
    Returns a schema for serialization using a model.

    Args:
        cls: The expected class type, used to generate warnings if the wrong type is passed
        schema: Internal schema to use to serialize the model dict
    """
    return ModelSerSchema(type='model', cls=cls, schema=schema)


SerSchema = Union[
    SimpleSerSchema,
    PlainSerializerFunctionSerSchema,
    WrapSerializerFunctionSerSchema,
    FormatSerSchema,
    ToStringSerSchema,
    ModelSerSchema,
]


class ComputedField(TypedDict, total=False):
    type: Required[Literal['computed-field']]
    property_name: Required[str]
    return_schema: Required[CoreSchema]
    alias: str
    metadata: Any


def computed_field(
    property_name: str, return_schema: CoreSchema, *, alias: str | None = None, metadata: Any = None
) -> ComputedField:
    """
    ComputedFields are properties of a model or dataclass that are included in serialization.

    Args:
        property_name: The name of the property on the model or dataclass
        return_schema: The schema used for the type returned by the computed field
        alias: The name to use in the serialized output
        metadata: Any other information you want to include with the schema, not used by pydantic-core
    """
    return _dict_not_none(
        type='computed-field', property_name=property_name, return_schema=return_schema, alias=alias, metadata=metadata
    )


class AnySchema(TypedDict, total=False):
    type: Required[Literal['any']]
    ref: str
    metadata: Any
    serialization: SerSchema


def any_schema(*, ref: str | None = None, metadata: Any = None, serialization: SerSchema | None = None) -> AnySchema:
    """
    Returns a schema that matches any value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.any_schema()
    v = SchemaValidator(schema)
    assert v.validate_python(1) == 1
    ```

    Args:
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='any', ref=ref, metadata=metadata, serialization=serialization)


class NoneSchema(TypedDict, total=False):
    type: Required[Literal['none']]
    ref: str
    metadata: Any
    serialization: SerSchema


def none_schema(*, ref: str | None = None, metadata: Any = None, serialization: SerSchema | None = None) -> NoneSchema:
    """
    Returns a schema that matches a None value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.none_schema()
    v = SchemaValidator(schema)
    assert v.validate_python(None) is None
    ```

    Args:
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='none', ref=ref, metadata=metadata, serialization=serialization)


class BoolSchema(TypedDict, total=False):
    type: Required[Literal['bool']]
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def bool_schema(
    strict: bool | None = None, ref: str | None = None, metadata: Any = None, serialization: SerSchema | None = None
) -> BoolSchema:
    """
    Returns a schema that matches a bool value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.bool_schema()
    v = SchemaValidator(schema)
    assert v.validate_python('True') is True
    ```

    Args:
        strict: Whether the value should be a bool or a value that can be converted to a bool
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='bool', strict=strict, ref=ref, metadata=metadata, serialization=serialization)


class IntSchema(TypedDict, total=False):
    type: Required[Literal['int']]
    multiple_of: int
    le: int
    ge: int
    lt: int
    gt: int
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def int_schema(
    *,
    multiple_of: int | None = None,
    le: int | None = None,
    ge: int | None = None,
    lt: int | None = None,
    gt: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> IntSchema:
    """
    Returns a schema that matches a int value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.int_schema(multiple_of=2, le=6, ge=2)
    v = SchemaValidator(schema)
    assert v.validate_python('4') == 4
    ```

    Args:
        multiple_of: The value must be a multiple of this number
        le: The value must be less than or equal to this number
        ge: The value must be greater than or equal to this number
        lt: The value must be strictly less than this number
        gt: The value must be strictly greater than this number
        strict: Whether the value should be a int or a value that can be converted to a int
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='int',
        multiple_of=multiple_of,
        le=le,
        ge=ge,
        lt=lt,
        gt=gt,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class FloatSchema(TypedDict, total=False):
    type: Required[Literal['float']]
    allow_inf_nan: bool  # whether 'NaN', '+inf', '-inf' should be forbidden. default: True
    multiple_of: float
    le: float
    ge: float
    lt: float
    gt: float
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def float_schema(
    *,
    allow_inf_nan: bool | None = None,
    multiple_of: float | None = None,
    le: float | None = None,
    ge: float | None = None,
    lt: float | None = None,
    gt: float | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> FloatSchema:
    """
    Returns a schema that matches a float value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.float_schema(le=0.8, ge=0.2)
    v = SchemaValidator(schema)
    assert v.validate_python('0.5') == 0.5
    ```

    Args:
        allow_inf_nan: Whether to allow inf and nan values
        multiple_of: The value must be a multiple of this number
        le: The value must be less than or equal to this number
        ge: The value must be greater than or equal to this number
        lt: The value must be strictly less than this number
        gt: The value must be strictly greater than this number
        strict: Whether the value should be a float or a value that can be converted to a float
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='float',
        allow_inf_nan=allow_inf_nan,
        multiple_of=multiple_of,
        le=le,
        ge=ge,
        lt=lt,
        gt=gt,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class DecimalSchema(TypedDict, total=False):
    type: Required[Literal['decimal']]
    allow_inf_nan: bool  # whether 'NaN', '+inf', '-inf' should be forbidden. default: False
    multiple_of: Decimal
    le: Decimal
    ge: Decimal
    lt: Decimal
    gt: Decimal
    max_digits: int
    decimal_places: int
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def decimal_schema(
    *,
    allow_inf_nan: bool = None,
    multiple_of: Decimal | None = None,
    le: Decimal | None = None,
    ge: Decimal | None = None,
    lt: Decimal | None = None,
    gt: Decimal | None = None,
    max_digits: int | None = None,
    decimal_places: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> DecimalSchema:
    """
    Returns a schema that matches a decimal value, e.g.:

    ```py
    from decimal import Decimal
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.decimal_schema(le=0.8, ge=0.2)
    v = SchemaValidator(schema)
    assert v.validate_python('0.5') == Decimal('0.5')
    ```

    Args:
        allow_inf_nan: Whether to allow inf and nan values
        multiple_of: The value must be a multiple of this number
        le: The value must be less than or equal to this number
        ge: The value must be greater than or equal to this number
        lt: The value must be strictly less than this number
        gt: The value must be strictly greater than this number
        max_digits: The maximum number of decimal digits allowed
        decimal_places: The maximum number of decimal places allowed
        strict: Whether the value should be a float or a value that can be converted to a float
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='decimal',
        gt=gt,
        ge=ge,
        lt=lt,
        le=le,
        max_digits=max_digits,
        decimal_places=decimal_places,
        multiple_of=multiple_of,
        allow_inf_nan=allow_inf_nan,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class StringSchema(TypedDict, total=False):
    type: Required[Literal['str']]
    pattern: str
    max_length: int
    min_length: int
    strip_whitespace: bool
    to_lower: bool
    to_upper: bool
    regex_engine: Literal['rust-regex', 'python-re']  # default: 'rust-regex'
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def str_schema(
    *,
    pattern: str | None = None,
    max_length: int | None = None,
    min_length: int | None = None,
    strip_whitespace: bool | None = None,
    to_lower: bool | None = None,
    to_upper: bool | None = None,
    regex_engine: Literal['rust-regex', 'python-re'] | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> StringSchema:
    """
    Returns a schema that matches a string value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.str_schema(max_length=10, min_length=2)
    v = SchemaValidator(schema)
    assert v.validate_python('hello') == 'hello'
    ```

    Args:
        pattern: A regex pattern that the value must match
        max_length: The value must be at most this length
        min_length: The value must be at least this length
        strip_whitespace: Whether to strip whitespace from the value
        to_lower: Whether to convert the value to lowercase
        to_upper: Whether to convert the value to uppercase
        regex_engine: The regex engine to use for pattern validation. Default is 'rust-regex'.
            - `rust-regex` uses the [`regex`](https://docs.rs/regex) Rust
              crate, which is non-backtracking and therefore more DDoS
              resistant, but does not support all regex features.
            - `python-re` use the [`re`](https://docs.python.org/3/library/re.html) module,
              which supports all regex features, but may be slower.
        strict: Whether the value should be a string or a value that can be converted to a string
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='str',
        pattern=pattern,
        max_length=max_length,
        min_length=min_length,
        strip_whitespace=strip_whitespace,
        to_lower=to_lower,
        to_upper=to_upper,
        regex_engine=regex_engine,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class BytesSchema(TypedDict, total=False):
    type: Required[Literal['bytes']]
    max_length: int
    min_length: int
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def bytes_schema(
    *,
    max_length: int | None = None,
    min_length: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> BytesSchema:
    """
    Returns a schema that matches a bytes value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.bytes_schema(max_length=10, min_length=2)
    v = SchemaValidator(schema)
    assert v.validate_python(b'hello') == b'hello'
    ```

    Args:
        max_length: The value must be at most this length
        min_length: The value must be at least this length
        strict: Whether the value should be a bytes or a value that can be converted to a bytes
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='bytes',
        max_length=max_length,
        min_length=min_length,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class DateSchema(TypedDict, total=False):
    type: Required[Literal['date']]
    strict: bool
    le: date
    ge: date
    lt: date
    gt: date
    now_op: Literal['past', 'future']
    # defaults to current local utc offset from `time.localtime().tm_gmtoff`
    # value is restricted to -86_400 < offset < 86_400 by bounds in generate_self_schema.py
    now_utc_offset: int
    ref: str
    metadata: Any
    serialization: SerSchema


def date_schema(
    *,
    strict: bool | None = None,
    le: date | None = None,
    ge: date | None = None,
    lt: date | None = None,
    gt: date | None = None,
    now_op: Literal['past', 'future'] | None = None,
    now_utc_offset: int | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> DateSchema:
    """
    Returns a schema that matches a date value, e.g.:

    ```py
    from datetime import date
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.date_schema(le=date(2020, 1, 1), ge=date(2019, 1, 1))
    v = SchemaValidator(schema)
    assert v.validate_python(date(2019, 6, 1)) == date(2019, 6, 1)
    ```

    Args:
        strict: Whether the value should be a date or a value that can be converted to a date
        le: The value must be less than or equal to this date
        ge: The value must be greater than or equal to this date
        lt: The value must be strictly less than this date
        gt: The value must be strictly greater than this date
        now_op: The value must be in the past or future relative to the current date
        now_utc_offset: The value must be in the past or future relative to the current date with this utc offset
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='date',
        strict=strict,
        le=le,
        ge=ge,
        lt=lt,
        gt=gt,
        now_op=now_op,
        now_utc_offset=now_utc_offset,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class TimeSchema(TypedDict, total=False):
    type: Required[Literal['time']]
    strict: bool
    le: time
    ge: time
    lt: time
    gt: time
    tz_constraint: Union[Literal['aware', 'naive'], int]
    microseconds_precision: Literal['truncate', 'error']
    ref: str
    metadata: Any
    serialization: SerSchema


def time_schema(
    *,
    strict: bool | None = None,
    le: time | None = None,
    ge: time | None = None,
    lt: time | None = None,
    gt: time | None = None,
    tz_constraint: Literal['aware', 'naive'] | int | None = None,
    microseconds_precision: Literal['truncate', 'error'] = 'truncate',
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> TimeSchema:
    """
    Returns a schema that matches a time value, e.g.:

    ```py
    from datetime import time
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.time_schema(le=time(12, 0, 0), ge=time(6, 0, 0))
    v = SchemaValidator(schema)
    assert v.validate_python(time(9, 0, 0)) == time(9, 0, 0)
    ```

    Args:
        strict: Whether the value should be a time or a value that can be converted to a time
        le: The value must be less than or equal to this time
        ge: The value must be greater than or equal to this time
        lt: The value must be strictly less than this time
        gt: The value must be strictly greater than this time
        tz_constraint: The value must be timezone aware or naive, or an int to indicate required tz offset
        microseconds_precision: The behavior when seconds have more than 6 digits or microseconds is too large
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='time',
        strict=strict,
        le=le,
        ge=ge,
        lt=lt,
        gt=gt,
        tz_constraint=tz_constraint,
        microseconds_precision=microseconds_precision,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class DatetimeSchema(TypedDict, total=False):
    type: Required[Literal['datetime']]
    strict: bool
    le: datetime
    ge: datetime
    lt: datetime
    gt: datetime
    now_op: Literal['past', 'future']
    tz_constraint: Union[Literal['aware', 'naive'], int]
    # defaults to current local utc offset from `time.localtime().tm_gmtoff`
    # value is restricted to -86_400 < offset < 86_400 by bounds in generate_self_schema.py
    now_utc_offset: int
    microseconds_precision: Literal['truncate', 'error']  # default: 'truncate'
    ref: str
    metadata: Any
    serialization: SerSchema


def datetime_schema(
    *,
    strict: bool | None = None,
    le: datetime | None = None,
    ge: datetime | None = None,
    lt: datetime | None = None,
    gt: datetime | None = None,
    now_op: Literal['past', 'future'] | None = None,
    tz_constraint: Literal['aware', 'naive'] | int | None = None,
    now_utc_offset: int | None = None,
    microseconds_precision: Literal['truncate', 'error'] = 'truncate',
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> DatetimeSchema:
    """
    Returns a schema that matches a datetime value, e.g.:

    ```py
    from datetime import datetime
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.datetime_schema()
    v = SchemaValidator(schema)
    now = datetime.now()
    assert v.validate_python(str(now)) == now
    ```

    Args:
        strict: Whether the value should be a datetime or a value that can be converted to a datetime
        le: The value must be less than or equal to this datetime
        ge: The value must be greater than or equal to this datetime
        lt: The value must be strictly less than this datetime
        gt: The value must be strictly greater than this datetime
        now_op: The value must be in the past or future relative to the current datetime
        tz_constraint: The value must be timezone aware or naive, or an int to indicate required tz offset
            TODO: use of a tzinfo where offset changes based on the datetime is not yet supported
        now_utc_offset: The value must be in the past or future relative to the current datetime with this utc offset
        microseconds_precision: The behavior when seconds have more than 6 digits or microseconds is too large
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='datetime',
        strict=strict,
        le=le,
        ge=ge,
        lt=lt,
        gt=gt,
        now_op=now_op,
        tz_constraint=tz_constraint,
        now_utc_offset=now_utc_offset,
        microseconds_precision=microseconds_precision,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class TimedeltaSchema(TypedDict, total=False):
    type: Required[Literal['timedelta']]
    strict: bool
    le: timedelta
    ge: timedelta
    lt: timedelta
    gt: timedelta
    microseconds_precision: Literal['truncate', 'error']
    ref: str
    metadata: Any
    serialization: SerSchema


def timedelta_schema(
    *,
    strict: bool | None = None,
    le: timedelta | None = None,
    ge: timedelta | None = None,
    lt: timedelta | None = None,
    gt: timedelta | None = None,
    microseconds_precision: Literal['truncate', 'error'] = 'truncate',
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> TimedeltaSchema:
    """
    Returns a schema that matches a timedelta value, e.g.:

    ```py
    from datetime import timedelta
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.timedelta_schema(le=timedelta(days=1), ge=timedelta(days=0))
    v = SchemaValidator(schema)
    assert v.validate_python(timedelta(hours=12)) == timedelta(hours=12)
    ```

    Args:
        strict: Whether the value should be a timedelta or a value that can be converted to a timedelta
        le: The value must be less than or equal to this timedelta
        ge: The value must be greater than or equal to this timedelta
        lt: The value must be strictly less than this timedelta
        gt: The value must be strictly greater than this timedelta
        microseconds_precision: The behavior when seconds have more than 6 digits or microseconds is too large
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='timedelta',
        strict=strict,
        le=le,
        ge=ge,
        lt=lt,
        gt=gt,
        microseconds_precision=microseconds_precision,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class LiteralSchema(TypedDict, total=False):
    type: Required[Literal['literal']]
    expected: Required[List[Any]]
    ref: str
    metadata: Any
    serialization: SerSchema


def literal_schema(
    expected: list[Any], *, ref: str | None = None, metadata: Any = None, serialization: SerSchema | None = None
) -> LiteralSchema:
    """
    Returns a schema that matches a literal value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.literal_schema(['hello', 'world'])
    v = SchemaValidator(schema)
    assert v.validate_python('hello') == 'hello'
    ```

    Args:
        expected: The value must be one of these values
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='literal', expected=expected, ref=ref, metadata=metadata, serialization=serialization)


# must match input/parse_json.rs::JsonType::try_from
JsonType = Literal['null', 'bool', 'int', 'float', 'str', 'list', 'dict']


class IsInstanceSchema(TypedDict, total=False):
    type: Required[Literal['is-instance']]
    cls: Required[Any]
    cls_repr: str
    ref: str
    metadata: Any
    serialization: SerSchema


def is_instance_schema(
    cls: Any,
    *,
    cls_repr: str | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> IsInstanceSchema:
    """
    Returns a schema that checks if a value is an instance of a class, equivalent to python's `isinstnace` method, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    class A:
        pass

    schema = core_schema.is_instance_schema(cls=A)
    v = SchemaValidator(schema)
    v.validate_python(A())
    ```

    Args:
        cls: The value must be an instance of this class
        cls_repr: If provided this string is used in the validator name instead of `repr(cls)`
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='is-instance', cls=cls, cls_repr=cls_repr, ref=ref, metadata=metadata, serialization=serialization
    )


class IsSubclassSchema(TypedDict, total=False):
    type: Required[Literal['is-subclass']]
    cls: Required[Type[Any]]
    cls_repr: str
    ref: str
    metadata: Any
    serialization: SerSchema


def is_subclass_schema(
    cls: Type[Any],
    *,
    cls_repr: str | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> IsInstanceSchema:
    """
    Returns a schema that checks if a value is a subtype of a class, equivalent to python's `issubclass` method, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    class A:
        pass

    class B(A):
        pass

    schema = core_schema.is_subclass_schema(cls=A)
    v = SchemaValidator(schema)
    v.validate_python(B)
    ```

    Args:
        cls: The value must be a subclass of this class
        cls_repr: If provided this string is used in the validator name instead of `repr(cls)`
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='is-subclass', cls=cls, cls_repr=cls_repr, ref=ref, metadata=metadata, serialization=serialization
    )


class CallableSchema(TypedDict, total=False):
    type: Required[Literal['callable']]
    ref: str
    metadata: Any
    serialization: SerSchema


def callable_schema(
    *, ref: str | None = None, metadata: Any = None, serialization: SerSchema | None = None
) -> CallableSchema:
    """
    Returns a schema that checks if a value is callable, equivalent to python's `callable` method, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.callable_schema()
    v = SchemaValidator(schema)
    v.validate_python(min)
    ```

    Args:
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='callable', ref=ref, metadata=metadata, serialization=serialization)


class UuidSchema(TypedDict, total=False):
    type: Required[Literal['uuid']]
    version: Literal[1, 3, 4, 5]
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def uuid_schema(
    *,
    version: Literal[1, 3, 4, 5] | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> UuidSchema:
    return _dict_not_none(
        type='uuid', version=version, strict=strict, ref=ref, metadata=metadata, serialization=serialization
    )


class IncExSeqSerSchema(TypedDict, total=False):
    type: Required[Literal['include-exclude-sequence']]
    include: Set[int]
    exclude: Set[int]


def filter_seq_schema(*, include: Set[int] | None = None, exclude: Set[int] | None = None) -> IncExSeqSerSchema:
    return _dict_not_none(type='include-exclude-sequence', include=include, exclude=exclude)


IncExSeqOrElseSerSchema = Union[IncExSeqSerSchema, SerSchema]


class ListSchema(TypedDict, total=False):
    type: Required[Literal['list']]
    items_schema: CoreSchema
    min_length: int
    max_length: int
    strict: bool
    ref: str
    metadata: Any
    serialization: IncExSeqOrElseSerSchema


def list_schema(
    items_schema: CoreSchema | None = None,
    *,
    min_length: int | None = None,
    max_length: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: IncExSeqOrElseSerSchema | None = None,
) -> ListSchema:
    """
    Returns a schema that matches a list value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.list_schema(core_schema.int_schema(), min_length=0, max_length=10)
    v = SchemaValidator(schema)
    assert v.validate_python(['4']) == [4]
    ```

    Args:
        items_schema: The value must be a list of items that match this schema
        min_length: The value must be a list with at least this many items
        max_length: The value must be a list with at most this many items
        strict: The value must be a list with exactly this many items
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='list',
        items_schema=items_schema,
        min_length=min_length,
        max_length=max_length,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class TuplePositionalSchema(TypedDict, total=False):
    type: Required[Literal['tuple-positional']]
    items_schema: Required[List[CoreSchema]]
    extras_schema: CoreSchema
    strict: bool
    ref: str
    metadata: Any
    serialization: IncExSeqOrElseSerSchema


def tuple_positional_schema(
    items_schema: list[CoreSchema],
    *,
    extras_schema: CoreSchema | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: IncExSeqOrElseSerSchema | None = None,
) -> TuplePositionalSchema:
    """
    Returns a schema that matches a tuple of schemas, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.tuple_positional_schema(
        [core_schema.int_schema(), core_schema.str_schema()]
    )
    v = SchemaValidator(schema)
    assert v.validate_python((1, 'hello')) == (1, 'hello')
    ```

    Args:
        items_schema: The value must be a tuple with items that match these schemas
        extras_schema: The value must be a tuple with items that match this schema
            This was inspired by JSON schema's `prefixItems` and `items` fields.
            In python's `typing.Tuple`, you can't specify a type for "extra" items -- they must all be the same type
            if the length is variable. So this field won't be set from a `typing.Tuple` annotation on a pydantic model.
        strict: The value must be a tuple with exactly this many items
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='tuple-positional',
        items_schema=items_schema,
        extras_schema=extras_schema,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class TupleVariableSchema(TypedDict, total=False):
    type: Required[Literal['tuple-variable']]
    items_schema: CoreSchema
    min_length: int
    max_length: int
    strict: bool
    ref: str
    metadata: Any
    serialization: IncExSeqOrElseSerSchema


def tuple_variable_schema(
    items_schema: CoreSchema | None = None,
    *,
    min_length: int | None = None,
    max_length: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: IncExSeqOrElseSerSchema | None = None,
) -> TupleVariableSchema:
    """
    Returns a schema that matches a tuple of a given schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.tuple_variable_schema(
        items_schema=core_schema.int_schema(), min_length=0, max_length=10
    )
    v = SchemaValidator(schema)
    assert v.validate_python(('1', 2, 3)) == (1, 2, 3)
    ```

    Args:
        items_schema: The value must be a tuple with items that match this schema
        min_length: The value must be a tuple with at least this many items
        max_length: The value must be a tuple with at most this many items
        strict: The value must be a tuple with exactly this many items
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='tuple-variable',
        items_schema=items_schema,
        min_length=min_length,
        max_length=max_length,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class SetSchema(TypedDict, total=False):
    type: Required[Literal['set']]
    items_schema: CoreSchema
    min_length: int
    max_length: int
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def set_schema(
    items_schema: CoreSchema | None = None,
    *,
    min_length: int | None = None,
    max_length: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> SetSchema:
    """
    Returns a schema that matches a set of a given schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.set_schema(
        items_schema=core_schema.int_schema(), min_length=0, max_length=10
    )
    v = SchemaValidator(schema)
    assert v.validate_python({1, '2', 3}) == {1, 2, 3}
    ```

    Args:
        items_schema: The value must be a set with items that match this schema
        min_length: The value must be a set with at least this many items
        max_length: The value must be a set with at most this many items
        strict: The value must be a set with exactly this many items
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='set',
        items_schema=items_schema,
        min_length=min_length,
        max_length=max_length,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class FrozenSetSchema(TypedDict, total=False):
    type: Required[Literal['frozenset']]
    items_schema: CoreSchema
    min_length: int
    max_length: int
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def frozenset_schema(
    items_schema: CoreSchema | None = None,
    *,
    min_length: int | None = None,
    max_length: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> FrozenSetSchema:
    """
    Returns a schema that matches a frozenset of a given schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.frozenset_schema(
        items_schema=core_schema.int_schema(), min_length=0, max_length=10
    )
    v = SchemaValidator(schema)
    assert v.validate_python(frozenset(range(3))) == frozenset({0, 1, 2})
    ```

    Args:
        items_schema: The value must be a frozenset with items that match this schema
        min_length: The value must be a frozenset with at least this many items
        max_length: The value must be a frozenset with at most this many items
        strict: The value must be a frozenset with exactly this many items
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='frozenset',
        items_schema=items_schema,
        min_length=min_length,
        max_length=max_length,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class GeneratorSchema(TypedDict, total=False):
    type: Required[Literal['generator']]
    items_schema: CoreSchema
    min_length: int
    max_length: int
    ref: str
    metadata: Any
    serialization: IncExSeqOrElseSerSchema


def generator_schema(
    items_schema: CoreSchema | None = None,
    *,
    min_length: int | None = None,
    max_length: int | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: IncExSeqOrElseSerSchema | None = None,
) -> GeneratorSchema:
    """
    Returns a schema that matches a generator value, e.g.:

    ```py
    from typing import Iterator
    from pydantic_core import SchemaValidator, core_schema

    def gen() -> Iterator[int]:
        yield 1

    schema = core_schema.generator_schema(items_schema=core_schema.int_schema())
    v = SchemaValidator(schema)
    v.validate_python(gen())
    ```

    Unlike other types, validated generators do not raise ValidationErrors eagerly,
    but instead will raise a ValidationError when a violating value is actually read from the generator.
    This is to ensure that "validated" generators retain the benefit of lazy evaluation.

    Args:
        items_schema: The value must be a generator with items that match this schema
        min_length: The value must be a generator that yields at least this many items
        max_length: The value must be a generator that yields at most this many items
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='generator',
        items_schema=items_schema,
        min_length=min_length,
        max_length=max_length,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


IncExDict = Set[Union[int, str]]


class IncExDictSerSchema(TypedDict, total=False):
    type: Required[Literal['include-exclude-dict']]
    include: IncExDict
    exclude: IncExDict


def filter_dict_schema(*, include: IncExDict | None = None, exclude: IncExDict | None = None) -> IncExDictSerSchema:
    return _dict_not_none(type='include-exclude-dict', include=include, exclude=exclude)


IncExDictOrElseSerSchema = Union[IncExDictSerSchema, SerSchema]


class DictSchema(TypedDict, total=False):
    type: Required[Literal['dict']]
    keys_schema: CoreSchema  # default: AnySchema
    values_schema: CoreSchema  # default: AnySchema
    min_length: int
    max_length: int
    strict: bool
    ref: str
    metadata: Any
    serialization: IncExDictOrElseSerSchema


def dict_schema(
    keys_schema: CoreSchema | None = None,
    values_schema: CoreSchema | None = None,
    *,
    min_length: int | None = None,
    max_length: int | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> DictSchema:
    """
    Returns a schema that matches a dict value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.dict_schema(
        keys_schema=core_schema.str_schema(), values_schema=core_schema.int_schema()
    )
    v = SchemaValidator(schema)
    assert v.validate_python({'a': '1', 'b': 2}) == {'a': 1, 'b': 2}
    ```

    Args:
        keys_schema: The value must be a dict with keys that match this schema
        values_schema: The value must be a dict with values that match this schema
        min_length: The value must be a dict with at least this many items
        max_length: The value must be a dict with at most this many items
        strict: Whether the keys and values should be validated with strict mode
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='dict',
        keys_schema=keys_schema,
        values_schema=values_schema,
        min_length=min_length,
        max_length=max_length,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


# (__input_value: Any) -> Any
NoInfoValidatorFunction = Callable[[Any], Any]


class NoInfoValidatorFunctionSchema(TypedDict):
    type: Literal['no-info']
    function: NoInfoValidatorFunction


# (__input_value: Any, __info: ValidationInfo) -> Any
WithInfoValidatorFunction = Callable[[Any, ValidationInfo], Any]


class WithInfoValidatorFunctionSchema(TypedDict, total=False):
    type: Required[Literal['with-info']]
    function: Required[WithInfoValidatorFunction]
    field_name: str


ValidationFunction = Union[NoInfoValidatorFunctionSchema, WithInfoValidatorFunctionSchema]


class _ValidatorFunctionSchema(TypedDict, total=False):
    function: Required[ValidationFunction]
    schema: Required[CoreSchema]
    ref: str
    metadata: Any
    serialization: SerSchema


class BeforeValidatorFunctionSchema(_ValidatorFunctionSchema, total=False):
    type: Required[Literal['function-before']]


def no_info_before_validator_function(
    function: NoInfoValidatorFunction,
    schema: CoreSchema,
    *,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> BeforeValidatorFunctionSchema:
    """
    Returns a schema that calls a validator function before validating, no `info` argument is provided, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: bytes) -> str:
        return v.decode() + 'world'

    func_schema = core_schema.no_info_before_validator_function(
        function=fn, schema=core_schema.str_schema()
    )
    schema = core_schema.typed_dict_schema({'a': core_schema.typed_dict_field(func_schema)})

    v = SchemaValidator(schema)
    assert v.validate_python({'a': b'hello '}) == {'a': 'hello world'}
    ```

    Args:
        function: The validator function to call
        schema: The schema to validate the output of the validator function
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-before',
        function={'type': 'no-info', 'function': function},
        schema=schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


def with_info_before_validator_function(
    function: WithInfoValidatorFunction,
    schema: CoreSchema,
    *,
    field_name: str | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> BeforeValidatorFunctionSchema:
    """
    Returns a schema that calls a validator function before validation, the function is called with
    an `info` argument, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: bytes, info: core_schema.ValidationInfo) -> str:
        assert info.data is not None
        assert info.field_name is not None
        return v.decode() + 'world'

    func_schema = core_schema.with_info_before_validator_function(
        function=fn, schema=core_schema.str_schema(), field_name='a'
    )
    schema = core_schema.typed_dict_schema({'a': core_schema.typed_dict_field(func_schema)})

    v = SchemaValidator(schema)
    assert v.validate_python({'a': b'hello '}) == {'a': 'hello world'}
    ```

    Args:
        function: The validator function to call
        field_name: The name of the field
        schema: The schema to validate the output of the validator function
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-before',
        function=_dict_not_none(type='with-info', function=function, field_name=field_name),
        schema=schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class AfterValidatorFunctionSchema(_ValidatorFunctionSchema, total=False):
    type: Required[Literal['function-after']]


def no_info_after_validator_function(
    function: NoInfoValidatorFunction,
    schema: CoreSchema,
    *,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> AfterValidatorFunctionSchema:
    """
    Returns a schema that calls a validator function after validating, no `info` argument is provided, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: str) -> str:
        return v + 'world'

    func_schema = core_schema.no_info_after_validator_function(fn, core_schema.str_schema())
    schema = core_schema.typed_dict_schema({'a': core_schema.typed_dict_field(func_schema)})

    v = SchemaValidator(schema)
    assert v.validate_python({'a': b'hello '}) == {'a': 'hello world'}
    ```

    Args:
        function: The validator function to call after the schema is validated
        schema: The schema to validate before the validator function
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-after',
        function={'type': 'no-info', 'function': function},
        schema=schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


def with_info_after_validator_function(
    function: WithInfoValidatorFunction,
    schema: CoreSchema,
    *,
    field_name: str | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> AfterValidatorFunctionSchema:
    """
    Returns a schema that calls a validator function after validation, the function is called with
    an `info` argument, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: str, info: core_schema.ValidationInfo) -> str:
        assert info.data is not None
        assert info.field_name is not None
        return v + 'world'

    func_schema = core_schema.with_info_after_validator_function(
        function=fn, schema=core_schema.str_schema(), field_name='a'
    )
    schema = core_schema.typed_dict_schema({'a': core_schema.typed_dict_field(func_schema)})

    v = SchemaValidator(schema)
    assert v.validate_python({'a': b'hello '}) == {'a': 'hello world'}
    ```

    Args:
        function: The validator function to call after the schema is validated
        schema: The schema to validate before the validator function
        field_name: The name of the field this validators is applied to, if any
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-after',
        function=_dict_not_none(type='with-info', function=function, field_name=field_name),
        schema=schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class ValidatorFunctionWrapHandler(Protocol):
    def __call__(self, input_value: Any, outer_location: str | int | None = None) -> Any:  # pragma: no cover
        ...


# (__input_value: Any, __validator: ValidatorFunctionWrapHandler) -> Any
NoInfoWrapValidatorFunction = Callable[[Any, ValidatorFunctionWrapHandler], Any]


class NoInfoWrapValidatorFunctionSchema(TypedDict):
    type: Literal['no-info']
    function: NoInfoWrapValidatorFunction


# (__input_value: Any, __validator: ValidatorFunctionWrapHandler, __info: ValidationInfo) -> Any
WithInfoWrapValidatorFunction = Callable[[Any, ValidatorFunctionWrapHandler, ValidationInfo], Any]


class WithInfoWrapValidatorFunctionSchema(TypedDict, total=False):
    type: Required[Literal['with-info']]
    function: Required[WithInfoWrapValidatorFunction]
    field_name: str


WrapValidatorFunction = Union[NoInfoWrapValidatorFunctionSchema, WithInfoWrapValidatorFunctionSchema]


class WrapValidatorFunctionSchema(TypedDict, total=False):
    type: Required[Literal['function-wrap']]
    function: Required[WrapValidatorFunction]
    schema: Required[CoreSchema]
    ref: str
    metadata: Any
    serialization: SerSchema


def no_info_wrap_validator_function(
    function: NoInfoWrapValidatorFunction,
    schema: CoreSchema,
    *,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> WrapValidatorFunctionSchema:
    """
    Returns a schema which calls a function with a `validator` callable argument which can
    optionally be used to call inner validation with the function logic, this is much like the
    "onion" implementation of middleware in many popular web frameworks, no `info` argument is passed, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(
        v: str,
        validator: core_schema.ValidatorFunctionWrapHandler,
    ) -> str:
        return validator(input_value=v) + 'world'

    schema = core_schema.no_info_wrap_validator_function(
        function=fn, schema=core_schema.str_schema()
    )
    v = SchemaValidator(schema)
    assert v.validate_python('hello ') == 'hello world'
    ```

    Args:
        function: The validator function to call
        schema: The schema to validate the output of the validator function
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-wrap',
        function={'type': 'no-info', 'function': function},
        schema=schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


def with_info_wrap_validator_function(
    function: WithInfoWrapValidatorFunction,
    schema: CoreSchema,
    *,
    field_name: str | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> WrapValidatorFunctionSchema:
    """
    Returns a schema which calls a function with a `validator` callable argument which can
    optionally be used to call inner validation with the function logic, this is much like the
    "onion" implementation of middleware in many popular web frameworks, an `info` argument is also passed, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(
        v: str,
        validator: core_schema.ValidatorFunctionWrapHandler,
        info: core_schema.ValidationInfo,
    ) -> str:
        return validator(input_value=v) + 'world'

    schema = core_schema.with_info_wrap_validator_function(
        function=fn, schema=core_schema.str_schema()
    )
    v = SchemaValidator(schema)
    assert v.validate_python('hello ') == 'hello world'
    ```

    Args:
        function: The validator function to call
        schema: The schema to validate the output of the validator function
        field_name: The name of the field this validators is applied to, if any
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-wrap',
        function=_dict_not_none(type='with-info', function=function, field_name=field_name),
        schema=schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class PlainValidatorFunctionSchema(TypedDict, total=False):
    type: Required[Literal['function-plain']]
    function: Required[ValidationFunction]
    ref: str
    metadata: Any
    serialization: SerSchema


def no_info_plain_validator_function(
    function: NoInfoValidatorFunction,
    *,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> PlainValidatorFunctionSchema:
    """
    Returns a schema that uses the provided function for validation, no `info` argument is passed, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: str) -> str:
        assert 'hello' in v
        return v + 'world'

    schema = core_schema.no_info_plain_validator_function(function=fn)
    v = SchemaValidator(schema)
    assert v.validate_python('hello ') == 'hello world'
    ```

    Args:
        function: The validator function to call
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-plain',
        function={'type': 'no-info', 'function': function},
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


def with_info_plain_validator_function(
    function: WithInfoValidatorFunction,
    *,
    field_name: str | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> PlainValidatorFunctionSchema:
    """
    Returns a schema that uses the provided function for validation, an `info` argument is passed, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: str, info: core_schema.ValidationInfo) -> str:
        assert 'hello' in v
        return v + 'world'

    schema = core_schema.with_info_plain_validator_function(function=fn)
    v = SchemaValidator(schema)
    assert v.validate_python('hello ') == 'hello world'
    ```

    Args:
        function: The validator function to call
        field_name: The name of the field this validators is applied to, if any
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='function-plain',
        function=_dict_not_none(type='with-info', function=function, field_name=field_name),
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class WithDefaultSchema(TypedDict, total=False):
    type: Required[Literal['default']]
    schema: Required[CoreSchema]
    default: Any
    default_factory: Callable[[], Any]
    on_error: Literal['raise', 'omit', 'default']  # default: 'raise'
    validate_default: bool  # default: False
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def with_default_schema(
    schema: CoreSchema,
    *,
    default: Any = PydanticUndefined,
    default_factory: Callable[[], Any] | None = None,
    on_error: Literal['raise', 'omit', 'default'] | None = None,
    validate_default: bool | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> WithDefaultSchema:
    """
    Returns a schema that adds a default value to the given schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.with_default_schema(core_schema.str_schema(), default='hello')
    wrapper_schema = core_schema.typed_dict_schema(
        {'a': core_schema.typed_dict_field(schema)}
    )
    v = SchemaValidator(wrapper_schema)
    assert v.validate_python({}) == v.validate_python({'a': 'hello'})
    ```

    Args:
        schema: The schema to add a default value to
        default: The default value to use
        default_factory: A function that returns the default value to use
        on_error: What to do if the schema validation fails. One of 'raise', 'omit', 'default'
        validate_default: Whether the default value should be validated
        strict: Whether the underlying schema should be validated with strict mode
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    s = _dict_not_none(
        type='default',
        schema=schema,
        default_factory=default_factory,
        on_error=on_error,
        validate_default=validate_default,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )
    if default is not PydanticUndefined:
        s['default'] = default
    return s


class NullableSchema(TypedDict, total=False):
    type: Required[Literal['nullable']]
    schema: Required[CoreSchema]
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def nullable_schema(
    schema: CoreSchema,
    *,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> NullableSchema:
    """
    Returns a schema that matches a nullable value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.nullable_schema(core_schema.str_schema())
    v = SchemaValidator(schema)
    assert v.validate_python(None) is None
    ```

    Args:
        schema: The schema to wrap
        strict: Whether the underlying schema should be validated with strict mode
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='nullable', schema=schema, strict=strict, ref=ref, metadata=metadata, serialization=serialization
    )


class UnionSchema(TypedDict, total=False):
    type: Required[Literal['union']]
    choices: Required[List[Union[CoreSchema, Tuple[CoreSchema, str]]]]
    # default true, whether to automatically collapse unions with one element to the inner validator
    auto_collapse: bool
    custom_error_type: str
    custom_error_message: str
    custom_error_context: Dict[str, Union[str, int, float]]
    mode: Literal['smart', 'left_to_right']  # default: 'smart'
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def union_schema(
    choices: list[CoreSchema | tuple[CoreSchema, str]],
    *,
    auto_collapse: bool | None = None,
    custom_error_type: str | None = None,
    custom_error_message: str | None = None,
    custom_error_context: dict[str, str | int] | None = None,
    mode: Literal['smart', 'left_to_right'] | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> UnionSchema:
    """
    Returns a schema that matches a union value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.union_schema([core_schema.str_schema(), core_schema.int_schema()])
    v = SchemaValidator(schema)
    assert v.validate_python('hello') == 'hello'
    assert v.validate_python(1) == 1
    ```

    Args:
        choices: The schemas to match. If a tuple, the second item is used as the label for the case.
        auto_collapse: whether to automatically collapse unions with one element to the inner validator, default true
        custom_error_type: The custom error type to use if the validation fails
        custom_error_message: The custom error message to use if the validation fails
        custom_error_context: The custom error context to use if the validation fails
        mode: How to select which choice to return
            * `smart` (default) will try to return the choice which is the closest match to the input value
            * `left_to_right` will return the first choice in `choices` which succeeds validation
        strict: Whether the underlying schemas should be validated with strict mode
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='union',
        choices=choices,
        auto_collapse=auto_collapse,
        custom_error_type=custom_error_type,
        custom_error_message=custom_error_message,
        custom_error_context=custom_error_context,
        mode=mode,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class TaggedUnionSchema(TypedDict, total=False):
    type: Required[Literal['tagged-union']]
    choices: Required[Dict[Hashable, CoreSchema]]
    discriminator: Required[Union[str, List[Union[str, int]], List[List[Union[str, int]]], Callable[[Any], Hashable]]]
    custom_error_type: str
    custom_error_message: str
    custom_error_context: Dict[str, Union[str, int, float]]
    strict: bool
    from_attributes: bool  # default: True
    ref: str
    metadata: Any
    serialization: SerSchema


def tagged_union_schema(
    choices: Dict[Hashable, CoreSchema],
    discriminator: str | list[str | int] | list[list[str | int]] | Callable[[Any], Hashable],
    *,
    custom_error_type: str | None = None,
    custom_error_message: str | None = None,
    custom_error_context: dict[str, int | str | float] | None = None,
    strict: bool | None = None,
    from_attributes: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> TaggedUnionSchema:
    """
    Returns a schema that matches a tagged union value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    apple_schema = core_schema.typed_dict_schema(
        {
            'foo': core_schema.typed_dict_field(core_schema.str_schema()),
            'bar': core_schema.typed_dict_field(core_schema.int_schema()),
        }
    )
    banana_schema = core_schema.typed_dict_schema(
        {
            'foo': core_schema.typed_dict_field(core_schema.str_schema()),
            'spam': core_schema.typed_dict_field(
                core_schema.list_schema(items_schema=core_schema.int_schema())
            ),
        }
    )
    schema = core_schema.tagged_union_schema(
        choices={
            'apple': apple_schema,
            'banana': banana_schema,
        },
        discriminator='foo',
    )
    v = SchemaValidator(schema)
    assert v.validate_python({'foo': 'apple', 'bar': '123'}) == {'foo': 'apple', 'bar': 123}
    assert v.validate_python({'foo': 'banana', 'spam': [1, 2, 3]}) == {
        'foo': 'banana',
        'spam': [1, 2, 3],
    }
    ```

    Args:
        choices: The schemas to match
            When retrieving a schema from `choices` using the discriminator value, if the value is a str,
            it should be fed back into the `choices` map until a schema is obtained
            (This approach is to prevent multiple ownership of a single schema in Rust)
        discriminator: The discriminator to use to determine the schema to use
            * If `discriminator` is a str, it is the name of the attribute to use as the discriminator
            * If `discriminator` is a list of int/str, it should be used as a "path" to access the discriminator
            * If `discriminator` is a list of lists, each inner list is a path, and the first path that exists is used
            * If `discriminator` is a callable, it should return the discriminator when called on the value to validate;
              the callable can return `None` to indicate that there is no matching discriminator present on the input
        custom_error_type: The custom error type to use if the validation fails
        custom_error_message: The custom error message to use if the validation fails
        custom_error_context: The custom error context to use if the validation fails
        strict: Whether the underlying schemas should be validated with strict mode
        from_attributes: Whether to use the attributes of the object to retrieve the discriminator value
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='tagged-union',
        choices=choices,
        discriminator=discriminator,
        custom_error_type=custom_error_type,
        custom_error_message=custom_error_message,
        custom_error_context=custom_error_context,
        strict=strict,
        from_attributes=from_attributes,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class ChainSchema(TypedDict, total=False):
    type: Required[Literal['chain']]
    steps: Required[List[CoreSchema]]
    ref: str
    metadata: Any
    serialization: SerSchema


def chain_schema(
    steps: list[CoreSchema], *, ref: str | None = None, metadata: Any = None, serialization: SerSchema | None = None
) -> ChainSchema:
    """
    Returns a schema that chains the provided validation schemas, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: str, info: core_schema.ValidationInfo) -> str:
        assert 'hello' in v
        return v + ' world'

    fn_schema = core_schema.with_info_plain_validator_function(function=fn)
    schema = core_schema.chain_schema(
        [fn_schema, fn_schema, fn_schema, core_schema.str_schema()]
    )
    v = SchemaValidator(schema)
    assert v.validate_python('hello') == 'hello world world world'
    ```

    Args:
        steps: The schemas to chain
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='chain', steps=steps, ref=ref, metadata=metadata, serialization=serialization)


class LaxOrStrictSchema(TypedDict, total=False):
    type: Required[Literal['lax-or-strict']]
    lax_schema: Required[CoreSchema]
    strict_schema: Required[CoreSchema]
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def lax_or_strict_schema(
    lax_schema: CoreSchema,
    strict_schema: CoreSchema,
    *,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> LaxOrStrictSchema:
    """
    Returns a schema that uses the lax or strict schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    def fn(v: str, info: core_schema.ValidationInfo) -> str:
        assert 'hello' in v
        return v + ' world'

    lax_schema = core_schema.int_schema(strict=False)
    strict_schema = core_schema.int_schema(strict=True)

    schema = core_schema.lax_or_strict_schema(
        lax_schema=lax_schema, strict_schema=strict_schema, strict=True
    )
    v = SchemaValidator(schema)
    assert v.validate_python(123) == 123

    schema = core_schema.lax_or_strict_schema(
        lax_schema=lax_schema, strict_schema=strict_schema, strict=False
    )
    v = SchemaValidator(schema)
    assert v.validate_python('123') == 123
    ```

    Args:
        lax_schema: The lax schema to use
        strict_schema: The strict schema to use
        strict: Whether the strict schema should be used
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='lax-or-strict',
        lax_schema=lax_schema,
        strict_schema=strict_schema,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class JsonOrPythonSchema(TypedDict, total=False):
    type: Required[Literal['json-or-python']]
    json_schema: Required[CoreSchema]
    python_schema: Required[CoreSchema]
    ref: str
    metadata: Any
    serialization: SerSchema


def json_or_python_schema(
    json_schema: CoreSchema,
    python_schema: CoreSchema,
    *,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> JsonOrPythonSchema:
    """
    Returns a schema that uses the Json or Python schema depending on the input:

    ```py
    from pydantic_core import SchemaValidator, ValidationError, core_schema

    v = SchemaValidator(
        core_schema.json_or_python_schema(
            json_schema=core_schema.int_schema(),
            python_schema=core_schema.int_schema(strict=True),
        )
    )

    assert v.validate_json('"123"') == 123

    try:
        v.validate_python('123')
    except ValidationError:
        pass
    else:
        raise AssertionError('Validation should have failed')
    ```

    Args:
        json_schema: The schema to use for Json inputs
        python_schema: The schema to use for Python inputs
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='json-or-python',
        json_schema=json_schema,
        python_schema=python_schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class TypedDictField(TypedDict, total=False):
    type: Required[Literal['typed-dict-field']]
    schema: Required[CoreSchema]
    required: bool
    validation_alias: Union[str, List[Union[str, int]], List[List[Union[str, int]]]]
    serialization_alias: str
    serialization_exclude: bool  # default: False
    metadata: Any


def typed_dict_field(
    schema: CoreSchema,
    *,
    required: bool | None = None,
    validation_alias: str | list[str | int] | list[list[str | int]] | None = None,
    serialization_alias: str | None = None,
    serialization_exclude: bool | None = None,
    metadata: Any = None,
) -> TypedDictField:
    """
    Returns a schema that matches a typed dict field, e.g.:

    ```py
    from pydantic_core import core_schema

    field = core_schema.typed_dict_field(schema=core_schema.int_schema(), required=True)
    ```

    Args:
        schema: The schema to use for the field
        required: Whether the field is required
        validation_alias: The alias(es) to use to find the field in the validation data
        serialization_alias: The alias to use as a key when serializing
        serialization_exclude: Whether to exclude the field when serializing
        metadata: Any other information you want to include with the schema, not used by pydantic-core
    """
    return _dict_not_none(
        type='typed-dict-field',
        schema=schema,
        required=required,
        validation_alias=validation_alias,
        serialization_alias=serialization_alias,
        serialization_exclude=serialization_exclude,
        metadata=metadata,
    )


class TypedDictSchema(TypedDict, total=False):
    type: Required[Literal['typed-dict']]
    fields: Required[Dict[str, TypedDictField]]
    computed_fields: List[ComputedField]
    strict: bool
    extras_schema: CoreSchema
    # all these values can be set via config, equivalent fields have `typed_dict_` prefix
    extra_behavior: ExtraBehavior
    total: bool  # default: True
    populate_by_name: bool  # replaces `allow_population_by_field_name` in pydantic v1
    ref: str
    metadata: Any
    serialization: SerSchema
    config: CoreConfig


def typed_dict_schema(
    fields: Dict[str, TypedDictField],
    *,
    computed_fields: list[ComputedField] | None = None,
    strict: bool | None = None,
    extras_schema: CoreSchema | None = None,
    extra_behavior: ExtraBehavior | None = None,
    total: bool | None = None,
    populate_by_name: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
    config: CoreConfig | None = None,
) -> TypedDictSchema:
    """
    Returns a schema that matches a typed dict, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    wrapper_schema = core_schema.typed_dict_schema(
        {'a': core_schema.typed_dict_field(core_schema.str_schema())}
    )
    v = SchemaValidator(wrapper_schema)
    assert v.validate_python({'a': 'hello'}) == {'a': 'hello'}
    ```

    Args:
        fields: The fields to use for the typed dict
        computed_fields: Computed fields to use when serializing the model, only applies when directly inside a model
        strict: Whether the typed dict is strict
        extras_schema: The extra validator to use for the typed dict
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        extra_behavior: The extra behavior to use for the typed dict
        total: Whether the typed dict is total
        populate_by_name: Whether the typed dict should populate by name
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='typed-dict',
        fields=fields,
        computed_fields=computed_fields,
        strict=strict,
        extras_schema=extras_schema,
        extra_behavior=extra_behavior,
        total=total,
        populate_by_name=populate_by_name,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
        config=config,
    )


class ModelField(TypedDict, total=False):
    type: Required[Literal['model-field']]
    schema: Required[CoreSchema]
    validation_alias: Union[str, List[Union[str, int]], List[List[Union[str, int]]]]
    serialization_alias: str
    serialization_exclude: bool  # default: False
    frozen: bool
    metadata: Any


def model_field(
    schema: CoreSchema,
    *,
    validation_alias: str | list[str | int] | list[list[str | int]] | None = None,
    serialization_alias: str | None = None,
    serialization_exclude: bool | None = None,
    frozen: bool | None = None,
    metadata: Any = None,
) -> ModelField:
    """
    Returns a schema for a model field, e.g.:

    ```py
    from pydantic_core import core_schema

    field = core_schema.model_field(schema=core_schema.int_schema())
    ```

    Args:
        schema: The schema to use for the field
        validation_alias: The alias(es) to use to find the field in the validation data
        serialization_alias: The alias to use as a key when serializing
        serialization_exclude: Whether to exclude the field when serializing
        frozen: Whether the field is frozen
        metadata: Any other information you want to include with the schema, not used by pydantic-core
    """
    return _dict_not_none(
        type='model-field',
        schema=schema,
        validation_alias=validation_alias,
        serialization_alias=serialization_alias,
        serialization_exclude=serialization_exclude,
        frozen=frozen,
        metadata=metadata,
    )


class ModelFieldsSchema(TypedDict, total=False):
    type: Required[Literal['model-fields']]
    fields: Required[Dict[str, ModelField]]
    model_name: str
    computed_fields: List[ComputedField]
    strict: bool
    extras_schema: CoreSchema
    # all these values can be set via config, equivalent fields have `typed_dict_` prefix
    extra_behavior: ExtraBehavior
    populate_by_name: bool  # replaces `allow_population_by_field_name` in pydantic v1
    from_attributes: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def model_fields_schema(
    fields: Dict[str, ModelField],
    *,
    model_name: str | None = None,
    computed_fields: list[ComputedField] | None = None,
    strict: bool | None = None,
    extras_schema: CoreSchema | None = None,
    extra_behavior: ExtraBehavior | None = None,
    populate_by_name: bool | None = None,
    from_attributes: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> ModelFieldsSchema:
    """
    Returns a schema that matches a typed dict, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    wrapper_schema = core_schema.model_fields_schema(
        {'a': core_schema.model_field(core_schema.str_schema())}
    )
    v = SchemaValidator(wrapper_schema)
    print(v.validate_python({'a': 'hello'}))
    #> ({'a': 'hello'}, None, {'a'})
    ```

    Args:
        fields: The fields to use for the typed dict
        model_name: The name of the model, used for error messages, defaults to "Model"
        computed_fields: Computed fields to use when serializing the model, only applies when directly inside a model
        strict: Whether the typed dict is strict
        extras_schema: The extra validator to use for the typed dict
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        extra_behavior: The extra behavior to use for the typed dict
        populate_by_name: Whether the typed dict should populate by name
        from_attributes: Whether the typed dict should be populated from attributes
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='model-fields',
        fields=fields,
        model_name=model_name,
        computed_fields=computed_fields,
        strict=strict,
        extras_schema=extras_schema,
        extra_behavior=extra_behavior,
        populate_by_name=populate_by_name,
        from_attributes=from_attributes,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class ModelSchema(TypedDict, total=False):
    type: Required[Literal['model']]
    cls: Required[Type[Any]]
    schema: Required[CoreSchema]
    custom_init: bool
    root_model: bool
    post_init: str
    revalidate_instances: Literal['always', 'never', 'subclass-instances']  # default: 'never'
    strict: bool
    frozen: bool
    extra_behavior: ExtraBehavior
    config: CoreConfig
    ref: str
    metadata: Any
    serialization: SerSchema


def model_schema(
    cls: Type[Any],
    schema: CoreSchema,
    *,
    custom_init: bool | None = None,
    root_model: bool | None = None,
    post_init: str | None = None,
    revalidate_instances: Literal['always', 'never', 'subclass-instances'] | None = None,
    strict: bool | None = None,
    frozen: bool | None = None,
    extra_behavior: ExtraBehavior | None = None,
    config: CoreConfig | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> ModelSchema:
    """
    A model schema generally contains a typed-dict schema.
    It will run the typed dict validator, then create a new class
    and set the dict and fields set returned from the typed dict validator
    to `__dict__` and `__pydantic_fields_set__` respectively.

    Example:

    ```py
    from pydantic_core import CoreConfig, SchemaValidator, core_schema

    class MyModel:
        __slots__ = (
            '__dict__',
            '__pydantic_fields_set__',
            '__pydantic_extra__',
            '__pydantic_private__',
        )

    schema = core_schema.model_schema(
        cls=MyModel,
        config=CoreConfig(str_max_length=5),
        schema=core_schema.model_fields_schema(
            fields={'a': core_schema.model_field(core_schema.str_schema())},
        ),
    )
    v = SchemaValidator(schema)
    assert v.isinstance_python({'a': 'hello'}) is True
    assert v.isinstance_python({'a': 'too long'}) is False
    ```

    Args:
        cls: The class to use for the model
        schema: The schema to use for the model
        custom_init: Whether the model has a custom init method
        root_model: Whether the model is a `RootModel`
        post_init: The call after init to use for the model
        revalidate_instances: whether instances of models and dataclasses (including subclass instances)
            should re-validate defaults to config.revalidate_instances, else 'never'
        strict: Whether the model is strict
        frozen: Whether the model is frozen
        extra_behavior: The extra behavior to use for the model, used in serialization
        config: The config to use for the model
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='model',
        cls=cls,
        schema=schema,
        custom_init=custom_init,
        root_model=root_model,
        post_init=post_init,
        revalidate_instances=revalidate_instances,
        strict=strict,
        frozen=frozen,
        extra_behavior=extra_behavior,
        config=config,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class DataclassField(TypedDict, total=False):
    type: Required[Literal['dataclass-field']]
    name: Required[str]
    schema: Required[CoreSchema]
    kw_only: bool  # default: True
    init_only: bool  # default: False
    frozen: bool  # default: False
    validation_alias: Union[str, List[Union[str, int]], List[List[Union[str, int]]]]
    serialization_alias: str
    serialization_exclude: bool  # default: False
    metadata: Any


def dataclass_field(
    name: str,
    schema: CoreSchema,
    *,
    kw_only: bool | None = None,
    init_only: bool | None = None,
    validation_alias: str | list[str | int] | list[list[str | int]] | None = None,
    serialization_alias: str | None = None,
    serialization_exclude: bool | None = None,
    metadata: Any = None,
    frozen: bool | None = None,
) -> DataclassField:
    """
    Returns a schema for a dataclass field, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    field = core_schema.dataclass_field(
        name='a', schema=core_schema.str_schema(), kw_only=False
    )
    schema = core_schema.dataclass_args_schema('Foobar', [field])
    v = SchemaValidator(schema)
    assert v.validate_python({'a': 'hello'}) == ({'a': 'hello'}, None)
    ```

    Args:
        name: The name to use for the argument parameter
        schema: The schema to use for the argument parameter
        kw_only: Whether the field can be set with a positional argument as well as a keyword argument
        init_only: Whether the field should be omitted  from `__dict__` and passed to `__post_init__`
        validation_alias: The alias(es) to use to find the field in the validation data
        serialization_alias: The alias to use as a key when serializing
        serialization_exclude: Whether to exclude the field when serializing
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        frozen: Whether the field is frozen
    """
    return _dict_not_none(
        type='dataclass-field',
        name=name,
        schema=schema,
        kw_only=kw_only,
        init_only=init_only,
        validation_alias=validation_alias,
        serialization_alias=serialization_alias,
        serialization_exclude=serialization_exclude,
        metadata=metadata,
        frozen=frozen,
    )


class DataclassArgsSchema(TypedDict, total=False):
    type: Required[Literal['dataclass-args']]
    dataclass_name: Required[str]
    fields: Required[List[DataclassField]]
    computed_fields: List[ComputedField]
    populate_by_name: bool  # default: False
    collect_init_only: bool  # default: False
    ref: str
    metadata: Any
    serialization: SerSchema
    extra_behavior: ExtraBehavior


def dataclass_args_schema(
    dataclass_name: str,
    fields: list[DataclassField],
    *,
    computed_fields: List[ComputedField] | None = None,
    populate_by_name: bool | None = None,
    collect_init_only: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
    extra_behavior: ExtraBehavior | None = None,
) -> DataclassArgsSchema:
    """
    Returns a schema for validating dataclass arguments, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    field_a = core_schema.dataclass_field(
        name='a', schema=core_schema.str_schema(), kw_only=False
    )
    field_b = core_schema.dataclass_field(
        name='b', schema=core_schema.bool_schema(), kw_only=False
    )
    schema = core_schema.dataclass_args_schema('Foobar', [field_a, field_b])
    v = SchemaValidator(schema)
    assert v.validate_python({'a': 'hello', 'b': True}) == ({'a': 'hello', 'b': True}, None)
    ```

    Args:
        dataclass_name: The name of the dataclass being validated
        fields: The fields to use for the dataclass
        computed_fields: Computed fields to use when serializing the dataclass
        populate_by_name: Whether to populate by name
        collect_init_only: Whether to collect init only fields into a dict to pass to `__post_init__`
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
        extra_behavior: How to handle extra fields
    """
    return _dict_not_none(
        type='dataclass-args',
        dataclass_name=dataclass_name,
        fields=fields,
        computed_fields=computed_fields,
        populate_by_name=populate_by_name,
        collect_init_only=collect_init_only,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
        extra_behavior=extra_behavior,
    )


class DataclassSchema(TypedDict, total=False):
    type: Required[Literal['dataclass']]
    cls: Required[Type[Any]]
    schema: Required[CoreSchema]
    fields: Required[List[str]]
    cls_name: str
    post_init: bool  # default: False
    revalidate_instances: Literal['always', 'never', 'subclass-instances']  # default: 'never'
    strict: bool  # default: False
    frozen: bool  # default False
    ref: str
    metadata: Any
    serialization: SerSchema
    slots: bool
    config: CoreConfig


def dataclass_schema(
    cls: Type[Any],
    schema: CoreSchema,
    fields: List[str],
    *,
    cls_name: str | None = None,
    post_init: bool | None = None,
    revalidate_instances: Literal['always', 'never', 'subclass-instances'] | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
    frozen: bool | None = None,
    slots: bool | None = None,
    config: CoreConfig | None = None,
) -> DataclassSchema:
    """
    Returns a schema for a dataclass. As with `ModelSchema`, this schema can only be used as a field within
    another schema, not as the root type.

    Args:
        cls: The dataclass type, used to perform subclass checks
        schema: The schema to use for the dataclass fields
        fields: Fields of the dataclass, this is used in serialization and in validation during re-validation
            and while validating assignment
        cls_name: The name to use in error locs, etc; this is useful for generics (default: `cls.__name__`)
        post_init: Whether to call `__post_init__` after validation
        revalidate_instances: whether instances of models and dataclasses (including subclass instances)
            should re-validate defaults to config.revalidate_instances, else 'never'
        strict: Whether to require an exact instance of `cls`
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
        frozen: Whether the dataclass is frozen
        slots: Whether `slots=True` on the dataclass, means each field is assigned independently, rather than
            simply setting `__dict__`, default false
    """
    return _dict_not_none(
        type='dataclass',
        cls=cls,
        fields=fields,
        cls_name=cls_name,
        schema=schema,
        post_init=post_init,
        revalidate_instances=revalidate_instances,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
        frozen=frozen,
        slots=slots,
        config=config,
    )


class ArgumentsParameter(TypedDict, total=False):
    name: Required[str]
    schema: Required[CoreSchema]
    mode: Literal['positional_only', 'positional_or_keyword', 'keyword_only']  # default positional_or_keyword
    alias: Union[str, List[Union[str, int]], List[List[Union[str, int]]]]


def arguments_parameter(
    name: str,
    schema: CoreSchema,
    *,
    mode: Literal['positional_only', 'positional_or_keyword', 'keyword_only'] | None = None,
    alias: str | list[str | int] | list[list[str | int]] | None = None,
) -> ArgumentsParameter:
    """
    Returns a schema that matches an argument parameter, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    param = core_schema.arguments_parameter(
        name='a', schema=core_schema.str_schema(), mode='positional_only'
    )
    schema = core_schema.arguments_schema([param])
    v = SchemaValidator(schema)
    assert v.validate_python(('hello',)) == (('hello',), {})
    ```

    Args:
        name: The name to use for the argument parameter
        schema: The schema to use for the argument parameter
        mode: The mode to use for the argument parameter
        alias: The alias to use for the argument parameter
    """
    return _dict_not_none(name=name, schema=schema, mode=mode, alias=alias)


class ArgumentsSchema(TypedDict, total=False):
    type: Required[Literal['arguments']]
    arguments_schema: Required[List[ArgumentsParameter]]
    populate_by_name: bool
    var_args_schema: CoreSchema
    var_kwargs_schema: CoreSchema
    ref: str
    metadata: Any
    serialization: SerSchema


def arguments_schema(
    arguments: list[ArgumentsParameter],
    *,
    populate_by_name: bool | None = None,
    var_args_schema: CoreSchema | None = None,
    var_kwargs_schema: CoreSchema | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> ArgumentsSchema:
    """
    Returns a schema that matches an arguments schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    param_a = core_schema.arguments_parameter(
        name='a', schema=core_schema.str_schema(), mode='positional_only'
    )
    param_b = core_schema.arguments_parameter(
        name='b', schema=core_schema.bool_schema(), mode='positional_only'
    )
    schema = core_schema.arguments_schema([param_a, param_b])
    v = SchemaValidator(schema)
    assert v.validate_python(('hello', True)) == (('hello', True), {})
    ```

    Args:
        arguments: The arguments to use for the arguments schema
        populate_by_name: Whether to populate by name
        var_args_schema: The variable args schema to use for the arguments schema
        var_kwargs_schema: The variable kwargs schema to use for the arguments schema
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='arguments',
        arguments_schema=arguments,
        populate_by_name=populate_by_name,
        var_args_schema=var_args_schema,
        var_kwargs_schema=var_kwargs_schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class CallSchema(TypedDict, total=False):
    type: Required[Literal['call']]
    arguments_schema: Required[CoreSchema]
    function: Required[Callable[..., Any]]
    function_name: str  # default function.__name__
    return_schema: CoreSchema
    ref: str
    metadata: Any
    serialization: SerSchema


def call_schema(
    arguments: CoreSchema,
    function: Callable[..., Any],
    *,
    function_name: str | None = None,
    return_schema: CoreSchema | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> CallSchema:
    """
    Returns a schema that matches an arguments schema, then calls a function, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    param_a = core_schema.arguments_parameter(
        name='a', schema=core_schema.str_schema(), mode='positional_only'
    )
    param_b = core_schema.arguments_parameter(
        name='b', schema=core_schema.bool_schema(), mode='positional_only'
    )
    args_schema = core_schema.arguments_schema([param_a, param_b])

    schema = core_schema.call_schema(
        arguments=args_schema,
        function=lambda a, b: a + str(not b),
        return_schema=core_schema.str_schema(),
    )
    v = SchemaValidator(schema)
    assert v.validate_python((('hello', True))) == 'helloFalse'
    ```

    Args:
        arguments: The arguments to use for the arguments schema
        function: The function to use for the call schema
        function_name: The function name to use for the call schema, if not provided `function.__name__` is used
        return_schema: The return schema to use for the call schema
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='call',
        arguments_schema=arguments,
        function=function,
        function_name=function_name,
        return_schema=return_schema,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class CustomErrorSchema(TypedDict, total=False):
    type: Required[Literal['custom-error']]
    schema: Required[CoreSchema]
    custom_error_type: Required[str]
    custom_error_message: str
    custom_error_context: Dict[str, Union[str, int, float]]
    ref: str
    metadata: Any
    serialization: SerSchema


def custom_error_schema(
    schema: CoreSchema,
    custom_error_type: str,
    *,
    custom_error_message: str | None = None,
    custom_error_context: dict[str, Any] | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> CustomErrorSchema:
    """
    Returns a schema that matches a custom error value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.custom_error_schema(
        schema=core_schema.int_schema(),
        custom_error_type='MyError',
        custom_error_message='Error msg',
    )
    v = SchemaValidator(schema)
    v.validate_python(1)
    ```

    Args:
        schema: The schema to use for the custom error schema
        custom_error_type: The custom error type to use for the custom error schema
        custom_error_message: The custom error message to use for the custom error schema
        custom_error_context: The custom error context to use for the custom error schema
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='custom-error',
        schema=schema,
        custom_error_type=custom_error_type,
        custom_error_message=custom_error_message,
        custom_error_context=custom_error_context,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class JsonSchema(TypedDict, total=False):
    type: Required[Literal['json']]
    schema: CoreSchema
    ref: str
    metadata: Any
    serialization: SerSchema


def json_schema(
    schema: CoreSchema | None = None,
    *,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> JsonSchema:
    """
    Returns a schema that matches a JSON value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    dict_schema = core_schema.model_fields_schema(
        {
            'field_a': core_schema.model_field(core_schema.str_schema()),
            'field_b': core_schema.model_field(core_schema.bool_schema()),
        },
    )

    class MyModel:
        __slots__ = (
            '__dict__',
            '__pydantic_fields_set__',
            '__pydantic_extra__',
            '__pydantic_private__',
        )
        field_a: str
        field_b: bool

    json_schema = core_schema.json_schema(schema=dict_schema)
    schema = core_schema.model_schema(cls=MyModel, schema=json_schema)
    v = SchemaValidator(schema)
    m = v.validate_python('{"field_a": "hello", "field_b": true}')
    assert isinstance(m, MyModel)
    ```

    Args:
        schema: The schema to use for the JSON schema
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='json', schema=schema, ref=ref, metadata=metadata, serialization=serialization)


class UrlSchema(TypedDict, total=False):
    type: Required[Literal['url']]
    max_length: int
    allowed_schemes: List[str]
    host_required: bool  # default False
    default_host: str
    default_port: int
    default_path: str
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def url_schema(
    *,
    max_length: int | None = None,
    allowed_schemes: list[str] | None = None,
    host_required: bool | None = None,
    default_host: str | None = None,
    default_port: int | None = None,
    default_path: str | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> UrlSchema:
    """
    Returns a schema that matches a URL value, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.url_schema()
    v = SchemaValidator(schema)
    print(v.validate_python('https://example.com'))
    #> https://example.com/
    ```

    Args:
        max_length: The maximum length of the URL
        allowed_schemes: The allowed URL schemes
        host_required: Whether the URL must have a host
        default_host: The default host to use if the URL does not have a host
        default_port: The default port to use if the URL does not have a port
        default_path: The default path to use if the URL does not have a path
        strict: Whether to use strict URL parsing
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='url',
        max_length=max_length,
        allowed_schemes=allowed_schemes,
        host_required=host_required,
        default_host=default_host,
        default_port=default_port,
        default_path=default_path,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class MultiHostUrlSchema(TypedDict, total=False):
    type: Required[Literal['multi-host-url']]
    max_length: int
    allowed_schemes: List[str]
    host_required: bool  # default False
    default_host: str
    default_port: int
    default_path: str
    strict: bool
    ref: str
    metadata: Any
    serialization: SerSchema


def multi_host_url_schema(
    *,
    max_length: int | None = None,
    allowed_schemes: list[str] | None = None,
    host_required: bool | None = None,
    default_host: str | None = None,
    default_port: int | None = None,
    default_path: str | None = None,
    strict: bool | None = None,
    ref: str | None = None,
    metadata: Any = None,
    serialization: SerSchema | None = None,
) -> MultiHostUrlSchema:
    """
    Returns a schema that matches a URL value with possibly multiple hosts, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.multi_host_url_schema()
    v = SchemaValidator(schema)
    print(v.validate_python('redis://localhost,0.0.0.0,127.0.0.1'))
    #> redis://localhost,0.0.0.0,127.0.0.1
    ```

    Args:
        max_length: The maximum length of the URL
        allowed_schemes: The allowed URL schemes
        host_required: Whether the URL must have a host
        default_host: The default host to use if the URL does not have a host
        default_port: The default port to use if the URL does not have a port
        default_path: The default path to use if the URL does not have a path
        strict: Whether to use strict URL parsing
        ref: optional unique identifier of the schema, used to reference the schema in other places
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(
        type='multi-host-url',
        max_length=max_length,
        allowed_schemes=allowed_schemes,
        host_required=host_required,
        default_host=default_host,
        default_port=default_port,
        default_path=default_path,
        strict=strict,
        ref=ref,
        metadata=metadata,
        serialization=serialization,
    )


class DefinitionsSchema(TypedDict, total=False):
    type: Required[Literal['definitions']]
    schema: Required[CoreSchema]
    definitions: Required[List[CoreSchema]]
    metadata: Any
    serialization: SerSchema


def definitions_schema(schema: CoreSchema, definitions: list[CoreSchema]) -> DefinitionsSchema:
    """
    Build a schema that contains both an inner schema and a list of definitions which can be used
    within the inner schema.

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema = core_schema.definitions_schema(
        core_schema.list_schema(core_schema.definition_reference_schema('foobar')),
        [core_schema.int_schema(ref='foobar')],
    )
    v = SchemaValidator(schema)
    assert v.validate_python([1, 2, '3']) == [1, 2, 3]
    ```

    Args:
        schema: The inner schema
        definitions: List of definitions which can be referenced within inner schema
    """
    return DefinitionsSchema(type='definitions', schema=schema, definitions=definitions)


class DefinitionReferenceSchema(TypedDict, total=False):
    type: Required[Literal['definition-ref']]
    schema_ref: Required[str]
    metadata: Any
    serialization: SerSchema


def definition_reference_schema(
    schema_ref: str, metadata: Any = None, serialization: SerSchema | None = None
) -> DefinitionReferenceSchema:
    """
    Returns a schema that points to a schema stored in "definitions", this is useful for nested recursive
    models and also when you want to define validators separately from the main schema, e.g.:

    ```py
    from pydantic_core import SchemaValidator, core_schema

    schema_definition = core_schema.definition_reference_schema('list-schema')
    schema = core_schema.definitions_schema(
        schema=schema_definition,
        definitions=[
            core_schema.list_schema(items_schema=schema_definition, ref='list-schema'),
        ],
    )
    v = SchemaValidator(schema)
    assert v.validate_python([()]) == [[]]
    ```

    Args:
        schema_ref: The schema ref to use for the definition reference schema
        metadata: Any other information you want to include with the schema, not used by pydantic-core
        serialization: Custom serialization schema
    """
    return _dict_not_none(type='definition-ref', schema_ref=schema_ref, metadata=metadata, serialization=serialization)


MYPY = False
# See https://github.com/python/mypy/issues/14034 for details, in summary mypy is extremely slow to process this
# union which kills performance not just for pydantic, but even for code using pydantic
if not MYPY:
    CoreSchema = Union[
        AnySchema,
        NoneSchema,
        BoolSchema,
        IntSchema,
        FloatSchema,
        DecimalSchema,
        StringSchema,
        BytesSchema,
        DateSchema,
        TimeSchema,
        DatetimeSchema,
        TimedeltaSchema,
        LiteralSchema,
        IsInstanceSchema,
        IsSubclassSchema,
        CallableSchema,
        ListSchema,
        TuplePositionalSchema,
        TupleVariableSchema,
        SetSchema,
        FrozenSetSchema,
        GeneratorSchema,
        DictSchema,
        AfterValidatorFunctionSchema,
        BeforeValidatorFunctionSchema,
        WrapValidatorFunctionSchema,
        PlainValidatorFunctionSchema,
        WithDefaultSchema,
        NullableSchema,
        UnionSchema,
        TaggedUnionSchema,
        ChainSchema,
        LaxOrStrictSchema,
        JsonOrPythonSchema,
        TypedDictSchema,
        ModelFieldsSchema,
        ModelSchema,
        DataclassArgsSchema,
        DataclassSchema,
        ArgumentsSchema,
        CallSchema,
        CustomErrorSchema,
        JsonSchema,
        UrlSchema,
        MultiHostUrlSchema,
        DefinitionsSchema,
        DefinitionReferenceSchema,
        UuidSchema,
    ]
elif False:
    CoreSchema: TypeAlias = Mapping[str, Any]


# to update this, call `pytest -k test_core_schema_type_literal` and copy the output
CoreSchemaType = Literal[
    'any',
    'none',
    'bool',
    'int',
    'float',
    'decimal',
    'str',
    'bytes',
    'date',
    'time',
    'datetime',
    'timedelta',
    'literal',
    'is-instance',
    'is-subclass',
    'callable',
    'list',
    'tuple-positional',
    'tuple-variable',
    'set',
    'frozenset',
    'generator',
    'dict',
    'function-after',
    'function-before',
    'function-wrap',
    'function-plain',
    'default',
    'nullable',
    'union',
    'tagged-union',
    'chain',
    'lax-or-strict',
    'json-or-python',
    'typed-dict',
    'model-fields',
    'model',
    'dataclass-args',
    'dataclass',
    'arguments',
    'call',
    'custom-error',
    'json',
    'url',
    'multi-host-url',
    'definitions',
    'definition-ref',
    'uuid',
]

CoreSchemaFieldType = Literal['model-field', 'dataclass-field', 'typed-dict-field', 'computed-field']


# used in _pydantic_core.pyi::PydanticKnownError
# to update this, call `pytest -k test_all_errors` and copy the output
ErrorType = Literal[
    'no_such_attribute',
    'json_invalid',
    'json_type',
    'recursion_loop',
    'missing',
    'frozen_field',
    'frozen_instance',
    'extra_forbidden',
    'invalid_key',
    'get_attribute_error',
    'model_type',
    'model_attributes_type',
    'dataclass_type',
    'dataclass_exact_type',
    'none_required',
    'greater_than',
    'greater_than_equal',
    'less_than',
    'less_than_equal',
    'multiple_of',
    'finite_number',
    'too_short',
    'too_long',
    'iterable_type',
    'iteration_error',
    'string_type',
    'string_sub_type',
    'string_unicode',
    'string_too_short',
    'string_too_long',
    'string_pattern_mismatch',
    'enum',
    'dict_type',
    'mapping_type',
    'list_type',
    'tuple_type',
    'set_type',
    'bool_type',
    'bool_parsing',
    'int_type',
    'int_parsing',
    'int_parsing_size',
    'int_from_float',
    'float_type',
    'float_parsing',
    'bytes_type',
    'bytes_too_short',
    'bytes_too_long',
    'value_error',
    'assertion_error',
    'literal_error',
    'date_type',
    'date_parsing',
    'date_from_datetime_parsing',
    'date_from_datetime_inexact',
    'date_past',
    'date_future',
    'time_type',
    'time_parsing',
    'datetime_type',
    'datetime_parsing',
    'datetime_object_invalid',
    'datetime_past',
    'datetime_future',
    'timezone_naive',
    'timezone_aware',
    'timezone_offset',
    'time_delta_type',
    'time_delta_parsing',
    'frozen_set_type',
    'is_instance_of',
    'is_subclass_of',
    'callable_type',
    'union_tag_invalid',
    'union_tag_not_found',
    'arguments_type',
    'missing_argument',
    'unexpected_keyword_argument',
    'missing_keyword_only_argument',
    'unexpected_positional_argument',
    'missing_positional_only_argument',
    'multiple_argument_values',
    'url_type',
    'url_parsing',
    'url_syntax_violation',
    'url_too_long',
    'url_scheme',
    'uuid_type',
    'uuid_parsing',
    'uuid_version',
    'decimal_type',
    'decimal_parsing',
    'decimal_max_digits',
    'decimal_max_places',
    'decimal_whole_digits',
]


def _dict_not_none(**kwargs: Any) -> Any:
    return {k: v for k, v in kwargs.items() if v is not None}


###############################################################################
# All this stuff is deprecated by #980 and will be removed eventually
# They're kept because some code external code will be using them


@deprecated('`field_before_validator_function` is deprecated, use `with_info_before_validator_function` instead.')
def field_before_validator_function(function: WithInfoValidatorFunction, field_name: str, schema: CoreSchema, **kwargs):
    warnings.warn(
        '`field_before_validator_function` is deprecated, use `with_info_before_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_before_validator_function(function, schema, field_name=field_name, **kwargs)


@deprecated('`general_before_validator_function` is deprecated, use `with_info_before_validator_function` instead.')
def general_before_validator_function(*args, **kwargs):
    warnings.warn(
        '`general_before_validator_function` is deprecated, use `with_info_before_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_before_validator_function(*args, **kwargs)


@deprecated('`field_after_validator_function` is deprecated, use `with_info_after_validator_function` instead.')
def field_after_validator_function(function: WithInfoValidatorFunction, field_name: str, schema: CoreSchema, **kwargs):
    warnings.warn(
        '`field_after_validator_function` is deprecated, use `with_info_after_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_after_validator_function(function, schema, field_name=field_name, **kwargs)


@deprecated('`general_after_validator_function` is deprecated, use `with_info_after_validator_function` instead.')
def general_after_validator_function(*args, **kwargs):
    warnings.warn(
        '`with_info_after_validator_function` is deprecated, use `with_info_after_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_after_validator_function(*args, **kwargs)


@deprecated('`field_wrap_validator_function` is deprecated, use `with_info_wrap_validator_function` instead.')
def field_wrap_validator_function(
    function: WithInfoWrapValidatorFunction, field_name: str, schema: CoreSchema, **kwargs
):
    warnings.warn(
        '`field_wrap_validator_function` is deprecated, use `with_info_wrap_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_wrap_validator_function(function, schema, field_name=field_name, **kwargs)


@deprecated('`general_wrap_validator_function` is deprecated, use `with_info_wrap_validator_function` instead.')
def general_wrap_validator_function(*args, **kwargs):
    warnings.warn(
        '`general_wrap_validator_function` is deprecated, use `with_info_wrap_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_wrap_validator_function(*args, **kwargs)


@deprecated('`field_plain_validator_function` is deprecated, use `with_info_plain_validator_function` instead.')
def field_plain_validator_function(function: WithInfoValidatorFunction, field_name: str, **kwargs):
    warnings.warn(
        '`field_plain_validator_function` is deprecated, use `with_info_plain_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_plain_validator_function(function, field_name=field_name, **kwargs)


@deprecated('`general_plain_validator_function` is deprecated, use `with_info_plain_validator_function` instead.')
def general_plain_validator_function(*args, **kwargs):
    warnings.warn(
        '`general_plain_validator_function` is deprecated, use `with_info_plain_validator_function` instead.',
        DeprecationWarning,
    )
    return with_info_plain_validator_function(*args, **kwargs)


_deprecated_import_lookup = {
    'FieldValidationInfo': ValidationInfo,
    'FieldValidatorFunction': WithInfoValidatorFunction,
    'GeneralValidatorFunction': WithInfoValidatorFunction,
    'FieldWrapValidatorFunction': WithInfoWrapValidatorFunction,
}


def __getattr__(attr_name: str) -> object:
    new_attr = _deprecated_import_lookup.get(attr_name)
    if new_attr is None:
        raise AttributeError(f"module 'pydantic_core' has no attribute '{attr_name}'")
    else:
        import warnings

        msg = f'`{attr_name}` is deprecated, use `{new_attr.__name__}` instead.'
        warnings.warn(msg, DeprecationWarning, stacklevel=1)
        return new_attr

Youez - 2016 - github.com/yon3zu
LinuXploit