Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.189.143.127
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_simd.py
# NOTE: Please avoid the use of numpy.testing since NPYV intrinsics
# may be involved in their functionality.
import pytest, math, re
import itertools
import operator
from numpy.core._simd import targets, clear_floatstatus, get_floatstatus
from numpy.core._multiarray_umath import __cpu_baseline__

def check_floatstatus(divbyzero=False, overflow=False,
                      underflow=False, invalid=False,
                      all=False):
    #define NPY_FPE_DIVIDEBYZERO  1
    #define NPY_FPE_OVERFLOW      2
    #define NPY_FPE_UNDERFLOW     4
    #define NPY_FPE_INVALID       8
    err = get_floatstatus()
    ret = (all or divbyzero) and (err & 1) != 0
    ret |= (all or overflow) and (err & 2) != 0
    ret |= (all or underflow) and (err & 4) != 0
    ret |= (all or invalid) and (err & 8) != 0
    return ret

class _Test_Utility:
    # submodule of the desired SIMD extension, e.g. targets["AVX512F"]
    npyv = None
    # the current data type suffix e.g. 's8'
    sfx  = None
    # target name can be 'baseline' or one or more of CPU features
    target_name = None

    def __getattr__(self, attr):
        """
        To call NPV intrinsics without the attribute 'npyv' and
        auto suffixing intrinsics according to class attribute 'sfx'
        """
        return getattr(self.npyv, attr + "_" + self.sfx)

    def _x2(self, intrin_name):
        return getattr(self.npyv, f"{intrin_name}_{self.sfx}x2")

    def _data(self, start=None, count=None, reverse=False):
        """
        Create list of consecutive numbers according to number of vector's lanes.
        """
        if start is None:
            start = 1
        if count is None:
            count = self.nlanes
        rng = range(start, start + count)
        if reverse:
            rng = reversed(rng)
        if self._is_fp():
            return [x / 1.0 for x in rng]
        return list(rng)

    def _is_unsigned(self):
        return self.sfx[0] == 'u'

    def _is_signed(self):
        return self.sfx[0] == 's'

    def _is_fp(self):
        return self.sfx[0] == 'f'

    def _scalar_size(self):
        return int(self.sfx[1:])

    def _int_clip(self, seq):
        if self._is_fp():
            return seq
        max_int = self._int_max()
        min_int = self._int_min()
        return [min(max(v, min_int), max_int) for v in seq]

    def _int_max(self):
        if self._is_fp():
            return None
        max_u = self._to_unsigned(self.setall(-1))[0]
        if self._is_signed():
            return max_u // 2
        return max_u

    def _int_min(self):
        if self._is_fp():
            return None
        if self._is_unsigned():
            return 0
        return -(self._int_max() + 1)

    def _true_mask(self):
        max_unsig = getattr(self.npyv, "setall_u" + self.sfx[1:])(-1)
        return max_unsig[0]

    def _to_unsigned(self, vector):
        if isinstance(vector, (list, tuple)):
            return getattr(self.npyv, "load_u" + self.sfx[1:])(vector)
        else:
            sfx = vector.__name__.replace("npyv_", "")
            if sfx[0] == "b":
                cvt_intrin = "cvt_u{0}_b{0}"
            else:
                cvt_intrin = "reinterpret_u{0}_{1}"
            return getattr(self.npyv, cvt_intrin.format(sfx[1:], sfx))(vector)

    def _pinfinity(self):
        return float("inf")

    def _ninfinity(self):
        return -float("inf")

    def _nan(self):
        return float("nan")

    def _cpu_features(self):
        target = self.target_name
        if target == "baseline":
            target = __cpu_baseline__
        else:
            target = target.split('__') # multi-target separator
        return ' '.join(target)

class _SIMD_BOOL(_Test_Utility):
    """
    To test all boolean vector types at once
    """
    def _nlanes(self):
        return getattr(self.npyv, "nlanes_u" + self.sfx[1:])

    def _data(self, start=None, count=None, reverse=False):
        true_mask = self._true_mask()
        rng = range(self._nlanes())
        if reverse:
            rng = reversed(rng)
        return [true_mask if x % 2 else 0 for x in rng]

    def _load_b(self, data):
        len_str = self.sfx[1:]
        load = getattr(self.npyv, "load_u" + len_str)
        cvt = getattr(self.npyv, f"cvt_b{len_str}_u{len_str}")
        return cvt(load(data))

    def test_operators_logical(self):
        """
        Logical operations for boolean types.
        Test intrinsics:
            npyv_xor_##SFX, npyv_and_##SFX, npyv_or_##SFX, npyv_not_##SFX,
            npyv_andc_b8, npvy_orc_b8, nvpy_xnor_b8
        """
        data_a = self._data()
        data_b = self._data(reverse=True)
        vdata_a = self._load_b(data_a)
        vdata_b = self._load_b(data_b)

        data_and = [a & b for a, b in zip(data_a, data_b)]
        vand = getattr(self, "and")(vdata_a, vdata_b)
        assert vand == data_and

        data_or = [a | b for a, b in zip(data_a, data_b)]
        vor = getattr(self, "or")(vdata_a, vdata_b)
        assert vor == data_or

        data_xor = [a ^ b for a, b in zip(data_a, data_b)]
        vxor = getattr(self, "xor")(vdata_a, vdata_b)
        assert vxor == data_xor

        vnot = getattr(self, "not")(vdata_a)
        assert vnot == data_b

        # among the boolean types, andc, orc and xnor only support b8
        if self.sfx not in ("b8"):
            return

        data_andc = [(a & ~b) & 0xFF for a, b in zip(data_a, data_b)]
        vandc = getattr(self, "andc")(vdata_a, vdata_b)
        assert data_andc == vandc

        data_orc = [(a | ~b) & 0xFF for a, b in zip(data_a, data_b)]
        vorc = getattr(self, "orc")(vdata_a, vdata_b)
        assert data_orc == vorc

        data_xnor = [~(a ^ b) & 0xFF for a, b in zip(data_a, data_b)]
        vxnor = getattr(self, "xnor")(vdata_a, vdata_b)
        assert data_xnor == vxnor

    def test_tobits(self):
        data2bits = lambda data: sum([int(x != 0) << i for i, x in enumerate(data, 0)])
        for data in (self._data(), self._data(reverse=True)):
            vdata = self._load_b(data)
            data_bits = data2bits(data)
            tobits = self.tobits(vdata)
            bin_tobits = bin(tobits)
            assert bin_tobits == bin(data_bits)

    def test_pack(self):
        """
        Pack multiple vectors into one
        Test intrinsics:
            npyv_pack_b8_b16
            npyv_pack_b8_b32
            npyv_pack_b8_b64
        """
        if self.sfx not in ("b16", "b32", "b64"):
            return
        # create the vectors
        data = self._data()
        rdata = self._data(reverse=True)
        vdata = self._load_b(data)
        vrdata = self._load_b(rdata)
        pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}")
        # for scalar execution, concatenate the elements of the multiple lists
        # into a single list (spack) and then iterate over the elements of
        # the created list applying a mask to capture the first byte of them.
        if self.sfx == "b16":
            spack = [(i & 0xFF) for i in (list(rdata) + list(data))]
            vpack = pack_simd(vrdata, vdata)
        elif self.sfx == "b32":
            spack = [(i & 0xFF) for i in (2*list(rdata) + 2*list(data))]
            vpack = pack_simd(vrdata, vrdata, vdata, vdata)
        elif self.sfx == "b64":
            spack = [(i & 0xFF) for i in (4*list(rdata) + 4*list(data))]
            vpack = pack_simd(vrdata, vrdata, vrdata, vrdata,
                               vdata,  vdata,  vdata,  vdata)
        assert vpack == spack

    @pytest.mark.parametrize("intrin", ["any", "all"])
    @pytest.mark.parametrize("data", (
        [-1, 0],
        [0, -1],
        [-1],
        [0]
    ))
    def test_operators_crosstest(self, intrin, data):
        """
        Test intrinsics:
            npyv_any_##SFX
            npyv_all_##SFX
        """
        data_a = self._load_b(data * self._nlanes())
        func = eval(intrin)
        intrin = getattr(self, intrin)
        desired = func(data_a)
        simd = intrin(data_a)
        assert not not simd == desired

class _SIMD_INT(_Test_Utility):
    """
    To test all integer vector types at once
    """
    def test_operators_shift(self):
        if self.sfx in ("u8", "s8"):
            return

        data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        for count in range(self._scalar_size()):
            # load to cast
            data_shl_a = self.load([a << count for a in data_a])
            # left shift
            shl = self.shl(vdata_a, count)
            assert shl == data_shl_a
            # load to cast
            data_shr_a = self.load([a >> count for a in data_a])
            # right shift
            shr = self.shr(vdata_a, count)
            assert shr == data_shr_a

        # shift by zero or max or out-range immediate constant is not applicable and illogical
        for count in range(1, self._scalar_size()):
            # load to cast
            data_shl_a = self.load([a << count for a in data_a])
            # left shift by an immediate constant
            shli = self.shli(vdata_a, count)
            assert shli == data_shl_a
            # load to cast
            data_shr_a = self.load([a >> count for a in data_a])
            # right shift by an immediate constant
            shri = self.shri(vdata_a, count)
            assert shri == data_shr_a

    def test_arithmetic_subadd_saturated(self):
        if self.sfx in ("u32", "s32", "u64", "s64"):
            return

        data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        data_adds = self._int_clip([a + b for a, b in zip(data_a, data_b)])
        adds = self.adds(vdata_a, vdata_b)
        assert adds == data_adds

        data_subs = self._int_clip([a - b for a, b in zip(data_a, data_b)])
        subs = self.subs(vdata_a, vdata_b)
        assert subs == data_subs

    def test_math_max_min(self):
        data_a = self._data()
        data_b = self._data(self.nlanes)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        data_max = [max(a, b) for a, b in zip(data_a, data_b)]
        simd_max = self.max(vdata_a, vdata_b)
        assert simd_max == data_max

        data_min = [min(a, b) for a, b in zip(data_a, data_b)]
        simd_min = self.min(vdata_a, vdata_b)
        assert simd_min == data_min

    @pytest.mark.parametrize("start", [-100, -10000, 0, 100, 10000])
    def test_reduce_max_min(self, start):
        """
        Test intrinsics:
            npyv_reduce_max_##sfx
            npyv_reduce_min_##sfx
        """
        vdata_a = self.load(self._data(start))
        assert self.reduce_max(vdata_a) == max(vdata_a)
        assert self.reduce_min(vdata_a) == min(vdata_a)


class _SIMD_FP32(_Test_Utility):
    """
    To only test single precision
    """
    def test_conversions(self):
        """
        Round to nearest even integer, assume CPU control register is set to rounding.
        Test intrinsics:
            npyv_round_s32_##SFX
        """
        features = self._cpu_features()
        if not self.npyv.simd_f64 and re.match(r".*(NEON|ASIMD)", features):
            # very costly to emulate nearest even on Armv7
            # instead we round halves to up. e.g. 0.5 -> 1, -0.5 -> -1
            _round = lambda v: int(v + (0.5 if v >= 0 else -0.5))
        else:
            _round = round
        vdata_a = self.load(self._data())
        vdata_a = self.sub(vdata_a, self.setall(0.5))
        data_round = [_round(x) for x in vdata_a]
        vround = self.round_s32(vdata_a)
        assert vround == data_round

class _SIMD_FP64(_Test_Utility):
    """
    To only test double precision
    """
    def test_conversions(self):
        """
        Round to nearest even integer, assume CPU control register is set to rounding.
        Test intrinsics:
            npyv_round_s32_##SFX
        """
        vdata_a = self.load(self._data())
        vdata_a = self.sub(vdata_a, self.setall(0.5))
        vdata_b = self.mul(vdata_a, self.setall(-1.5))
        data_round = [round(x) for x in list(vdata_a) + list(vdata_b)]
        vround = self.round_s32(vdata_a, vdata_b)
        assert vround == data_round

class _SIMD_FP(_Test_Utility):
    """
    To test all float vector types at once
    """
    def test_arithmetic_fused(self):
        vdata_a, vdata_b, vdata_c = [self.load(self._data())]*3
        vdata_cx2 = self.add(vdata_c, vdata_c)
        # multiply and add, a*b + c
        data_fma = self.load([a * b + c for a, b, c in zip(vdata_a, vdata_b, vdata_c)])
        fma = self.muladd(vdata_a, vdata_b, vdata_c)
        assert fma == data_fma
        # multiply and subtract, a*b - c
        fms = self.mulsub(vdata_a, vdata_b, vdata_c)
        data_fms = self.sub(data_fma, vdata_cx2)
        assert fms == data_fms
        # negate multiply and add, -(a*b) + c
        nfma = self.nmuladd(vdata_a, vdata_b, vdata_c)
        data_nfma = self.sub(vdata_cx2, data_fma)
        assert nfma == data_nfma
        # negate multiply and subtract, -(a*b) - c
        nfms = self.nmulsub(vdata_a, vdata_b, vdata_c)
        data_nfms = self.mul(data_fma, self.setall(-1))
        assert nfms == data_nfms
        # multiply, add for odd elements and subtract even elements.
        # (a * b) -+ c
        fmas = list(self.muladdsub(vdata_a, vdata_b, vdata_c))
        assert fmas[0::2] == list(data_fms)[0::2]
        assert fmas[1::2] == list(data_fma)[1::2]

    def test_abs(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())

        abs_cases = ((-0, 0), (ninf, pinf), (pinf, pinf), (nan, nan))
        for case, desired in abs_cases:
            data_abs = [desired]*self.nlanes
            vabs = self.abs(self.setall(case))
            assert vabs == pytest.approx(data_abs, nan_ok=True)

        vabs = self.abs(self.mul(vdata, self.setall(-1)))
        assert vabs == data

    def test_sqrt(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())

        sqrt_cases = ((-0.0, -0.0), (0.0, 0.0), (-1.0, nan), (ninf, nan), (pinf, pinf))
        for case, desired in sqrt_cases:
            data_sqrt = [desired]*self.nlanes
            sqrt  = self.sqrt(self.setall(case))
            assert sqrt == pytest.approx(data_sqrt, nan_ok=True)

        data_sqrt = self.load([math.sqrt(x) for x in data]) # load to truncate precision
        sqrt = self.sqrt(vdata)
        assert sqrt == data_sqrt

    def test_square(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())
        # square
        square_cases = ((nan, nan), (pinf, pinf), (ninf, pinf))
        for case, desired in square_cases:
            data_square = [desired]*self.nlanes
            square  = self.square(self.setall(case))
            assert square == pytest.approx(data_square, nan_ok=True)

        data_square = [x*x for x in data]
        square = self.square(vdata)
        assert square == data_square

    @pytest.mark.parametrize("intrin, func", [("ceil", math.ceil),
    ("trunc", math.trunc), ("floor", math.floor), ("rint", round)])
    def test_rounding(self, intrin, func):
        """
        Test intrinsics:
            npyv_rint_##SFX
            npyv_ceil_##SFX
            npyv_trunc_##SFX
            npyv_floor##SFX
        """
        intrin_name = intrin
        intrin = getattr(self, intrin)
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        # special cases
        round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf))
        for case, desired in round_cases:
            data_round = [desired]*self.nlanes
            _round = intrin(self.setall(case))
            assert _round == pytest.approx(data_round, nan_ok=True)

        for x in range(0, 2**20, 256**2):
            for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15):
                data = self.load([(x+a)*w for a in range(self.nlanes)])
                data_round = [func(x) for x in data]
                _round = intrin(data)
                assert _round == data_round

        # test large numbers
        for i in (
            1.1529215045988576e+18, 4.6116860183954304e+18,
            5.902958103546122e+20, 2.3611832414184488e+21
        ):
            x = self.setall(i)
            y = intrin(x)
            data_round = [func(n) for n in x]
            assert y == data_round

        # signed zero
        if intrin_name == "floor":
            data_szero = (-0.0,)
        else:
            data_szero = (-0.0, -0.25, -0.30, -0.45, -0.5)

        for w in data_szero:
            _round = self._to_unsigned(intrin(self.setall(w)))
            data_round = self._to_unsigned(self.setall(-0.0))
            assert _round == data_round

    @pytest.mark.parametrize("intrin", [
        "max", "maxp", "maxn", "min", "minp", "minn"
    ])
    def test_max_min(self, intrin):
        """
        Test intrinsics:
            npyv_max_##sfx
            npyv_maxp_##sfx
            npyv_maxn_##sfx
            npyv_min_##sfx
            npyv_minp_##sfx
            npyv_minn_##sfx
            npyv_reduce_max_##sfx
            npyv_reduce_maxp_##sfx
            npyv_reduce_maxn_##sfx
            npyv_reduce_min_##sfx
            npyv_reduce_minp_##sfx
            npyv_reduce_minn_##sfx
        """
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        chk_nan = {"xp": 1, "np": 1, "nn": 2, "xn": 2}.get(intrin[-2:], 0)
        func = eval(intrin[:3])
        reduce_intrin = getattr(self, "reduce_" + intrin)
        intrin = getattr(self, intrin)
        hf_nlanes = self.nlanes//2

        cases = (
            ([0.0, -0.0], [-0.0, 0.0]),
            ([10, -10],  [10, -10]),
            ([pinf, 10], [10, ninf]),
            ([10, pinf], [ninf, 10]),
            ([10, -10], [10, -10]),
            ([-10, 10], [-10, 10])
        )
        for op1, op2 in cases:
            vdata_a = self.load(op1*hf_nlanes)
            vdata_b = self.load(op2*hf_nlanes)
            data = func(vdata_a, vdata_b)
            simd = intrin(vdata_a, vdata_b)
            assert simd == data
            data = func(vdata_a)
            simd = reduce_intrin(vdata_a)
            assert simd == data

        if not chk_nan:
            return
        if chk_nan == 1:
            test_nan = lambda a, b: (
                b if math.isnan(a) else a if math.isnan(b) else b
            )
        else:
            test_nan = lambda a, b: (
                nan if math.isnan(a) or math.isnan(b) else b
            )
        cases = (
            (nan, 10),
            (10, nan),
            (nan, pinf),
            (pinf, nan),
            (nan, nan)
        )
        for op1, op2 in cases:
            vdata_ab = self.load([op1, op2]*hf_nlanes)
            data = test_nan(op1, op2)
            simd = reduce_intrin(vdata_ab)
            assert simd == pytest.approx(data, nan_ok=True)
            vdata_a = self.setall(op1)
            vdata_b = self.setall(op2)
            data = [data] * self.nlanes
            simd = intrin(vdata_a, vdata_b)
            assert simd == pytest.approx(data, nan_ok=True)

    def test_reciprocal(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())

        recip_cases = ((nan, nan), (pinf, 0.0), (ninf, -0.0), (0.0, pinf), (-0.0, ninf))
        for case, desired in recip_cases:
            data_recip = [desired]*self.nlanes
            recip = self.recip(self.setall(case))
            assert recip == pytest.approx(data_recip, nan_ok=True)

        data_recip = self.load([1/x for x in data]) # load to truncate precision
        recip = self.recip(vdata)
        assert recip == data_recip

    def test_special_cases(self):
        """
        Compare Not NaN. Test intrinsics:
            npyv_notnan_##SFX
        """
        nnan = self.notnan(self.setall(self._nan()))
        assert nnan == [0]*self.nlanes

    @pytest.mark.parametrize("intrin_name", [
        "rint", "trunc", "ceil", "floor"
    ])
    def test_unary_invalid_fpexception(self, intrin_name):
        intrin = getattr(self, intrin_name)
        for d in [float("nan"), float("inf"), -float("inf")]:
            v = self.setall(d)
            clear_floatstatus()
            intrin(v)
            assert check_floatstatus(invalid=True) == False

    @pytest.mark.parametrize('py_comp,np_comp', [
        (operator.lt, "cmplt"),
        (operator.le, "cmple"),
        (operator.gt, "cmpgt"),
        (operator.ge, "cmpge"),
        (operator.eq, "cmpeq"),
        (operator.ne, "cmpneq")
    ])
    def test_comparison_with_nan(self, py_comp, np_comp):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        mask_true = self._true_mask()

        def to_bool(vector):
            return [lane == mask_true for lane in vector]

        intrin = getattr(self, np_comp)
        cmp_cases = ((0, nan), (nan, 0), (nan, nan), (pinf, nan),
                     (ninf, nan), (-0.0, +0.0))
        for case_operand1, case_operand2 in cmp_cases:
            data_a = [case_operand1]*self.nlanes
            data_b = [case_operand2]*self.nlanes
            vdata_a = self.setall(case_operand1)
            vdata_b = self.setall(case_operand2)
            vcmp = to_bool(intrin(vdata_a, vdata_b))
            data_cmp = [py_comp(a, b) for a, b in zip(data_a, data_b)]
            assert vcmp == data_cmp

    @pytest.mark.parametrize("intrin", ["any", "all"])
    @pytest.mark.parametrize("data", (
        [float("nan"), 0],
        [0, float("nan")],
        [float("nan"), 1],
        [1, float("nan")],
        [float("nan"), float("nan")],
        [0.0, -0.0],
        [-0.0, 0.0],
        [1.0, -0.0]
    ))
    def test_operators_crosstest(self, intrin, data):
        """
        Test intrinsics:
            npyv_any_##SFX
            npyv_all_##SFX
        """
        data_a = self.load(data * self.nlanes)
        func = eval(intrin)
        intrin = getattr(self, intrin)
        desired = func(data_a)
        simd = intrin(data_a)
        assert not not simd == desired

class _SIMD_ALL(_Test_Utility):
    """
    To test all vector types at once
    """
    def test_memory_load(self):
        data = self._data()
        # unaligned load
        load_data = self.load(data)
        assert load_data == data
        # aligned load
        loada_data = self.loada(data)
        assert loada_data == data
        # stream load
        loads_data = self.loads(data)
        assert loads_data == data
        # load lower part
        loadl = self.loadl(data)
        loadl_half = list(loadl)[:self.nlanes//2]
        data_half = data[:self.nlanes//2]
        assert loadl_half == data_half
        assert loadl != data # detect overflow

    def test_memory_store(self):
        data = self._data()
        vdata = self.load(data)
        # unaligned store
        store = [0] * self.nlanes
        self.store(store, vdata)
        assert store == data
        # aligned store
        store_a = [0] * self.nlanes
        self.storea(store_a, vdata)
        assert store_a == data
        # stream store
        store_s = [0] * self.nlanes
        self.stores(store_s, vdata)
        assert store_s == data
        # store lower part
        store_l = [0] * self.nlanes
        self.storel(store_l, vdata)
        assert store_l[:self.nlanes//2] == data[:self.nlanes//2]
        assert store_l != vdata # detect overflow
        # store higher part
        store_h = [0] * self.nlanes
        self.storeh(store_h, vdata)
        assert store_h[:self.nlanes//2] == data[self.nlanes//2:]
        assert store_h != vdata  # detect overflow

    @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
        ("self.load_tillz, self.load_till", (32, 64), 1, [0xffff]),
        ("self.load2_tillz, self.load2_till", (32, 64), 2, [0xffff, 0x7fff]),
    ])
    def test_memory_partial_load(self, intrin, elsizes, scale, fill):
        if self._scalar_size() not in elsizes:
            return
        npyv_load_tillz, npyv_load_till = eval(intrin)
        data = self._data()
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4] # test out of range
        for n in lanes:
            load_till = npyv_load_till(data, n, *fill)
            load_tillz = npyv_load_tillz(data, n)
            n *= scale
            data_till = data[:n] + fill * ((self.nlanes-n) // scale)
            assert load_till == data_till
            data_tillz = data[:n] + [0] * (self.nlanes-n)
            assert load_tillz == data_tillz

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.store_till", (32, 64), 1),
        ("self.store2_till", (32, 64), 2),
    ])
    def test_memory_partial_store(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_store_till = eval(intrin)
        data = self._data()
        data_rev = self._data(reverse=True)
        vdata = self.load(data)
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4]
        for n in lanes:
            data_till = data_rev.copy()
            data_till[:n*scale] = data[:n*scale]
            store_till = self._data(reverse=True)
            npyv_store_till(store_till, n, vdata)
            assert store_till == data_till

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.loadn", (32, 64), 1),
        ("self.loadn2", (32, 64), 2),
    ])
    def test_memory_noncont_load(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_loadn = eval(intrin)
        for stride in range(-64, 64):
            if stride < 0:
                data = self._data(stride, -stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
                ))
            elif stride == 0:
                data = self._data()
                data_stride = data[0:scale] * (self.nlanes//scale)
            else:
                data = self._data(count=stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[i::stride] for i in range(scale)]))
                )
            data_stride = self.load(data_stride)  # cast unsigned
            loadn = npyv_loadn(data, stride)
            assert loadn == data_stride

    @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
        ("self.loadn_tillz, self.loadn_till", (32, 64), 1, [0xffff]),
        ("self.loadn2_tillz, self.loadn2_till", (32, 64), 2, [0xffff, 0x7fff]),
    ])
    def test_memory_noncont_partial_load(self, intrin, elsizes, scale, fill):
        if self._scalar_size() not in elsizes:
            return
        npyv_loadn_tillz, npyv_loadn_till = eval(intrin)
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4]
        for stride in range(-64, 64):
            if stride < 0:
                data = self._data(stride, -stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
                ))
            elif stride == 0:
                data = self._data()
                data_stride = data[0:scale] * (self.nlanes//scale)
            else:
                data = self._data(count=stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[i::stride] for i in range(scale)])
                ))
            data_stride = list(self.load(data_stride))  # cast unsigned
            for n in lanes:
                nscale = n * scale
                llanes = self.nlanes - nscale
                data_stride_till = (
                    data_stride[:nscale] + fill * (llanes//scale)
                )
                loadn_till = npyv_loadn_till(data, stride, n, *fill)
                assert loadn_till == data_stride_till
                data_stride_tillz = data_stride[:nscale] + [0] * llanes
                loadn_tillz = npyv_loadn_tillz(data, stride, n)
                assert loadn_tillz == data_stride_tillz

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.storen", (32, 64), 1),
        ("self.storen2", (32, 64), 2),
    ])
    def test_memory_noncont_store(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_storen = eval(intrin)
        data = self._data()
        vdata = self.load(data)
        hlanes = self.nlanes // scale
        for stride in range(1, 64):
            data_storen = [0xff] * stride * self.nlanes
            for s in range(0, hlanes*stride, stride):
                i = (s//stride)*scale
                data_storen[s:s+scale] = data[i:i+scale]
            storen = [0xff] * stride * self.nlanes
            storen += [0x7f]*64
            npyv_storen(storen, stride, vdata)
            assert storen[:-64] == data_storen
            assert storen[-64:] == [0x7f]*64  # detect overflow

        for stride in range(-64, 0):
            data_storen = [0xff] * -stride * self.nlanes
            for s in range(0, hlanes*stride, stride):
                i = (s//stride)*scale
                data_storen[s-scale:s or None] = data[i:i+scale]
            storen = [0x7f]*64
            storen += [0xff] * -stride * self.nlanes
            npyv_storen(storen, stride, vdata)
            assert storen[64:] == data_storen
            assert storen[:64] == [0x7f]*64  # detect overflow
        # stride 0
        data_storen = [0x7f] * self.nlanes
        storen = data_storen.copy()
        data_storen[0:scale] = data[-scale:]
        npyv_storen(storen, 0, vdata)
        assert storen == data_storen

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.storen_till", (32, 64), 1),
        ("self.storen2_till", (32, 64), 2),
    ])
    def test_memory_noncont_partial_store(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_storen_till = eval(intrin)
        data = self._data()
        vdata = self.load(data)
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4]
        hlanes = self.nlanes // scale
        for stride in range(1, 64):
            for n in lanes:
                data_till = [0xff] * stride * self.nlanes
                tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
                for s in range(0, hlanes*stride, stride)[:n]:
                    i = (s//stride)*scale
                    data_till[s:s+scale] = tdata[i:i+scale]
                storen_till = [0xff] * stride * self.nlanes
                storen_till += [0x7f]*64
                npyv_storen_till(storen_till, stride, n, vdata)
                assert storen_till[:-64] == data_till
                assert storen_till[-64:] == [0x7f]*64  # detect overflow

        for stride in range(-64, 0):
            for n in lanes:
                data_till = [0xff] * -stride * self.nlanes
                tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
                for s in range(0, hlanes*stride, stride)[:n]:
                    i = (s//stride)*scale
                    data_till[s-scale:s or None] = tdata[i:i+scale]
                storen_till = [0x7f]*64
                storen_till += [0xff] * -stride * self.nlanes
                npyv_storen_till(storen_till, stride, n, vdata)
                assert storen_till[64:] == data_till
                assert storen_till[:64] == [0x7f]*64  # detect overflow

        # stride 0
        for n in lanes:
            data_till = [0x7f] * self.nlanes
            storen_till = data_till.copy()
            data_till[0:scale] = data[:n*scale][-scale:]
            npyv_storen_till(storen_till, 0, n, vdata)
            assert storen_till == data_till

    @pytest.mark.parametrize("intrin, table_size, elsize", [
        ("self.lut32", 32, 32),
        ("self.lut16", 16, 64)
    ])
    def test_lut(self, intrin, table_size, elsize):
        """
        Test lookup table intrinsics:
            npyv_lut32_##sfx
            npyv_lut16_##sfx
        """
        if elsize != self._scalar_size():
            return
        intrin = eval(intrin)
        idx_itrin = getattr(self.npyv, f"setall_u{elsize}")
        table = range(0, table_size)
        for i in table:
            broadi = self.setall(i)
            idx = idx_itrin(i)
            lut = intrin(table, idx)
            assert lut == broadi

    def test_misc(self):
        broadcast_zero = self.zero()
        assert broadcast_zero == [0] * self.nlanes
        for i in range(1, 10):
            broadcasti = self.setall(i)
            assert broadcasti == [i] * self.nlanes

        data_a, data_b = self._data(), self._data(reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        # py level of npyv_set_* don't support ignoring the extra specified lanes or
        # fill non-specified lanes with zero.
        vset = self.set(*data_a)
        assert vset == data_a
        # py level of npyv_setf_* don't support ignoring the extra specified lanes or
        # fill non-specified lanes with the specified scalar.
        vsetf = self.setf(10, *data_a)
        assert vsetf == data_a

        # We're testing the sanity of _simd's type-vector,
        # reinterpret* intrinsics itself are tested via compiler
        # during the build of _simd module
        sfxes = ["u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64"]
        if self.npyv.simd_f64:
            sfxes.append("f64")
        if self.npyv.simd_f32:
            sfxes.append("f32")
        for sfx in sfxes:
            vec_name = getattr(self, "reinterpret_" + sfx)(vdata_a).__name__
            assert vec_name == "npyv_" + sfx

        # select & mask operations
        select_a = self.select(self.cmpeq(self.zero(), self.zero()), vdata_a, vdata_b)
        assert select_a == data_a
        select_b = self.select(self.cmpneq(self.zero(), self.zero()), vdata_a, vdata_b)
        assert select_b == data_b

        # test extract elements
        assert self.extract0(vdata_b) == vdata_b[0]

        # cleanup intrinsic is only used with AVX for
        # zeroing registers to avoid the AVX-SSE transition penalty,
        # so nothing to test here
        self.npyv.cleanup()

    def test_reorder(self):
        data_a, data_b  = self._data(), self._data(reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)
        # lower half part
        data_a_lo = data_a[:self.nlanes//2]
        data_b_lo = data_b[:self.nlanes//2]
        # higher half part
        data_a_hi = data_a[self.nlanes//2:]
        data_b_hi = data_b[self.nlanes//2:]
        # combine two lower parts
        combinel = self.combinel(vdata_a, vdata_b)
        assert combinel == data_a_lo + data_b_lo
        # combine two higher parts
        combineh = self.combineh(vdata_a, vdata_b)
        assert combineh == data_a_hi + data_b_hi
        # combine x2
        combine = self.combine(vdata_a, vdata_b)
        assert combine == (data_a_lo + data_b_lo, data_a_hi + data_b_hi)

        # zip(interleave)
        data_zipl = self.load([
            v for p in zip(data_a_lo, data_b_lo) for v in p
        ])
        data_ziph = self.load([
            v for p in zip(data_a_hi, data_b_hi) for v in p
        ])
        vzip = self.zip(vdata_a, vdata_b)
        assert vzip == (data_zipl, data_ziph)
        vzip = [0]*self.nlanes*2
        self._x2("store")(vzip, (vdata_a, vdata_b))
        assert vzip == list(data_zipl) + list(data_ziph)

        # unzip(deinterleave)
        unzip = self.unzip(data_zipl, data_ziph)
        assert unzip == (data_a, data_b)
        unzip = self._x2("load")(list(data_zipl) + list(data_ziph))
        assert unzip == (data_a, data_b)

    def test_reorder_rev64(self):
        # Reverse elements of each 64-bit lane
        ssize = self._scalar_size()
        if ssize == 64:
            return
        data_rev64 = [
            y for x in range(0, self.nlanes, 64//ssize)
              for y in reversed(range(x, x + 64//ssize))
        ]
        rev64 = self.rev64(self.load(range(self.nlanes)))
        assert rev64 == data_rev64

    def test_reorder_permi128(self):
        """
        Test permuting elements for each 128-bit lane.
        npyv_permi128_##sfx
        """
        ssize = self._scalar_size()
        if ssize < 32:
            return
        data = self.load(self._data())
        permn = 128//ssize
        permd = permn-1
        nlane128 = self.nlanes//permn
        shfl = [0, 1] if ssize == 64 else [0, 2, 4, 6]
        for i in range(permn):
            indices = [(i >> shf) & permd for shf in shfl]
            vperm = self.permi128(data, *indices)
            data_vperm = [
                data[j + (e & -permn)]
                for e, j in enumerate(indices*nlane128)
            ]
            assert vperm == data_vperm

    @pytest.mark.parametrize('func, intrin', [
        (operator.lt, "cmplt"),
        (operator.le, "cmple"),
        (operator.gt, "cmpgt"),
        (operator.ge, "cmpge"),
        (operator.eq, "cmpeq")
    ])
    def test_operators_comparison(self, func, intrin):
        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)
        intrin = getattr(self, intrin)

        mask_true = self._true_mask()
        def to_bool(vector):
            return [lane == mask_true for lane in vector]

        data_cmp = [func(a, b) for a, b in zip(data_a, data_b)]
        cmp = to_bool(intrin(vdata_a, vdata_b))
        assert cmp == data_cmp

    def test_operators_logical(self):
        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        if self._is_fp():
            data_cast_a = self._to_unsigned(vdata_a)
            data_cast_b = self._to_unsigned(vdata_b)
            cast, cast_data = self._to_unsigned, self._to_unsigned
        else:
            data_cast_a, data_cast_b = data_a, data_b
            cast, cast_data = lambda a: a, self.load

        data_xor = cast_data([a ^ b for a, b in zip(data_cast_a, data_cast_b)])
        vxor = cast(self.xor(vdata_a, vdata_b))
        assert vxor == data_xor

        data_or  = cast_data([a | b for a, b in zip(data_cast_a, data_cast_b)])
        vor  = cast(getattr(self, "or")(vdata_a, vdata_b))
        assert vor == data_or

        data_and = cast_data([a & b for a, b in zip(data_cast_a, data_cast_b)])
        vand = cast(getattr(self, "and")(vdata_a, vdata_b))
        assert vand == data_and

        data_not = cast_data([~a for a in data_cast_a])
        vnot = cast(getattr(self, "not")(vdata_a))
        assert vnot == data_not

        if self.sfx not in ("u8"):
            return
        data_andc = [a & ~b for a, b in zip(data_cast_a, data_cast_b)]
        vandc = cast(getattr(self, "andc")(vdata_a, vdata_b))
        assert vandc == data_andc

    @pytest.mark.parametrize("intrin", ["any", "all"])
    @pytest.mark.parametrize("data", (
        [1, 2, 3, 4],
        [-1, -2, -3, -4],
        [0, 1, 2, 3, 4],
        [0x7f, 0x7fff, 0x7fffffff, 0x7fffffffffffffff],
        [0, -1, -2, -3, 4],
        [0],
        [1],
        [-1]
    ))
    def test_operators_crosstest(self, intrin, data):
        """
        Test intrinsics:
            npyv_any_##SFX
            npyv_all_##SFX
        """
        data_a = self.load(data * self.nlanes)
        func = eval(intrin)
        intrin = getattr(self, intrin)
        desired = func(data_a)
        simd = intrin(data_a)
        assert not not simd == desired

    def test_conversion_boolean(self):
        bsfx = "b" + self.sfx[1:]
        to_boolean = getattr(self.npyv, "cvt_%s_%s" % (bsfx, self.sfx))
        from_boolean = getattr(self.npyv, "cvt_%s_%s" % (self.sfx, bsfx))

        false_vb = to_boolean(self.setall(0))
        true_vb  = self.cmpeq(self.setall(0), self.setall(0))
        assert false_vb != true_vb

        false_vsfx = from_boolean(false_vb)
        true_vsfx = from_boolean(true_vb)
        assert false_vsfx != true_vsfx

    def test_conversion_expand(self):
        """
        Test expand intrinsics:
            npyv_expand_u16_u8
            npyv_expand_u32_u16
        """
        if self.sfx not in ("u8", "u16"):
            return
        totype = self.sfx[0]+str(int(self.sfx[1:])*2)
        expand = getattr(self.npyv, f"expand_{totype}_{self.sfx}")
        # close enough from the edge to detect any deviation
        data  = self._data(self._int_max() - self.nlanes)
        vdata = self.load(data)
        edata = expand(vdata)
        # lower half part
        data_lo = data[:self.nlanes//2]
        # higher half part
        data_hi = data[self.nlanes//2:]
        assert edata == (data_lo, data_hi)

    def test_arithmetic_subadd(self):
        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        # non-saturated
        data_add = self.load([a + b for a, b in zip(data_a, data_b)]) # load to cast
        add  = self.add(vdata_a, vdata_b)
        assert add == data_add
        data_sub  = self.load([a - b for a, b in zip(data_a, data_b)])
        sub  = self.sub(vdata_a, vdata_b)
        assert sub == data_sub

    def test_arithmetic_mul(self):
        if self.sfx in ("u64", "s64"):
            return

        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        data_mul = self.load([a * b for a, b in zip(data_a, data_b)])
        mul = self.mul(vdata_a, vdata_b)
        assert mul == data_mul

    def test_arithmetic_div(self):
        if not self._is_fp():
            return

        data_a, data_b = self._data(), self._data(reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        # load to truncate f64 to precision of f32
        data_div = self.load([a / b for a, b in zip(data_a, data_b)])
        div = self.div(vdata_a, vdata_b)
        assert div == data_div

    def test_arithmetic_intdiv(self):
        """
        Test integer division intrinsics:
            npyv_divisor_##sfx
            npyv_divc_##sfx
        """
        if self._is_fp():
            return

        int_min = self._int_min()
        def trunc_div(a, d):
            """
            Divide towards zero works with large integers > 2^53,
            and wrap around overflow similar to what C does.
            """
            if d == -1 and a == int_min:
                return a
            sign_a, sign_d = a < 0, d < 0
            if a == 0 or sign_a == sign_d:
                return a // d
            return (a + sign_d - sign_a) // d + 1

        data = [1, -int_min]  # to test overflow
        data += range(0, 2**8, 2**5)
        data += range(0, 2**8, 2**5-1)
        bsize = self._scalar_size()
        if bsize > 8:
            data += range(2**8, 2**16, 2**13)
            data += range(2**8, 2**16, 2**13-1)
        if bsize > 16:
            data += range(2**16, 2**32, 2**29)
            data += range(2**16, 2**32, 2**29-1)
        if bsize > 32:
            data += range(2**32, 2**64, 2**61)
            data += range(2**32, 2**64, 2**61-1)
        # negate
        data += [-x for x in data]
        for dividend, divisor in itertools.product(data, data):
            divisor = self.setall(divisor)[0]  # cast
            if divisor == 0:
                continue
            dividend = self.load(self._data(dividend))
            data_divc = [trunc_div(a, divisor) for a in dividend]
            divisor_parms = self.divisor(divisor)
            divc = self.divc(dividend, divisor_parms)
            assert divc == data_divc

    def test_arithmetic_reduce_sum(self):
        """
        Test reduce sum intrinsics:
            npyv_sum_##sfx
        """
        if self.sfx not in ("u32", "u64", "f32", "f64"):
            return
        # reduce sum
        data = self._data()
        vdata = self.load(data)

        data_sum = sum(data)
        vsum = self.sum(vdata)
        assert vsum == data_sum

    def test_arithmetic_reduce_sumup(self):
        """
        Test extend reduce sum intrinsics:
            npyv_sumup_##sfx
        """
        if self.sfx not in ("u8", "u16"):
            return
        rdata = (0, self.nlanes, self._int_min(), self._int_max()-self.nlanes)
        for r in rdata:
            data = self._data(r)
            vdata = self.load(data)
            data_sum = sum(data)
            vsum = self.sumup(vdata)
            assert vsum == data_sum

    def test_mask_conditional(self):
        """
        Conditional addition and subtraction for all supported data types.
        Test intrinsics:
            npyv_ifadd_##SFX, npyv_ifsub_##SFX
        """
        vdata_a = self.load(self._data())
        vdata_b = self.load(self._data(reverse=True))
        true_mask  = self.cmpeq(self.zero(), self.zero())
        false_mask = self.cmpneq(self.zero(), self.zero())

        data_sub = self.sub(vdata_b, vdata_a)
        ifsub = self.ifsub(true_mask, vdata_b, vdata_a, vdata_b)
        assert ifsub == data_sub
        ifsub = self.ifsub(false_mask, vdata_a, vdata_b, vdata_b)
        assert ifsub == vdata_b

        data_add = self.add(vdata_b, vdata_a)
        ifadd = self.ifadd(true_mask, vdata_b, vdata_a, vdata_b)
        assert ifadd == data_add
        ifadd = self.ifadd(false_mask, vdata_a, vdata_b, vdata_b)
        assert ifadd == vdata_b

        if not self._is_fp():
            return
        data_div = self.div(vdata_b, vdata_a)
        ifdiv = self.ifdiv(true_mask, vdata_b, vdata_a, vdata_b)
        assert ifdiv == data_div
        ifdivz = self.ifdivz(true_mask, vdata_b, vdata_a)
        assert ifdivz == data_div
        ifdiv = self.ifdiv(false_mask, vdata_a, vdata_b, vdata_b)
        assert ifdiv == vdata_b
        ifdivz = self.ifdivz(false_mask, vdata_a, vdata_b)
        assert ifdivz == self.zero()

bool_sfx = ("b8", "b16", "b32", "b64")
int_sfx = ("u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64")
fp_sfx  = ("f32", "f64")
all_sfx = int_sfx + fp_sfx
tests_registry = {
    bool_sfx: _SIMD_BOOL,
    int_sfx : _SIMD_INT,
    fp_sfx  : _SIMD_FP,
    ("f32",): _SIMD_FP32,
    ("f64",): _SIMD_FP64,
    all_sfx : _SIMD_ALL
}
for target_name, npyv in targets.items():
    simd_width = npyv.simd if npyv else ''
    pretty_name = target_name.split('__') # multi-target separator
    if len(pretty_name) > 1:
        # multi-target
        pretty_name = f"({' '.join(pretty_name)})"
    else:
        pretty_name = pretty_name[0]

    skip = ""
    skip_sfx = dict()
    if not npyv:
        skip = f"target '{pretty_name}' isn't supported by current machine"
    elif not npyv.simd:
        skip = f"target '{pretty_name}' isn't supported by NPYV"
    else:
        if not npyv.simd_f32:
            skip_sfx["f32"] = f"target '{pretty_name}' "\
                               "doesn't support single-precision"
        if not npyv.simd_f64:
            skip_sfx["f64"] = f"target '{pretty_name}' doesn't"\
                               "support double-precision"

    for sfxes, cls in tests_registry.items():
        for sfx in sfxes:
            skip_m = skip_sfx.get(sfx, skip)
            inhr = (cls,)
            attr = dict(npyv=targets[target_name], sfx=sfx, target_name=target_name)
            tcls = type(f"Test{cls.__name__}_{simd_width}_{target_name}_{sfx}", inhr, attr)
            if skip_m:
                pytest.mark.skip(reason=skip_m)(tcls)
            globals()[tcls.__name__] = tcls

Youez - 2016 - github.com/yon3zu
LinuXploit