Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.147.27.154
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/random/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/random/tests/test_smoke.py
import pickle
from functools import partial

import numpy as np
import pytest
from numpy.testing import assert_equal, assert_, assert_array_equal
from numpy.random import (Generator, MT19937, PCG64, PCG64DXSM, Philox, SFC64)

@pytest.fixture(scope='module',
                params=(np.bool_, np.int8, np.int16, np.int32, np.int64,
                        np.uint8, np.uint16, np.uint32, np.uint64))
def dtype(request):
    return request.param


def params_0(f):
    val = f()
    assert_(np.isscalar(val))
    val = f(10)
    assert_(val.shape == (10,))
    val = f((10, 10))
    assert_(val.shape == (10, 10))
    val = f((10, 10, 10))
    assert_(val.shape == (10, 10, 10))
    val = f(size=(5, 5))
    assert_(val.shape == (5, 5))


def params_1(f, bounded=False):
    a = 5.0
    b = np.arange(2.0, 12.0)
    c = np.arange(2.0, 102.0).reshape((10, 10))
    d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
    e = np.array([2.0, 3.0])
    g = np.arange(2.0, 12.0).reshape((1, 10, 1))
    if bounded:
        a = 0.5
        b = b / (1.5 * b.max())
        c = c / (1.5 * c.max())
        d = d / (1.5 * d.max())
        e = e / (1.5 * e.max())
        g = g / (1.5 * g.max())

    # Scalar
    f(a)
    # Scalar - size
    f(a, size=(10, 10))
    # 1d
    f(b)
    # 2d
    f(c)
    # 3d
    f(d)
    # 1d size
    f(b, size=10)
    # 2d - size - broadcast
    f(e, size=(10, 2))
    # 3d - size
    f(g, size=(10, 10, 10))


def comp_state(state1, state2):
    identical = True
    if isinstance(state1, dict):
        for key in state1:
            identical &= comp_state(state1[key], state2[key])
    elif type(state1) != type(state2):
        identical &= type(state1) == type(state2)
    else:
        if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
                state2, (list, tuple, np.ndarray))):
            for s1, s2 in zip(state1, state2):
                identical &= comp_state(s1, s2)
        else:
            identical &= state1 == state2
    return identical


def warmup(rg, n=None):
    if n is None:
        n = 11 + np.random.randint(0, 20)
    rg.standard_normal(n)
    rg.standard_normal(n)
    rg.standard_normal(n, dtype=np.float32)
    rg.standard_normal(n, dtype=np.float32)
    rg.integers(0, 2 ** 24, n, dtype=np.uint64)
    rg.integers(0, 2 ** 48, n, dtype=np.uint64)
    rg.standard_gamma(11.0, n)
    rg.standard_gamma(11.0, n, dtype=np.float32)
    rg.random(n, dtype=np.float64)
    rg.random(n, dtype=np.float32)


class RNG:
    @classmethod
    def setup_class(cls):
        # Overridden in test classes. Place holder to silence IDE noise
        cls.bit_generator = PCG64
        cls.advance = None
        cls.seed = [12345]
        cls.rg = Generator(cls.bit_generator(*cls.seed))
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 64
        cls._extra_setup()

    @classmethod
    def _extra_setup(cls):
        cls.vec_1d = np.arange(2.0, 102.0)
        cls.vec_2d = np.arange(2.0, 102.0)[None, :]
        cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
        cls.seed_error = TypeError

    def _reset_state(self):
        self.rg.bit_generator.state = self.initial_state

    def test_init(self):
        rg = Generator(self.bit_generator())
        state = rg.bit_generator.state
        rg.standard_normal(1)
        rg.standard_normal(1)
        rg.bit_generator.state = state
        new_state = rg.bit_generator.state
        assert_(comp_state(state, new_state))

    def test_advance(self):
        state = self.rg.bit_generator.state
        if hasattr(self.rg.bit_generator, 'advance'):
            self.rg.bit_generator.advance(self.advance)
            assert_(not comp_state(state, self.rg.bit_generator.state))
        else:
            bitgen_name = self.rg.bit_generator.__class__.__name__
            pytest.skip(f'Advance is not supported by {bitgen_name}')

    def test_jump(self):
        state = self.rg.bit_generator.state
        if hasattr(self.rg.bit_generator, 'jumped'):
            bit_gen2 = self.rg.bit_generator.jumped()
            jumped_state = bit_gen2.state
            assert_(not comp_state(state, jumped_state))
            self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
            self.rg.bit_generator.state = state
            bit_gen3 = self.rg.bit_generator.jumped()
            rejumped_state = bit_gen3.state
            assert_(comp_state(jumped_state, rejumped_state))
        else:
            bitgen_name = self.rg.bit_generator.__class__.__name__
            if bitgen_name not in ('SFC64',):
                raise AttributeError(f'no "jumped" in {bitgen_name}')
            pytest.skip(f'Jump is not supported by {bitgen_name}')

    def test_uniform(self):
        r = self.rg.uniform(-1.0, 0.0, size=10)
        assert_(len(r) == 10)
        assert_((r > -1).all())
        assert_((r <= 0).all())

    def test_uniform_array(self):
        r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
        assert_(len(r) == 10)
        assert_((r > -1).all())
        assert_((r <= 0).all())
        r = self.rg.uniform(np.array([-1.0] * 10),
                            np.array([0.0] * 10), size=10)
        assert_(len(r) == 10)
        assert_((r > -1).all())
        assert_((r <= 0).all())
        r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
        assert_(len(r) == 10)
        assert_((r > -1).all())
        assert_((r <= 0).all())

    def test_random(self):
        assert_(len(self.rg.random(10)) == 10)
        params_0(self.rg.random)

    def test_standard_normal_zig(self):
        assert_(len(self.rg.standard_normal(10)) == 10)

    def test_standard_normal(self):
        assert_(len(self.rg.standard_normal(10)) == 10)
        params_0(self.rg.standard_normal)

    def test_standard_gamma(self):
        assert_(len(self.rg.standard_gamma(10, 10)) == 10)
        assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
        params_1(self.rg.standard_gamma)

    def test_standard_exponential(self):
        assert_(len(self.rg.standard_exponential(10)) == 10)
        params_0(self.rg.standard_exponential)

    def test_standard_exponential_float(self):
        randoms = self.rg.standard_exponential(10, dtype='float32')
        assert_(len(randoms) == 10)
        assert randoms.dtype == np.float32
        params_0(partial(self.rg.standard_exponential, dtype='float32'))

    def test_standard_exponential_float_log(self):
        randoms = self.rg.standard_exponential(10, dtype='float32',
                                               method='inv')
        assert_(len(randoms) == 10)
        assert randoms.dtype == np.float32
        params_0(partial(self.rg.standard_exponential, dtype='float32',
                         method='inv'))

    def test_standard_cauchy(self):
        assert_(len(self.rg.standard_cauchy(10)) == 10)
        params_0(self.rg.standard_cauchy)

    def test_standard_t(self):
        assert_(len(self.rg.standard_t(10, 10)) == 10)
        params_1(self.rg.standard_t)

    def test_binomial(self):
        assert_(self.rg.binomial(10, .5) >= 0)
        assert_(self.rg.binomial(1000, .5) >= 0)

    def test_reset_state(self):
        state = self.rg.bit_generator.state
        int_1 = self.rg.integers(2**31)
        self.rg.bit_generator.state = state
        int_2 = self.rg.integers(2**31)
        assert_(int_1 == int_2)

    def test_entropy_init(self):
        rg = Generator(self.bit_generator())
        rg2 = Generator(self.bit_generator())
        assert_(not comp_state(rg.bit_generator.state,
                               rg2.bit_generator.state))

    def test_seed(self):
        rg = Generator(self.bit_generator(*self.seed))
        rg2 = Generator(self.bit_generator(*self.seed))
        rg.random()
        rg2.random()
        assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))

    def test_reset_state_gauss(self):
        rg = Generator(self.bit_generator(*self.seed))
        rg.standard_normal()
        state = rg.bit_generator.state
        n1 = rg.standard_normal(size=10)
        rg2 = Generator(self.bit_generator())
        rg2.bit_generator.state = state
        n2 = rg2.standard_normal(size=10)
        assert_array_equal(n1, n2)

    def test_reset_state_uint32(self):
        rg = Generator(self.bit_generator(*self.seed))
        rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
        state = rg.bit_generator.state
        n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
        rg2 = Generator(self.bit_generator())
        rg2.bit_generator.state = state
        n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
        assert_array_equal(n1, n2)

    def test_reset_state_float(self):
        rg = Generator(self.bit_generator(*self.seed))
        rg.random(dtype='float32')
        state = rg.bit_generator.state
        n1 = rg.random(size=10, dtype='float32')
        rg2 = Generator(self.bit_generator())
        rg2.bit_generator.state = state
        n2 = rg2.random(size=10, dtype='float32')
        assert_((n1 == n2).all())

    def test_shuffle(self):
        original = np.arange(200, 0, -1)
        permuted = self.rg.permutation(original)
        assert_((original != permuted).any())

    def test_permutation(self):
        original = np.arange(200, 0, -1)
        permuted = self.rg.permutation(original)
        assert_((original != permuted).any())

    def test_beta(self):
        vals = self.rg.beta(2.0, 2.0, 10)
        assert_(len(vals) == 10)
        vals = self.rg.beta(np.array([2.0] * 10), 2.0)
        assert_(len(vals) == 10)
        vals = self.rg.beta(2.0, np.array([2.0] * 10))
        assert_(len(vals) == 10)
        vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
        assert_(len(vals) == 10)
        vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
        assert_(vals.shape == (10, 10))

    def test_bytes(self):
        vals = self.rg.bytes(10)
        assert_(len(vals) == 10)

    def test_chisquare(self):
        vals = self.rg.chisquare(2.0, 10)
        assert_(len(vals) == 10)
        params_1(self.rg.chisquare)

    def test_exponential(self):
        vals = self.rg.exponential(2.0, 10)
        assert_(len(vals) == 10)
        params_1(self.rg.exponential)

    def test_f(self):
        vals = self.rg.f(3, 1000, 10)
        assert_(len(vals) == 10)

    def test_gamma(self):
        vals = self.rg.gamma(3, 2, 10)
        assert_(len(vals) == 10)

    def test_geometric(self):
        vals = self.rg.geometric(0.5, 10)
        assert_(len(vals) == 10)
        params_1(self.rg.exponential, bounded=True)

    def test_gumbel(self):
        vals = self.rg.gumbel(2.0, 2.0, 10)
        assert_(len(vals) == 10)

    def test_laplace(self):
        vals = self.rg.laplace(2.0, 2.0, 10)
        assert_(len(vals) == 10)

    def test_logitic(self):
        vals = self.rg.logistic(2.0, 2.0, 10)
        assert_(len(vals) == 10)

    def test_logseries(self):
        vals = self.rg.logseries(0.5, 10)
        assert_(len(vals) == 10)

    def test_negative_binomial(self):
        vals = self.rg.negative_binomial(10, 0.2, 10)
        assert_(len(vals) == 10)

    def test_noncentral_chisquare(self):
        vals = self.rg.noncentral_chisquare(10, 2, 10)
        assert_(len(vals) == 10)

    def test_noncentral_f(self):
        vals = self.rg.noncentral_f(3, 1000, 2, 10)
        assert_(len(vals) == 10)
        vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
        assert_(len(vals) == 10)
        vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
        assert_(len(vals) == 10)
        vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
        assert_(len(vals) == 10)

    def test_normal(self):
        vals = self.rg.normal(10, 0.2, 10)
        assert_(len(vals) == 10)

    def test_pareto(self):
        vals = self.rg.pareto(3.0, 10)
        assert_(len(vals) == 10)

    def test_poisson(self):
        vals = self.rg.poisson(10, 10)
        assert_(len(vals) == 10)
        vals = self.rg.poisson(np.array([10] * 10))
        assert_(len(vals) == 10)
        params_1(self.rg.poisson)

    def test_power(self):
        vals = self.rg.power(0.2, 10)
        assert_(len(vals) == 10)

    def test_integers(self):
        vals = self.rg.integers(10, 20, 10)
        assert_(len(vals) == 10)

    def test_rayleigh(self):
        vals = self.rg.rayleigh(0.2, 10)
        assert_(len(vals) == 10)
        params_1(self.rg.rayleigh, bounded=True)

    def test_vonmises(self):
        vals = self.rg.vonmises(10, 0.2, 10)
        assert_(len(vals) == 10)

    def test_wald(self):
        vals = self.rg.wald(1.0, 1.0, 10)
        assert_(len(vals) == 10)

    def test_weibull(self):
        vals = self.rg.weibull(1.0, 10)
        assert_(len(vals) == 10)

    def test_zipf(self):
        vals = self.rg.zipf(10, 10)
        assert_(len(vals) == 10)
        vals = self.rg.zipf(self.vec_1d)
        assert_(len(vals) == 100)
        vals = self.rg.zipf(self.vec_2d)
        assert_(vals.shape == (1, 100))
        vals = self.rg.zipf(self.mat)
        assert_(vals.shape == (100, 100))

    def test_hypergeometric(self):
        vals = self.rg.hypergeometric(25, 25, 20)
        assert_(np.isscalar(vals))
        vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
        assert_(vals.shape == (10,))

    def test_triangular(self):
        vals = self.rg.triangular(-5, 0, 5)
        assert_(np.isscalar(vals))
        vals = self.rg.triangular(-5, np.array([0] * 10), 5)
        assert_(vals.shape == (10,))

    def test_multivariate_normal(self):
        mean = [0, 0]
        cov = [[1, 0], [0, 100]]  # diagonal covariance
        x = self.rg.multivariate_normal(mean, cov, 5000)
        assert_(x.shape == (5000, 2))
        x_zig = self.rg.multivariate_normal(mean, cov, 5000)
        assert_(x.shape == (5000, 2))
        x_inv = self.rg.multivariate_normal(mean, cov, 5000)
        assert_(x.shape == (5000, 2))
        assert_((x_zig != x_inv).any())

    def test_multinomial(self):
        vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
        assert_(vals.shape == (2,))
        vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
        assert_(vals.shape == (10, 2))

    def test_dirichlet(self):
        s = self.rg.dirichlet((10, 5, 3), 20)
        assert_(s.shape == (20, 3))

    def test_pickle(self):
        pick = pickle.dumps(self.rg)
        unpick = pickle.loads(pick)
        assert_((type(self.rg) == type(unpick)))
        assert_(comp_state(self.rg.bit_generator.state,
                           unpick.bit_generator.state))

        pick = pickle.dumps(self.rg)
        unpick = pickle.loads(pick)
        assert_((type(self.rg) == type(unpick)))
        assert_(comp_state(self.rg.bit_generator.state,
                           unpick.bit_generator.state))

    def test_seed_array(self):
        if self.seed_vector_bits is None:
            bitgen_name = self.bit_generator.__name__
            pytest.skip(f'Vector seeding is not supported by {bitgen_name}')

        if self.seed_vector_bits == 32:
            dtype = np.uint32
        else:
            dtype = np.uint64
        seed = np.array([1], dtype=dtype)
        bg = self.bit_generator(seed)
        state1 = bg.state
        bg = self.bit_generator(1)
        state2 = bg.state
        assert_(comp_state(state1, state2))

        seed = np.arange(4, dtype=dtype)
        bg = self.bit_generator(seed)
        state1 = bg.state
        bg = self.bit_generator(seed[0])
        state2 = bg.state
        assert_(not comp_state(state1, state2))

        seed = np.arange(1500, dtype=dtype)
        bg = self.bit_generator(seed)
        state1 = bg.state
        bg = self.bit_generator(seed[0])
        state2 = bg.state
        assert_(not comp_state(state1, state2))

        seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
                           self.seed_vector_bits - 1) + 1
        bg = self.bit_generator(seed)
        state1 = bg.state
        bg  = self.bit_generator(seed[0])
        state2 = bg.state
        assert_(not comp_state(state1, state2))

    def test_uniform_float(self):
        rg = Generator(self.bit_generator(12345))
        warmup(rg)
        state = rg.bit_generator.state
        r1 = rg.random(11, dtype=np.float32)
        rg2 = Generator(self.bit_generator())
        warmup(rg2)
        rg2.bit_generator.state = state
        r2 = rg2.random(11, dtype=np.float32)
        assert_array_equal(r1, r2)
        assert_equal(r1.dtype, np.float32)
        assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))

    def test_gamma_floats(self):
        rg = Generator(self.bit_generator())
        warmup(rg)
        state = rg.bit_generator.state
        r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
        rg2 = Generator(self.bit_generator())
        warmup(rg2)
        rg2.bit_generator.state = state
        r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
        assert_array_equal(r1, r2)
        assert_equal(r1.dtype, np.float32)
        assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))

    def test_normal_floats(self):
        rg = Generator(self.bit_generator())
        warmup(rg)
        state = rg.bit_generator.state
        r1 = rg.standard_normal(11, dtype=np.float32)
        rg2 = Generator(self.bit_generator())
        warmup(rg2)
        rg2.bit_generator.state = state
        r2 = rg2.standard_normal(11, dtype=np.float32)
        assert_array_equal(r1, r2)
        assert_equal(r1.dtype, np.float32)
        assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))

    def test_normal_zig_floats(self):
        rg = Generator(self.bit_generator())
        warmup(rg)
        state = rg.bit_generator.state
        r1 = rg.standard_normal(11, dtype=np.float32)
        rg2 = Generator(self.bit_generator())
        warmup(rg2)
        rg2.bit_generator.state = state
        r2 = rg2.standard_normal(11, dtype=np.float32)
        assert_array_equal(r1, r2)
        assert_equal(r1.dtype, np.float32)
        assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))

    def test_output_fill(self):
        rg = self.rg
        state = rg.bit_generator.state
        size = (31, 7, 97)
        existing = np.empty(size)
        rg.bit_generator.state = state
        rg.standard_normal(out=existing)
        rg.bit_generator.state = state
        direct = rg.standard_normal(size=size)
        assert_equal(direct, existing)

        sized = np.empty(size)
        rg.bit_generator.state = state
        rg.standard_normal(out=sized, size=sized.shape)

        existing = np.empty(size, dtype=np.float32)
        rg.bit_generator.state = state
        rg.standard_normal(out=existing, dtype=np.float32)
        rg.bit_generator.state = state
        direct = rg.standard_normal(size=size, dtype=np.float32)
        assert_equal(direct, existing)

    def test_output_filling_uniform(self):
        rg = self.rg
        state = rg.bit_generator.state
        size = (31, 7, 97)
        existing = np.empty(size)
        rg.bit_generator.state = state
        rg.random(out=existing)
        rg.bit_generator.state = state
        direct = rg.random(size=size)
        assert_equal(direct, existing)

        existing = np.empty(size, dtype=np.float32)
        rg.bit_generator.state = state
        rg.random(out=existing, dtype=np.float32)
        rg.bit_generator.state = state
        direct = rg.random(size=size, dtype=np.float32)
        assert_equal(direct, existing)

    def test_output_filling_exponential(self):
        rg = self.rg
        state = rg.bit_generator.state
        size = (31, 7, 97)
        existing = np.empty(size)
        rg.bit_generator.state = state
        rg.standard_exponential(out=existing)
        rg.bit_generator.state = state
        direct = rg.standard_exponential(size=size)
        assert_equal(direct, existing)

        existing = np.empty(size, dtype=np.float32)
        rg.bit_generator.state = state
        rg.standard_exponential(out=existing, dtype=np.float32)
        rg.bit_generator.state = state
        direct = rg.standard_exponential(size=size, dtype=np.float32)
        assert_equal(direct, existing)

    def test_output_filling_gamma(self):
        rg = self.rg
        state = rg.bit_generator.state
        size = (31, 7, 97)
        existing = np.zeros(size)
        rg.bit_generator.state = state
        rg.standard_gamma(1.0, out=existing)
        rg.bit_generator.state = state
        direct = rg.standard_gamma(1.0, size=size)
        assert_equal(direct, existing)

        existing = np.zeros(size, dtype=np.float32)
        rg.bit_generator.state = state
        rg.standard_gamma(1.0, out=existing, dtype=np.float32)
        rg.bit_generator.state = state
        direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
        assert_equal(direct, existing)

    def test_output_filling_gamma_broadcast(self):
        rg = self.rg
        state = rg.bit_generator.state
        size = (31, 7, 97)
        mu = np.arange(97.0) + 1.0
        existing = np.zeros(size)
        rg.bit_generator.state = state
        rg.standard_gamma(mu, out=existing)
        rg.bit_generator.state = state
        direct = rg.standard_gamma(mu, size=size)
        assert_equal(direct, existing)

        existing = np.zeros(size, dtype=np.float32)
        rg.bit_generator.state = state
        rg.standard_gamma(mu, out=existing, dtype=np.float32)
        rg.bit_generator.state = state
        direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
        assert_equal(direct, existing)

    def test_output_fill_error(self):
        rg = self.rg
        size = (31, 7, 97)
        existing = np.empty(size)
        with pytest.raises(TypeError):
            rg.standard_normal(out=existing, dtype=np.float32)
        with pytest.raises(ValueError):
            rg.standard_normal(out=existing[::3])
        existing = np.empty(size, dtype=np.float32)
        with pytest.raises(TypeError):
            rg.standard_normal(out=existing, dtype=np.float64)

        existing = np.zeros(size, dtype=np.float32)
        with pytest.raises(TypeError):
            rg.standard_gamma(1.0, out=existing, dtype=np.float64)
        with pytest.raises(ValueError):
            rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
        existing = np.zeros(size, dtype=np.float64)
        with pytest.raises(TypeError):
            rg.standard_gamma(1.0, out=existing, dtype=np.float32)
        with pytest.raises(ValueError):
            rg.standard_gamma(1.0, out=existing[::3])

    def test_integers_broadcast(self, dtype):
        if dtype == np.bool_:
            upper = 2
            lower = 0
        else:
            info = np.iinfo(dtype)
            upper = int(info.max) + 1
            lower = info.min
        self._reset_state()
        a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
        self._reset_state()
        b = self.rg.integers([lower] * 10, upper, dtype=dtype)
        assert_equal(a, b)
        self._reset_state()
        c = self.rg.integers(lower, upper, size=10, dtype=dtype)
        assert_equal(a, c)
        self._reset_state()
        d = self.rg.integers(np.array(
            [lower] * 10), np.array([upper], dtype=object), size=10,
            dtype=dtype)
        assert_equal(a, d)
        self._reset_state()
        e = self.rg.integers(
            np.array([lower] * 10), np.array([upper] * 10), size=10,
            dtype=dtype)
        assert_equal(a, e)

        self._reset_state()
        a = self.rg.integers(0, upper, size=10, dtype=dtype)
        self._reset_state()
        b = self.rg.integers([upper] * 10, dtype=dtype)
        assert_equal(a, b)

    def test_integers_numpy(self, dtype):
        high = np.array([1])
        low = np.array([0])

        out = self.rg.integers(low, high, dtype=dtype)
        assert out.shape == (1,)

        out = self.rg.integers(low[0], high, dtype=dtype)
        assert out.shape == (1,)

        out = self.rg.integers(low, high[0], dtype=dtype)
        assert out.shape == (1,)

    def test_integers_broadcast_errors(self, dtype):
        if dtype == np.bool_:
            upper = 2
            lower = 0
        else:
            info = np.iinfo(dtype)
            upper = int(info.max) + 1
            lower = info.min
        with pytest.raises(ValueError):
            self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
        with pytest.raises(ValueError):
            self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
        with pytest.raises(ValueError):
            self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
        with pytest.raises(ValueError):
            self.rg.integers([0], [0], dtype=dtype)


class TestMT19937(RNG):
    @classmethod
    def setup_class(cls):
        cls.bit_generator = MT19937
        cls.advance = None
        cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
        cls.rg = Generator(cls.bit_generator(*cls.seed))
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 32
        cls._extra_setup()
        cls.seed_error = ValueError

    def test_numpy_state(self):
        nprg = np.random.RandomState()
        nprg.standard_normal(99)
        state = nprg.get_state()
        self.rg.bit_generator.state = state
        state2 = self.rg.bit_generator.state
        assert_((state[1] == state2['state']['key']).all())
        assert_((state[2] == state2['state']['pos']))


class TestPhilox(RNG):
    @classmethod
    def setup_class(cls):
        cls.bit_generator = Philox
        cls.advance = 2**63 + 2**31 + 2**15 + 1
        cls.seed = [12345]
        cls.rg = Generator(cls.bit_generator(*cls.seed))
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 64
        cls._extra_setup()


class TestSFC64(RNG):
    @classmethod
    def setup_class(cls):
        cls.bit_generator = SFC64
        cls.advance = None
        cls.seed = [12345]
        cls.rg = Generator(cls.bit_generator(*cls.seed))
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 192
        cls._extra_setup()


class TestPCG64(RNG):
    @classmethod
    def setup_class(cls):
        cls.bit_generator = PCG64
        cls.advance = 2**63 + 2**31 + 2**15 + 1
        cls.seed = [12345]
        cls.rg = Generator(cls.bit_generator(*cls.seed))
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 64
        cls._extra_setup()


class TestPCG64DXSM(RNG):
    @classmethod
    def setup_class(cls):
        cls.bit_generator = PCG64DXSM
        cls.advance = 2**63 + 2**31 + 2**15 + 1
        cls.seed = [12345]
        cls.rg = Generator(cls.bit_generator(*cls.seed))
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 64
        cls._extra_setup()


class TestDefaultRNG(RNG):
    @classmethod
    def setup_class(cls):
        # This will duplicate some tests that directly instantiate a fresh
        # Generator(), but that's okay.
        cls.bit_generator = PCG64
        cls.advance = 2**63 + 2**31 + 2**15 + 1
        cls.seed = [12345]
        cls.rg = np.random.default_rng(*cls.seed)
        cls.initial_state = cls.rg.bit_generator.state
        cls.seed_vector_bits = 64
        cls._extra_setup()

    def test_default_is_pcg64(self):
        # In order to change the default BitGenerator, we'll go through
        # a deprecation cycle to move to a different function.
        assert_(isinstance(self.rg.bit_generator, PCG64))

    def test_seed(self):
        np.random.default_rng()
        np.random.default_rng(None)
        np.random.default_rng(12345)
        np.random.default_rng(0)
        np.random.default_rng(43660444402423911716352051725018508569)
        np.random.default_rng([43660444402423911716352051725018508569,
                               279705150948142787361475340226491943209])
        with pytest.raises(ValueError):
            np.random.default_rng(-1)
        with pytest.raises(ValueError):
            np.random.default_rng([12345, -1])

Youez - 2016 - github.com/yon3zu
LinuXploit