Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.226.166.207
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/test_nanfunctions.py
import warnings
import pytest
import inspect

import numpy as np
from numpy.core.numeric import normalize_axis_tuple
from numpy.lib.nanfunctions import _nan_mask, _replace_nan
from numpy.testing import (
    assert_, assert_equal, assert_almost_equal, assert_raises,
    assert_array_equal, suppress_warnings
    )


# Test data
_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
                  [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
                  [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
                  [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])


# Rows of _ndat with nans removed
_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
         np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
         np.array([0.1042, -0.5954]),
         np.array([0.1610, 0.1859, 0.3146])]

# Rows of _ndat with nans converted to ones
_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170],
                       [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833],
                       [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954],
                       [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]])

# Rows of _ndat with nans converted to zeros
_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170],
                        [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833],
                        [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954],
                        [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]])


class TestSignatureMatch:
    NANFUNCS = {
        np.nanmin: np.amin,
        np.nanmax: np.amax,
        np.nanargmin: np.argmin,
        np.nanargmax: np.argmax,
        np.nansum: np.sum,
        np.nanprod: np.prod,
        np.nancumsum: np.cumsum,
        np.nancumprod: np.cumprod,
        np.nanmean: np.mean,
        np.nanmedian: np.median,
        np.nanpercentile: np.percentile,
        np.nanquantile: np.quantile,
        np.nanvar: np.var,
        np.nanstd: np.std,
    }
    IDS = [k.__name__ for k in NANFUNCS]

    @staticmethod
    def get_signature(func, default="..."):
        """Construct a signature and replace all default parameter-values."""
        prm_list = []
        signature = inspect.signature(func)
        for prm in signature.parameters.values():
            if prm.default is inspect.Parameter.empty:
                prm_list.append(prm)
            else:
                prm_list.append(prm.replace(default=default))
        return inspect.Signature(prm_list)

    @pytest.mark.parametrize("nan_func,func", NANFUNCS.items(), ids=IDS)
    def test_signature_match(self, nan_func, func):
        # Ignore the default parameter-values as they can sometimes differ
        # between the two functions (*e.g.* one has `False` while the other
        # has `np._NoValue`)
        signature = self.get_signature(func)
        nan_signature = self.get_signature(nan_func)
        np.testing.assert_equal(signature, nan_signature)

    def test_exhaustiveness(self):
        """Validate that all nan functions are actually tested."""
        np.testing.assert_equal(
            set(self.IDS), set(np.lib.nanfunctions.__all__)
        )


class TestNanFunctions_MinMax:

    nanfuncs = [np.nanmin, np.nanmax]
    stdfuncs = [np.min, np.max]

    def test_mutation(self):
        # Check that passed array is not modified.
        ndat = _ndat.copy()
        for f in self.nanfuncs:
            f(ndat)
            assert_equal(ndat, _ndat)

    def test_keepdims(self):
        mat = np.eye(3)
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for axis in [None, 0, 1]:
                tgt = rf(mat, axis=axis, keepdims=True)
                res = nf(mat, axis=axis, keepdims=True)
                assert_(res.ndim == tgt.ndim)

    def test_out(self):
        mat = np.eye(3)
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            resout = np.zeros(3)
            tgt = rf(mat, axis=1)
            res = nf(mat, axis=1, out=resout)
            assert_almost_equal(res, resout)
            assert_almost_equal(res, tgt)

    def test_dtype_from_input(self):
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                mat = np.eye(3, dtype=c)
                tgt = rf(mat, axis=1).dtype.type
                res = nf(mat, axis=1).dtype.type
                assert_(res is tgt)
                # scalar case
                tgt = rf(mat, axis=None).dtype.type
                res = nf(mat, axis=None).dtype.type
                assert_(res is tgt)

    def test_result_values(self):
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            tgt = [rf(d) for d in _rdat]
            res = nf(_ndat, axis=1)
            assert_almost_equal(res, tgt)

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan),
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        match = "All-NaN slice encountered"
        for func in self.nanfuncs:
            with pytest.warns(RuntimeWarning, match=match):
                out = func(array, axis=axis)
            assert np.isnan(out).all()
            assert out.dtype == array.dtype

    def test_masked(self):
        mat = np.ma.fix_invalid(_ndat)
        msk = mat._mask.copy()
        for f in [np.nanmin]:
            res = f(mat, axis=1)
            tgt = f(_ndat, axis=1)
            assert_equal(res, tgt)
            assert_equal(mat._mask, msk)
            assert_(not np.isinf(mat).any())

    def test_scalar(self):
        for f in self.nanfuncs:
            assert_(f(0.) == 0.)

    def test_subclass(self):
        class MyNDArray(np.ndarray):
            pass

        # Check that it works and that type and
        # shape are preserved
        mine = np.eye(3).view(MyNDArray)
        for f in self.nanfuncs:
            res = f(mine, axis=0)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == (3,))
            res = f(mine, axis=1)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == (3,))
            res = f(mine)
            assert_(res.shape == ())

        # check that rows of nan are dealt with for subclasses (#4628)
        mine[1] = np.nan
        for f in self.nanfuncs:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                res = f(mine, axis=0)
                assert_(isinstance(res, MyNDArray))
                assert_(not np.any(np.isnan(res)))
                assert_(len(w) == 0)

            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                res = f(mine, axis=1)
                assert_(isinstance(res, MyNDArray))
                assert_(np.isnan(res[1]) and not np.isnan(res[0])
                        and not np.isnan(res[2]))
                assert_(len(w) == 1, 'no warning raised')
                assert_(issubclass(w[0].category, RuntimeWarning))

            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                res = f(mine)
                assert_(res.shape == ())
                assert_(res != np.nan)
                assert_(len(w) == 0)

    def test_object_array(self):
        arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object)
        assert_equal(np.nanmin(arr), 1.0)
        assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0])

        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            # assert_equal does not work on object arrays of nan
            assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan])
            assert_(len(w) == 1, 'no warning raised')
            assert_(issubclass(w[0].category, RuntimeWarning))

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_initial(self, dtype):
        class MyNDArray(np.ndarray):
            pass

        ar = np.arange(9).astype(dtype)
        ar[:5] = np.nan

        for f in self.nanfuncs:
            initial = 100 if f is np.nanmax else 0

            ret1 = f(ar, initial=initial)
            assert ret1.dtype == dtype
            assert ret1 == initial

            ret2 = f(ar.view(MyNDArray), initial=initial)
            assert ret2.dtype == dtype
            assert ret2 == initial

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_where(self, dtype):
        class MyNDArray(np.ndarray):
            pass

        ar = np.arange(9).reshape(3, 3).astype(dtype)
        ar[0, :] = np.nan
        where = np.ones_like(ar, dtype=np.bool_)
        where[:, 0] = False

        for f in self.nanfuncs:
            reference = 4 if f is np.nanmin else 8

            ret1 = f(ar, where=where, initial=5)
            assert ret1.dtype == dtype
            assert ret1 == reference

            ret2 = f(ar.view(MyNDArray), where=where, initial=5)
            assert ret2.dtype == dtype
            assert ret2 == reference


class TestNanFunctions_ArgminArgmax:

    nanfuncs = [np.nanargmin, np.nanargmax]

    def test_mutation(self):
        # Check that passed array is not modified.
        ndat = _ndat.copy()
        for f in self.nanfuncs:
            f(ndat)
            assert_equal(ndat, _ndat)

    def test_result_values(self):
        for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
            for row in _ndat:
                with suppress_warnings() as sup:
                    sup.filter(RuntimeWarning, "invalid value encountered in")
                    ind = f(row)
                    val = row[ind]
                    # comparing with NaN is tricky as the result
                    # is always false except for NaN != NaN
                    assert_(not np.isnan(val))
                    assert_(not fcmp(val, row).any())
                    assert_(not np.equal(val, row[:ind]).any())

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan),
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        for func in self.nanfuncs:
            with pytest.raises(ValueError, match="All-NaN slice encountered"):
                func(array, axis=axis)

    def test_empty(self):
        mat = np.zeros((0, 3))
        for f in self.nanfuncs:
            for axis in [0, None]:
                assert_raises(ValueError, f, mat, axis=axis)
            for axis in [1]:
                res = f(mat, axis=axis)
                assert_equal(res, np.zeros(0))

    def test_scalar(self):
        for f in self.nanfuncs:
            assert_(f(0.) == 0.)

    def test_subclass(self):
        class MyNDArray(np.ndarray):
            pass

        # Check that it works and that type and
        # shape are preserved
        mine = np.eye(3).view(MyNDArray)
        for f in self.nanfuncs:
            res = f(mine, axis=0)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == (3,))
            res = f(mine, axis=1)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == (3,))
            res = f(mine)
            assert_(res.shape == ())

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_keepdims(self, dtype):
        ar = np.arange(9).astype(dtype)
        ar[:5] = np.nan

        for f in self.nanfuncs:
            reference = 5 if f is np.nanargmin else 8
            ret = f(ar, keepdims=True)
            assert ret.ndim == ar.ndim
            assert ret == reference

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_out(self, dtype):
        ar = np.arange(9).astype(dtype)
        ar[:5] = np.nan

        for f in self.nanfuncs:
            out = np.zeros((), dtype=np.intp)
            reference = 5 if f is np.nanargmin else 8
            ret = f(ar, out=out)
            assert ret is out
            assert ret == reference



_TEST_ARRAYS = {
    "0d": np.array(5),
    "1d": np.array([127, 39, 93, 87, 46])
}
for _v in _TEST_ARRAYS.values():
    _v.setflags(write=False)


@pytest.mark.parametrize(
    "dtype",
    np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O",
)
@pytest.mark.parametrize("mat", _TEST_ARRAYS.values(), ids=_TEST_ARRAYS.keys())
class TestNanFunctions_NumberTypes:
    nanfuncs = {
        np.nanmin: np.min,
        np.nanmax: np.max,
        np.nanargmin: np.argmin,
        np.nanargmax: np.argmax,
        np.nansum: np.sum,
        np.nanprod: np.prod,
        np.nancumsum: np.cumsum,
        np.nancumprod: np.cumprod,
        np.nanmean: np.mean,
        np.nanmedian: np.median,
        np.nanvar: np.var,
        np.nanstd: np.std,
    }
    nanfunc_ids = [i.__name__ for i in nanfuncs]

    @pytest.mark.parametrize("nanfunc,func", nanfuncs.items(), ids=nanfunc_ids)
    @np.errstate(over="ignore")
    def test_nanfunc(self, mat, dtype, nanfunc, func):
        mat = mat.astype(dtype)
        tgt = func(mat)
        out = nanfunc(mat)

        assert_almost_equal(out, tgt)
        if dtype == "O":
            assert type(out) is type(tgt)
        else:
            assert out.dtype == tgt.dtype

    @pytest.mark.parametrize(
        "nanfunc,func",
        [(np.nanquantile, np.quantile), (np.nanpercentile, np.percentile)],
        ids=["nanquantile", "nanpercentile"],
    )
    def test_nanfunc_q(self, mat, dtype, nanfunc, func):
        mat = mat.astype(dtype)
        if mat.dtype.kind == "c":
            assert_raises(TypeError, func, mat, q=1)
            assert_raises(TypeError, nanfunc, mat, q=1)

        else:
            tgt = func(mat, q=1)
            out = nanfunc(mat, q=1)

            assert_almost_equal(out, tgt)

            if dtype == "O":
                assert type(out) is type(tgt)
            else:
                assert out.dtype == tgt.dtype

    @pytest.mark.parametrize(
        "nanfunc,func",
        [(np.nanvar, np.var), (np.nanstd, np.std)],
        ids=["nanvar", "nanstd"],
    )
    def test_nanfunc_ddof(self, mat, dtype, nanfunc, func):
        mat = mat.astype(dtype)
        tgt = func(mat, ddof=0.5)
        out = nanfunc(mat, ddof=0.5)

        assert_almost_equal(out, tgt)
        if dtype == "O":
            assert type(out) is type(tgt)
        else:
            assert out.dtype == tgt.dtype


class SharedNanFunctionsTestsMixin:
    def test_mutation(self):
        # Check that passed array is not modified.
        ndat = _ndat.copy()
        for f in self.nanfuncs:
            f(ndat)
            assert_equal(ndat, _ndat)

    def test_keepdims(self):
        mat = np.eye(3)
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for axis in [None, 0, 1]:
                tgt = rf(mat, axis=axis, keepdims=True)
                res = nf(mat, axis=axis, keepdims=True)
                assert_(res.ndim == tgt.ndim)

    def test_out(self):
        mat = np.eye(3)
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            resout = np.zeros(3)
            tgt = rf(mat, axis=1)
            res = nf(mat, axis=1, out=resout)
            assert_almost_equal(res, resout)
            assert_almost_equal(res, tgt)

    def test_dtype_from_dtype(self):
        mat = np.eye(3)
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                with suppress_warnings() as sup:
                    if nf in {np.nanstd, np.nanvar} and c in 'FDG':
                        # Giving the warning is a small bug, see gh-8000
                        sup.filter(np.ComplexWarning)
                    tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
                    res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
                    assert_(res is tgt)
                    # scalar case
                    tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
                    res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
                    assert_(res is tgt)

    def test_dtype_from_char(self):
        mat = np.eye(3)
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                with suppress_warnings() as sup:
                    if nf in {np.nanstd, np.nanvar} and c in 'FDG':
                        # Giving the warning is a small bug, see gh-8000
                        sup.filter(np.ComplexWarning)
                    tgt = rf(mat, dtype=c, axis=1).dtype.type
                    res = nf(mat, dtype=c, axis=1).dtype.type
                    assert_(res is tgt)
                    # scalar case
                    tgt = rf(mat, dtype=c, axis=None).dtype.type
                    res = nf(mat, dtype=c, axis=None).dtype.type
                    assert_(res is tgt)

    def test_dtype_from_input(self):
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                mat = np.eye(3, dtype=c)
                tgt = rf(mat, axis=1).dtype.type
                res = nf(mat, axis=1).dtype.type
                assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
                # scalar case
                tgt = rf(mat, axis=None).dtype.type
                res = nf(mat, axis=None).dtype.type
                assert_(res is tgt)

    def test_result_values(self):
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            tgt = [rf(d) for d in _rdat]
            res = nf(_ndat, axis=1)
            assert_almost_equal(res, tgt)

    def test_scalar(self):
        for f in self.nanfuncs:
            assert_(f(0.) == 0.)

    def test_subclass(self):
        class MyNDArray(np.ndarray):
            pass

        # Check that it works and that type and
        # shape are preserved
        array = np.eye(3)
        mine = array.view(MyNDArray)
        for f in self.nanfuncs:
            expected_shape = f(array, axis=0).shape
            res = f(mine, axis=0)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == expected_shape)
            expected_shape = f(array, axis=1).shape
            res = f(mine, axis=1)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == expected_shape)
            expected_shape = f(array).shape
            res = f(mine)
            assert_(isinstance(res, MyNDArray))
            assert_(res.shape == expected_shape)


class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin):

    nanfuncs = [np.nansum, np.nanprod]
    stdfuncs = [np.sum, np.prod]

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan),
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        for func, identity in zip(self.nanfuncs, [0, 1]):
            out = func(array, axis=axis)
            assert np.all(out == identity)
            assert out.dtype == array.dtype

    def test_empty(self):
        for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]):
            mat = np.zeros((0, 3))
            tgt = [tgt_value]*3
            res = f(mat, axis=0)
            assert_equal(res, tgt)
            tgt = []
            res = f(mat, axis=1)
            assert_equal(res, tgt)
            tgt = tgt_value
            res = f(mat, axis=None)
            assert_equal(res, tgt)

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_initial(self, dtype):
        ar = np.arange(9).astype(dtype)
        ar[:5] = np.nan

        for f in self.nanfuncs:
            reference = 28 if f is np.nansum else 3360
            ret = f(ar, initial=2)
            assert ret.dtype == dtype
            assert ret == reference

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_where(self, dtype):
        ar = np.arange(9).reshape(3, 3).astype(dtype)
        ar[0, :] = np.nan
        where = np.ones_like(ar, dtype=np.bool_)
        where[:, 0] = False

        for f in self.nanfuncs:
            reference = 26 if f is np.nansum else 2240
            ret = f(ar, where=where, initial=2)
            assert ret.dtype == dtype
            assert ret == reference


class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin):

    nanfuncs = [np.nancumsum, np.nancumprod]
    stdfuncs = [np.cumsum, np.cumprod]

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan)
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        for func, identity in zip(self.nanfuncs, [0, 1]):
            out = func(array)
            assert np.all(out == identity)
            assert out.dtype == array.dtype

    def test_empty(self):
        for f, tgt_value in zip(self.nanfuncs, [0, 1]):
            mat = np.zeros((0, 3))
            tgt = tgt_value*np.ones((0, 3))
            res = f(mat, axis=0)
            assert_equal(res, tgt)
            tgt = mat
            res = f(mat, axis=1)
            assert_equal(res, tgt)
            tgt = np.zeros((0))
            res = f(mat, axis=None)
            assert_equal(res, tgt)

    def test_keepdims(self):
        for f, g in zip(self.nanfuncs, self.stdfuncs):
            mat = np.eye(3)
            for axis in [None, 0, 1]:
                tgt = f(mat, axis=axis, out=None)
                res = g(mat, axis=axis, out=None)
                assert_(res.ndim == tgt.ndim)

        for f in self.nanfuncs:
            d = np.ones((3, 5, 7, 11))
            # Randomly set some elements to NaN:
            rs = np.random.RandomState(0)
            d[rs.rand(*d.shape) < 0.5] = np.nan
            res = f(d, axis=None)
            assert_equal(res.shape, (1155,))
            for axis in np.arange(4):
                res = f(d, axis=axis)
                assert_equal(res.shape, (3, 5, 7, 11))

    def test_result_values(self):
        for axis in (-2, -1, 0, 1, None):
            tgt = np.cumprod(_ndat_ones, axis=axis)
            res = np.nancumprod(_ndat, axis=axis)
            assert_almost_equal(res, tgt)
            tgt = np.cumsum(_ndat_zeros,axis=axis)
            res = np.nancumsum(_ndat, axis=axis)
            assert_almost_equal(res, tgt)

    def test_out(self):
        mat = np.eye(3)
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            resout = np.eye(3)
            for axis in (-2, -1, 0, 1):
                tgt = rf(mat, axis=axis)
                res = nf(mat, axis=axis, out=resout)
                assert_almost_equal(res, resout)
                assert_almost_equal(res, tgt)


class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin):

    nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
    stdfuncs = [np.mean, np.var, np.std]

    def test_dtype_error(self):
        for f in self.nanfuncs:
            for dtype in [np.bool_, np.int_, np.object_]:
                assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)

    def test_out_dtype_error(self):
        for f in self.nanfuncs:
            for dtype in [np.bool_, np.int_, np.object_]:
                out = np.empty(_ndat.shape[0], dtype=dtype)
                assert_raises(TypeError, f, _ndat, axis=1, out=out)

    def test_ddof(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in [0, 1]:
                tgt = [rf(d, ddof=ddof) for d in _rdat]
                res = nf(_ndat, axis=1, ddof=ddof)
                assert_almost_equal(res, tgt)

    def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with suppress_warnings() as sup:
                    sup.record(RuntimeWarning)
                    sup.filter(np.ComplexWarning)
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(sup.log) == 1)
                    else:
                        assert_(len(sup.log) == 0)

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan),
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        match = "(Degrees of freedom <= 0 for slice.)|(Mean of empty slice)"
        for func in self.nanfuncs:
            with pytest.warns(RuntimeWarning, match=match):
                out = func(array, axis=axis)
            assert np.isnan(out).all()

            # `nanvar` and `nanstd` convert complex inputs to their
            # corresponding floating dtype
            if func is np.nanmean:
                assert out.dtype == array.dtype
            else:
                assert out.dtype == np.abs(array).dtype

    def test_empty(self):
        mat = np.zeros((0, 3))
        for f in self.nanfuncs:
            for axis in [0, None]:
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    assert_(np.isnan(f(mat, axis=axis)).all())
                    assert_(len(w) == 1)
                    assert_(issubclass(w[0].category, RuntimeWarning))
            for axis in [1]:
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    assert_equal(f(mat, axis=axis), np.zeros([]))
                    assert_(len(w) == 0)

    @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
    def test_where(self, dtype):
        ar = np.arange(9).reshape(3, 3).astype(dtype)
        ar[0, :] = np.nan
        where = np.ones_like(ar, dtype=np.bool_)
        where[:, 0] = False

        for f, f_std in zip(self.nanfuncs, self.stdfuncs):
            reference = f_std(ar[where][2:])
            dtype_reference = dtype if f is np.nanmean else ar.real.dtype

            ret = f(ar, where=where)
            assert ret.dtype == dtype_reference
            np.testing.assert_allclose(ret, reference)


_TIME_UNITS = (
    "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as"
)

# All `inexact` + `timdelta64` type codes
_TYPE_CODES = list(np.typecodes["AllFloat"])
_TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS]


class TestNanFunctions_Median:

    def test_mutation(self):
        # Check that passed array is not modified.
        ndat = _ndat.copy()
        np.nanmedian(ndat)
        assert_equal(ndat, _ndat)

    def test_keepdims(self):
        mat = np.eye(3)
        for axis in [None, 0, 1]:
            tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
            res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
            assert_(res.ndim == tgt.ndim)

        d = np.ones((3, 5, 7, 11))
        # Randomly set some elements to NaN:
        w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
        w = w.astype(np.intp)
        d[tuple(w)] = np.nan
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            res = np.nanmedian(d, axis=None, keepdims=True)
            assert_equal(res.shape, (1, 1, 1, 1))
            res = np.nanmedian(d, axis=(0, 1), keepdims=True)
            assert_equal(res.shape, (1, 1, 7, 11))
            res = np.nanmedian(d, axis=(0, 3), keepdims=True)
            assert_equal(res.shape, (1, 5, 7, 1))
            res = np.nanmedian(d, axis=(1,), keepdims=True)
            assert_equal(res.shape, (3, 1, 7, 11))
            res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
            assert_equal(res.shape, (1, 1, 1, 1))
            res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
            assert_equal(res.shape, (1, 1, 7, 1))

    @pytest.mark.parametrize(
        argnames='axis',
        argvalues=[
            None,
            1,
            (1, ),
            (0, 1),
            (-3, -1),
        ]
    )
    @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning")
    def test_keepdims_out(self, axis):
        d = np.ones((3, 5, 7, 11))
        # Randomly set some elements to NaN:
        w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
        w = w.astype(np.intp)
        d[tuple(w)] = np.nan
        if axis is None:
            shape_out = (1,) * d.ndim
        else:
            axis_norm = normalize_axis_tuple(axis, d.ndim)
            shape_out = tuple(
                1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
        out = np.empty(shape_out)
        result = np.nanmedian(d, axis=axis, keepdims=True, out=out)
        assert result is out
        assert_equal(result.shape, shape_out)

    def test_out(self):
        mat = np.random.rand(3, 3)
        nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
        resout = np.zeros(3)
        tgt = np.median(mat, axis=1)
        res = np.nanmedian(nan_mat, axis=1, out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)
        # 0-d output:
        resout = np.zeros(())
        tgt = np.median(mat, axis=None)
        res = np.nanmedian(nan_mat, axis=None, out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)
        res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)

    def test_small_large(self):
        # test the small and large code paths, current cutoff 400 elements
        for s in [5, 20, 51, 200, 1000]:
            d = np.random.randn(4, s)
            # Randomly set some elements to NaN:
            w = np.random.randint(0, d.size, size=d.size // 5)
            d.ravel()[w] = np.nan
            d[:,0] = 1.  # ensure at least one good value
            # use normal median without nans to compare
            tgt = []
            for x in d:
                nonan = np.compress(~np.isnan(x), x)
                tgt.append(np.median(nonan, overwrite_input=True))

            assert_array_equal(np.nanmedian(d, axis=-1), tgt)

    def test_result_values(self):
            tgt = [np.median(d) for d in _rdat]
            res = np.nanmedian(_ndat, axis=1)
            assert_almost_equal(res, tgt)

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", _TYPE_CODES)
    def test_allnans(self, dtype, axis):
        mat = np.full((3, 3), np.nan).astype(dtype)
        with suppress_warnings() as sup:
            sup.record(RuntimeWarning)

            output = np.nanmedian(mat, axis=axis)
            assert output.dtype == mat.dtype
            assert np.isnan(output).all()

            if axis is None:
                assert_(len(sup.log) == 1)
            else:
                assert_(len(sup.log) == 3)

            # Check scalar
            scalar = np.array(np.nan).astype(dtype)[()]
            output_scalar = np.nanmedian(scalar)
            assert output_scalar.dtype == scalar.dtype
            assert np.isnan(output_scalar)

            if axis is None:
                assert_(len(sup.log) == 2)
            else:
                assert_(len(sup.log) == 4)

    def test_empty(self):
        mat = np.zeros((0, 3))
        for axis in [0, None]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
                assert_(len(w) == 1)
                assert_(issubclass(w[0].category, RuntimeWarning))
        for axis in [1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
                assert_(len(w) == 0)

    def test_scalar(self):
        assert_(np.nanmedian(0.) == 0.)

    def test_extended_axis_invalid(self):
        d = np.ones((3, 5, 7, 11))
        assert_raises(np.AxisError, np.nanmedian, d, axis=-5)
        assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5))
        assert_raises(np.AxisError, np.nanmedian, d, axis=4)
        assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4))
        assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))

    def test_float_special(self):
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            for inf in [np.inf, -np.inf]:
                a = np.array([[inf,  np.nan], [np.nan, np.nan]])
                assert_equal(np.nanmedian(a, axis=0), [inf,  np.nan])
                assert_equal(np.nanmedian(a, axis=1), [inf,  np.nan])
                assert_equal(np.nanmedian(a), inf)

                # minimum fill value check
                a = np.array([[np.nan, np.nan, inf],
                             [np.nan, np.nan, inf]])
                assert_equal(np.nanmedian(a), inf)
                assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf])
                assert_equal(np.nanmedian(a, axis=1), inf)

                # no mask path
                a = np.array([[inf, inf], [inf, inf]])
                assert_equal(np.nanmedian(a, axis=1), inf)

                a = np.array([[inf, 7, -inf, -9],
                              [-10, np.nan, np.nan, 5],
                              [4, np.nan, np.nan, inf]],
                              dtype=np.float32)
                if inf > 0:
                    assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.])
                    assert_equal(np.nanmedian(a), 4.5)
                else:
                    assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.])
                    assert_equal(np.nanmedian(a), -2.5)
                assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf])

                for i in range(0, 10):
                    for j in range(1, 10):
                        a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
                        assert_equal(np.nanmedian(a), inf)
                        assert_equal(np.nanmedian(a, axis=1), inf)
                        assert_equal(np.nanmedian(a, axis=0),
                                     ([np.nan] * i) + [inf] * j)

                        a = np.array([([np.nan] * i) + ([-inf] * j)] * 2)
                        assert_equal(np.nanmedian(a), -inf)
                        assert_equal(np.nanmedian(a, axis=1), -inf)
                        assert_equal(np.nanmedian(a, axis=0),
                                     ([np.nan] * i) + [-inf] * j)


class TestNanFunctions_Percentile:

    def test_mutation(self):
        # Check that passed array is not modified.
        ndat = _ndat.copy()
        np.nanpercentile(ndat, 30)
        assert_equal(ndat, _ndat)

    def test_keepdims(self):
        mat = np.eye(3)
        for axis in [None, 0, 1]:
            tgt = np.percentile(mat, 70, axis=axis, out=None,
                                overwrite_input=False)
            res = np.nanpercentile(mat, 70, axis=axis, out=None,
                                   overwrite_input=False)
            assert_(res.ndim == tgt.ndim)

        d = np.ones((3, 5, 7, 11))
        # Randomly set some elements to NaN:
        w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
        w = w.astype(np.intp)
        d[tuple(w)] = np.nan
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            res = np.nanpercentile(d, 90, axis=None, keepdims=True)
            assert_equal(res.shape, (1, 1, 1, 1))
            res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
            assert_equal(res.shape, (1, 1, 7, 11))
            res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
            assert_equal(res.shape, (1, 5, 7, 1))
            res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
            assert_equal(res.shape, (3, 1, 7, 11))
            res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
            assert_equal(res.shape, (1, 1, 1, 1))
            res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
            assert_equal(res.shape, (1, 1, 7, 1))

    @pytest.mark.parametrize('q', [7, [1, 7]])
    @pytest.mark.parametrize(
        argnames='axis',
        argvalues=[
            None,
            1,
            (1,),
            (0, 1),
            (-3, -1),
        ]
    )
    @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning")
    def test_keepdims_out(self, q, axis):
        d = np.ones((3, 5, 7, 11))
        # Randomly set some elements to NaN:
        w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
        w = w.astype(np.intp)
        d[tuple(w)] = np.nan
        if axis is None:
            shape_out = (1,) * d.ndim
        else:
            axis_norm = normalize_axis_tuple(axis, d.ndim)
            shape_out = tuple(
                1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
        shape_out = np.shape(q) + shape_out

        out = np.empty(shape_out)
        result = np.nanpercentile(d, q, axis=axis, keepdims=True, out=out)
        assert result is out
        assert_equal(result.shape, shape_out)

    def test_out(self):
        mat = np.random.rand(3, 3)
        nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
        resout = np.zeros(3)
        tgt = np.percentile(mat, 42, axis=1)
        res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)
        # 0-d output:
        resout = np.zeros(())
        tgt = np.percentile(mat, 42, axis=None)
        res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)
        res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)

    def test_complex(self):
        arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='G')
        assert_raises(TypeError, np.nanpercentile, arr_c, 0.5)
        arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='D')
        assert_raises(TypeError, np.nanpercentile, arr_c, 0.5)
        arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='F')
        assert_raises(TypeError, np.nanpercentile, arr_c, 0.5)

    def test_result_values(self):
        tgt = [np.percentile(d, 28) for d in _rdat]
        res = np.nanpercentile(_ndat, 28, axis=1)
        assert_almost_equal(res, tgt)
        # Transpose the array to fit the output convention of numpy.percentile
        tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat])
        res = np.nanpercentile(_ndat, (28, 98), axis=1)
        assert_almost_equal(res, tgt)

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["Float"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan),
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"):
            out = np.nanpercentile(array, 60, axis=axis)
        assert np.isnan(out).all()
        assert out.dtype == array.dtype

    def test_empty(self):
        mat = np.zeros((0, 3))
        for axis in [0, None]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
                assert_(len(w) == 1)
                assert_(issubclass(w[0].category, RuntimeWarning))
        for axis in [1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
                assert_(len(w) == 0)

    def test_scalar(self):
        assert_equal(np.nanpercentile(0., 100), 0.)
        a = np.arange(6)
        r = np.nanpercentile(a, 50, axis=0)
        assert_equal(r, 2.5)
        assert_(np.isscalar(r))

    def test_extended_axis_invalid(self):
        d = np.ones((3, 5, 7, 11))
        assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5)
        assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5))
        assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=4)
        assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, 4))
        assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))

    def test_multiple_percentiles(self):
        perc = [50, 100]
        mat = np.ones((4, 3))
        nan_mat = np.nan * mat
        # For checking consistency in higher dimensional case
        large_mat = np.ones((3, 4, 5))
        large_mat[:, 0:2:4, :] = 0
        large_mat[:, :, 3:] *= 2
        for axis in [None, 0, 1]:
            for keepdim in [False, True]:
                with suppress_warnings() as sup:
                    sup.filter(RuntimeWarning, "All-NaN slice encountered")
                    val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
                    nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
                                               keepdims=keepdim)
                    assert_equal(nan_val.shape, val.shape)

                    val = np.percentile(large_mat, perc, axis=axis,
                                        keepdims=keepdim)
                    nan_val = np.nanpercentile(large_mat, perc, axis=axis,
                                               keepdims=keepdim)
                    assert_equal(nan_val, val)

        megamat = np.ones((3, 4, 5, 6))
        assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6))


class TestNanFunctions_Quantile:
    # most of this is already tested by TestPercentile

    def test_regression(self):
        ar = np.arange(24).reshape(2, 3, 4).astype(float)
        ar[0][1] = np.nan

        assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50))
        assert_equal(np.nanquantile(ar, q=0.5, axis=0),
                     np.nanpercentile(ar, q=50, axis=0))
        assert_equal(np.nanquantile(ar, q=0.5, axis=1),
                     np.nanpercentile(ar, q=50, axis=1))
        assert_equal(np.nanquantile(ar, q=[0.5], axis=1),
                     np.nanpercentile(ar, q=[50], axis=1))
        assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1),
                     np.nanpercentile(ar, q=[25, 50, 75], axis=1))

    def test_basic(self):
        x = np.arange(8) * 0.5
        assert_equal(np.nanquantile(x, 0), 0.)
        assert_equal(np.nanquantile(x, 1), 3.5)
        assert_equal(np.nanquantile(x, 0.5), 1.75)

    def test_complex(self):
        arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='G')
        assert_raises(TypeError, np.nanquantile, arr_c, 0.5)
        arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='D')
        assert_raises(TypeError, np.nanquantile, arr_c, 0.5)
        arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='F')
        assert_raises(TypeError, np.nanquantile, arr_c, 0.5)

    def test_no_p_overwrite(self):
        # this is worth retesting, because quantile does not make a copy
        p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
        p = p0.copy()
        np.nanquantile(np.arange(100.), p, method="midpoint")
        assert_array_equal(p, p0)

        p0 = p0.tolist()
        p = p.tolist()
        np.nanquantile(np.arange(100.), p, method="midpoint")
        assert_array_equal(p, p0)

    @pytest.mark.parametrize("axis", [None, 0, 1])
    @pytest.mark.parametrize("dtype", np.typecodes["Float"])
    @pytest.mark.parametrize("array", [
        np.array(np.nan),
        np.full((3, 3), np.nan),
    ], ids=["0d", "2d"])
    def test_allnans(self, axis, dtype, array):
        if axis is not None and array.ndim == 0:
            pytest.skip(f"`axis != None` not supported for 0d arrays")

        array = array.astype(dtype)
        with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"):
            out = np.nanquantile(array, 1, axis=axis)
        assert np.isnan(out).all()
        assert out.dtype == array.dtype

@pytest.mark.parametrize("arr, expected", [
    # array of floats with some nans
    (np.array([np.nan, 5.0, np.nan, np.inf]),
     np.array([False, True, False, True])),
    # int64 array that can't possibly have nans
    (np.array([1, 5, 7, 9], dtype=np.int64),
     True),
    # bool array that can't possibly have nans
    (np.array([False, True, False, True]),
     True),
    # 2-D complex array with nans
    (np.array([[np.nan, 5.0],
               [np.nan, np.inf]], dtype=np.complex64),
     np.array([[False, True],
               [False, True]])),
    ])
def test__nan_mask(arr, expected):
    for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
        actual = _nan_mask(arr, out=out)
        assert_equal(actual, expected)
        # the above won't distinguish between True proper
        # and an array of True values; we want True proper
        # for types that can't possibly contain NaN
        if type(expected) is not np.ndarray:
            assert actual is True


def test__replace_nan():
    """ Test that _replace_nan returns the original array if there are no
    NaNs, not a copy.
    """
    for dtype in [np.bool_, np.int32, np.int64]:
        arr = np.array([0, 1], dtype=dtype)
        result, mask = _replace_nan(arr, 0)
        assert mask is None
        # do not make a copy if there are no nans
        assert result is arr

    for dtype in [np.float32, np.float64]:
        arr = np.array([0, 1], dtype=dtype)
        result, mask = _replace_nan(arr, 2)
        assert (mask == False).all()
        # mask is not None, so we make a copy
        assert result is not arr
        assert_equal(result, arr)

        arr_nan = np.array([0, 1, np.nan], dtype=dtype)
        result_nan, mask_nan = _replace_nan(arr_nan, 2)
        assert_equal(mask_nan, np.array([False, False, True]))
        assert result_nan is not arr_nan
        assert_equal(result_nan, np.array([0, 1, 2]))
        assert np.isnan(arr_nan[-1])

Youez - 2016 - github.com/yon3zu
LinuXploit