Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.17.78.184
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_overrides.py
import inspect
import sys
import os
import tempfile
from io import StringIO
from unittest import mock

import numpy as np
from numpy.testing import (
    assert_, assert_equal, assert_raises, assert_raises_regex)
from numpy.core.overrides import (
    _get_implementing_args, array_function_dispatch,
    verify_matching_signatures)
from numpy.compat import pickle
import pytest


def _return_not_implemented(self, *args, **kwargs):
    return NotImplemented


# need to define this at the top level to test pickling
@array_function_dispatch(lambda array: (array,))
def dispatched_one_arg(array):
    """Docstring."""
    return 'original'


@array_function_dispatch(lambda array1, array2: (array1, array2))
def dispatched_two_arg(array1, array2):
    """Docstring."""
    return 'original'


class TestGetImplementingArgs:

    def test_ndarray(self):
        array = np.array(1)

        args = _get_implementing_args([array])
        assert_equal(list(args), [array])

        args = _get_implementing_args([array, array])
        assert_equal(list(args), [array])

        args = _get_implementing_args([array, 1])
        assert_equal(list(args), [array])

        args = _get_implementing_args([1, array])
        assert_equal(list(args), [array])

    def test_ndarray_subclasses(self):

        class OverrideSub(np.ndarray):
            __array_function__ = _return_not_implemented

        class NoOverrideSub(np.ndarray):
            pass

        array = np.array(1).view(np.ndarray)
        override_sub = np.array(1).view(OverrideSub)
        no_override_sub = np.array(1).view(NoOverrideSub)

        args = _get_implementing_args([array, override_sub])
        assert_equal(list(args), [override_sub, array])

        args = _get_implementing_args([array, no_override_sub])
        assert_equal(list(args), [no_override_sub, array])

        args = _get_implementing_args(
            [override_sub, no_override_sub])
        assert_equal(list(args), [override_sub, no_override_sub])

    def test_ndarray_and_duck_array(self):

        class Other:
            __array_function__ = _return_not_implemented

        array = np.array(1)
        other = Other()

        args = _get_implementing_args([other, array])
        assert_equal(list(args), [other, array])

        args = _get_implementing_args([array, other])
        assert_equal(list(args), [array, other])

    def test_ndarray_subclass_and_duck_array(self):

        class OverrideSub(np.ndarray):
            __array_function__ = _return_not_implemented

        class Other:
            __array_function__ = _return_not_implemented

        array = np.array(1)
        subarray = np.array(1).view(OverrideSub)
        other = Other()

        assert_equal(_get_implementing_args([array, subarray, other]),
                     [subarray, array, other])
        assert_equal(_get_implementing_args([array, other, subarray]),
                     [subarray, array, other])

    def test_many_duck_arrays(self):

        class A:
            __array_function__ = _return_not_implemented

        class B(A):
            __array_function__ = _return_not_implemented

        class C(A):
            __array_function__ = _return_not_implemented

        class D:
            __array_function__ = _return_not_implemented

        a = A()
        b = B()
        c = C()
        d = D()

        assert_equal(_get_implementing_args([1]), [])
        assert_equal(_get_implementing_args([a]), [a])
        assert_equal(_get_implementing_args([a, 1]), [a])
        assert_equal(_get_implementing_args([a, a, a]), [a])
        assert_equal(_get_implementing_args([a, d, a]), [a, d])
        assert_equal(_get_implementing_args([a, b]), [b, a])
        assert_equal(_get_implementing_args([b, a]), [b, a])
        assert_equal(_get_implementing_args([a, b, c]), [b, c, a])
        assert_equal(_get_implementing_args([a, c, b]), [c, b, a])

    def test_too_many_duck_arrays(self):
        namespace = dict(__array_function__=_return_not_implemented)
        types = [type('A' + str(i), (object,), namespace) for i in range(33)]
        relevant_args = [t() for t in types]

        actual = _get_implementing_args(relevant_args[:32])
        assert_equal(actual, relevant_args[:32])

        with assert_raises_regex(TypeError, 'distinct argument types'):
            _get_implementing_args(relevant_args)


class TestNDArrayArrayFunction:

    def test_method(self):

        class Other:
            __array_function__ = _return_not_implemented

        class NoOverrideSub(np.ndarray):
            pass

        class OverrideSub(np.ndarray):
            __array_function__ = _return_not_implemented

        array = np.array([1])
        other = Other()
        no_override_sub = array.view(NoOverrideSub)
        override_sub = array.view(OverrideSub)

        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray,),
                                          args=(array, 1.), kwargs={})
        assert_equal(result, 'original')

        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray, Other),
                                          args=(array, other), kwargs={})
        assert_(result is NotImplemented)

        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray, NoOverrideSub),
                                          args=(array, no_override_sub),
                                          kwargs={})
        assert_equal(result, 'original')

        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray, OverrideSub),
                                          args=(array, override_sub),
                                          kwargs={})
        assert_equal(result, 'original')

        with assert_raises_regex(TypeError, 'no implementation found'):
            np.concatenate((array, other))

        expected = np.concatenate((array, array))
        result = np.concatenate((array, no_override_sub))
        assert_equal(result, expected.view(NoOverrideSub))
        result = np.concatenate((array, override_sub))
        assert_equal(result, expected.view(OverrideSub))

    def test_no_wrapper(self):
        # This shouldn't happen unless a user intentionally calls
        # __array_function__ with invalid arguments, but check that we raise
        # an appropriate error all the same.
        array = np.array(1)
        func = lambda x: x
        with assert_raises_regex(AttributeError, '_implementation'):
            array.__array_function__(func=func, types=(np.ndarray,),
                                     args=(array,), kwargs={})


class TestArrayFunctionDispatch:

    def test_pickle(self):
        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
            roundtripped = pickle.loads(
                    pickle.dumps(dispatched_one_arg, protocol=proto))
            assert_(roundtripped is dispatched_one_arg)

    def test_name_and_docstring(self):
        assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg')
        if sys.flags.optimize < 2:
            assert_equal(dispatched_one_arg.__doc__, 'Docstring.')

    def test_interface(self):

        class MyArray:
            def __array_function__(self, func, types, args, kwargs):
                return (self, func, types, args, kwargs)

        original = MyArray()
        (obj, func, types, args, kwargs) = dispatched_one_arg(original)
        assert_(obj is original)
        assert_(func is dispatched_one_arg)
        assert_equal(set(types), {MyArray})
        # assert_equal uses the overloaded np.iscomplexobj() internally
        assert_(args == (original,))
        assert_equal(kwargs, {})

    def test_not_implemented(self):

        class MyArray:
            def __array_function__(self, func, types, args, kwargs):
                return NotImplemented

        array = MyArray()
        with assert_raises_regex(TypeError, 'no implementation found'):
            dispatched_one_arg(array)

    def test_where_dispatch(self):

        class DuckArray:
            def __array_function__(self, ufunc, method, *inputs, **kwargs):
                return "overridden"

        array = np.array(1)
        duck_array = DuckArray()

        result = np.std(array, where=duck_array)

        assert_equal(result, "overridden")


class TestVerifyMatchingSignatures:

    def test_verify_matching_signatures(self):

        verify_matching_signatures(lambda x: 0, lambda x: 0)
        verify_matching_signatures(lambda x=None: 0, lambda x=None: 0)
        verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)

        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda a: 0, lambda b: 0)
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda x: 0, lambda x=None: 0)
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda x=None: 0, lambda y=None: 0)
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)

    def test_array_function_dispatch(self):

        with assert_raises(RuntimeError):
            @array_function_dispatch(lambda x: (x,))
            def f(y):
                pass

        # should not raise
        @array_function_dispatch(lambda x: (x,), verify=False)
        def f(y):
            pass


def _new_duck_type_and_implements():
    """Create a duck array type and implements functions."""
    HANDLED_FUNCTIONS = {}

    class MyArray:
        def __array_function__(self, func, types, args, kwargs):
            if func not in HANDLED_FUNCTIONS:
                return NotImplemented
            if not all(issubclass(t, MyArray) for t in types):
                return NotImplemented
            return HANDLED_FUNCTIONS[func](*args, **kwargs)

    def implements(numpy_function):
        """Register an __array_function__ implementations."""
        def decorator(func):
            HANDLED_FUNCTIONS[numpy_function] = func
            return func
        return decorator

    return (MyArray, implements)


class TestArrayFunctionImplementation:

    def test_one_arg(self):
        MyArray, implements = _new_duck_type_and_implements()

        @implements(dispatched_one_arg)
        def _(array):
            return 'myarray'

        assert_equal(dispatched_one_arg(1), 'original')
        assert_equal(dispatched_one_arg(MyArray()), 'myarray')

    def test_optional_args(self):
        MyArray, implements = _new_duck_type_and_implements()

        @array_function_dispatch(lambda array, option=None: (array,))
        def func_with_option(array, option='default'):
            return option

        @implements(func_with_option)
        def my_array_func_with_option(array, new_option='myarray'):
            return new_option

        # we don't need to implement every option on __array_function__
        # implementations
        assert_equal(func_with_option(1), 'default')
        assert_equal(func_with_option(1, option='extra'), 'extra')
        assert_equal(func_with_option(MyArray()), 'myarray')
        with assert_raises(TypeError):
            func_with_option(MyArray(), option='extra')

        # but new options on implementations can't be used
        result = my_array_func_with_option(MyArray(), new_option='yes')
        assert_equal(result, 'yes')
        with assert_raises(TypeError):
            func_with_option(MyArray(), new_option='no')

    def test_not_implemented(self):
        MyArray, implements = _new_duck_type_and_implements()

        @array_function_dispatch(lambda array: (array,), module='my')
        def func(array):
            return array

        array = np.array(1)
        assert_(func(array) is array)
        assert_equal(func.__module__, 'my')

        with assert_raises_regex(
                TypeError, "no implementation found for 'my.func'"):
            func(MyArray())

    @pytest.mark.parametrize("name", ["concatenate", "mean", "asarray"])
    def test_signature_error_message_simple(self, name):
        func = getattr(np, name)
        try:
            # all of these functions need an argument:
            func()
        except TypeError as e:
            exc = e

        assert exc.args[0].startswith(f"{name}()")

    def test_signature_error_message(self):
        # The lambda function will be named "<lambda>", but the TypeError
        # should show the name as "func"
        def _dispatcher():
            return ()

        @array_function_dispatch(_dispatcher)
        def func():
            pass

        try:
            func._implementation(bad_arg=3)
        except TypeError as e:
            expected_exception = e

        try:
            func(bad_arg=3)
            raise AssertionError("must fail")
        except TypeError as exc:
            if exc.args[0].startswith("_dispatcher"):
                # We replace the qualname currently, but it used `__name__`
                # (relevant functions have the same name and qualname anyway)
                pytest.skip("Python version is not using __qualname__ for "
                            "TypeError formatting.")

            assert exc.args == expected_exception.args

    @pytest.mark.parametrize("value", [234, "this func is not replaced"])
    def test_dispatcher_error(self, value):
        # If the dispatcher raises an error, we must not attempt to mutate it
        error = TypeError(value)

        def dispatcher():
            raise error

        @array_function_dispatch(dispatcher)
        def func():
            return 3

        try:
            func()
            raise AssertionError("must fail")
        except TypeError as exc:
            assert exc is error  # unmodified exception

    def test_properties(self):
        # Check that str and repr are sensible
        func = dispatched_two_arg
        assert str(func) == str(func._implementation)
        repr_no_id = repr(func).split("at ")[0]
        repr_no_id_impl = repr(func._implementation).split("at ")[0]
        assert repr_no_id == repr_no_id_impl

    @pytest.mark.parametrize("func", [
            lambda x, y: 0,  # no like argument
            lambda like=None: 0,  # not keyword only
            lambda *, like=None, a=3: 0,  # not last (not that it matters)
        ])
    def test_bad_like_sig(self, func):
        # We sanity check the signature, and these should fail.
        with pytest.raises(RuntimeError):
            array_function_dispatch()(func)

    def test_bad_like_passing(self):
        # Cover internal sanity check for passing like as first positional arg
        def func(*, like=None):
            pass

        func_with_like = array_function_dispatch()(func)
        with pytest.raises(TypeError):
            func_with_like()
        with pytest.raises(TypeError):
            func_with_like(like=234)

    def test_too_many_args(self):
        # Mainly a unit-test to increase coverage
        objs = []
        for i in range(40):
            class MyArr:
                def __array_function__(self, *args, **kwargs):
                    return NotImplemented

            objs.append(MyArr())

        def _dispatch(*args):
            return args

        @array_function_dispatch(_dispatch)
        def func(*args):
            pass

        with pytest.raises(TypeError, match="maximum number"):
            func(*objs)



class TestNDArrayMethods:

    def test_repr(self):
        # gh-12162: should still be defined even if __array_function__ doesn't
        # implement np.array_repr()

        class MyArray(np.ndarray):
            def __array_function__(*args, **kwargs):
                return NotImplemented

        array = np.array(1).view(MyArray)
        assert_equal(repr(array), 'MyArray(1)')
        assert_equal(str(array), '1')


class TestNumPyFunctions:

    def test_set_module(self):
        assert_equal(np.sum.__module__, 'numpy')
        assert_equal(np.char.equal.__module__, 'numpy.char')
        assert_equal(np.fft.fft.__module__, 'numpy.fft')
        assert_equal(np.linalg.solve.__module__, 'numpy.linalg')

    def test_inspect_sum(self):
        signature = inspect.signature(np.sum)
        assert_('axis' in signature.parameters)

    def test_override_sum(self):
        MyArray, implements = _new_duck_type_and_implements()

        @implements(np.sum)
        def _(array):
            return 'yes'

        assert_equal(np.sum(MyArray()), 'yes')

    def test_sum_on_mock_array(self):

        # We need a proxy for mocks because __array_function__ is only looked
        # up in the class dict
        class ArrayProxy:
            def __init__(self, value):
                self.value = value
            def __array_function__(self, *args, **kwargs):
                return self.value.__array_function__(*args, **kwargs)
            def __array__(self, *args, **kwargs):
                return self.value.__array__(*args, **kwargs)

        proxy = ArrayProxy(mock.Mock(spec=ArrayProxy))
        proxy.value.__array_function__.return_value = 1
        result = np.sum(proxy)
        assert_equal(result, 1)
        proxy.value.__array_function__.assert_called_once_with(
            np.sum, (ArrayProxy,), (proxy,), {})
        proxy.value.__array__.assert_not_called()

    def test_sum_forwarding_implementation(self):

        class MyArray(np.ndarray):

            def sum(self, axis, out):
                return 'summed'

            def __array_function__(self, func, types, args, kwargs):
                return super().__array_function__(func, types, args, kwargs)

        # note: the internal implementation of np.sum() calls the .sum() method
        array = np.array(1).view(MyArray)
        assert_equal(np.sum(array), 'summed')


class TestArrayLike:
    def setup_method(self):
        class MyArray():
            def __init__(self, function=None):
                self.function = function

            def __array_function__(self, func, types, args, kwargs):
                assert func is getattr(np, func.__name__)
                try:
                    my_func = getattr(self, func.__name__)
                except AttributeError:
                    return NotImplemented
                return my_func(*args, **kwargs)

        self.MyArray = MyArray

        class MyNoArrayFunctionArray():
            def __init__(self, function=None):
                self.function = function

        self.MyNoArrayFunctionArray = MyNoArrayFunctionArray

    def add_method(self, name, arr_class, enable_value_error=False):
        def _definition(*args, **kwargs):
            # Check that `like=` isn't propagated downstream
            assert 'like' not in kwargs

            if enable_value_error and 'value_error' in kwargs:
                raise ValueError

            return arr_class(getattr(arr_class, name))
        setattr(arr_class, name, _definition)

    def func_args(*args, **kwargs):
        return args, kwargs

    def test_array_like_not_implemented(self):
        self.add_method('array', self.MyArray)

        ref = self.MyArray.array()

        with assert_raises_regex(TypeError, 'no implementation found'):
            array_like = np.asarray(1, like=ref)

    _array_tests = [
        ('array', *func_args((1,))),
        ('asarray', *func_args((1,))),
        ('asanyarray', *func_args((1,))),
        ('ascontiguousarray', *func_args((2, 3))),
        ('asfortranarray', *func_args((2, 3))),
        ('require', *func_args((np.arange(6).reshape(2, 3),),
                               requirements=['A', 'F'])),
        ('empty', *func_args((1,))),
        ('full', *func_args((1,), 2)),
        ('ones', *func_args((1,))),
        ('zeros', *func_args((1,))),
        ('arange', *func_args(3)),
        ('frombuffer', *func_args(b'\x00' * 8, dtype=int)),
        ('fromiter', *func_args(range(3), dtype=int)),
        ('fromstring', *func_args('1,2', dtype=int, sep=',')),
        ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))),
        ('genfromtxt', *func_args(lambda: StringIO('1,2.1'),
                                  dtype=[('int', 'i8'), ('float', 'f8')],
                                  delimiter=',')),
    ]

    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
    @pytest.mark.parametrize('numpy_ref', [True, False])
    def test_array_like(self, function, args, kwargs, numpy_ref):
        self.add_method('array', self.MyArray)
        self.add_method(function, self.MyArray)
        np_func = getattr(np, function)
        my_func = getattr(self.MyArray, function)

        if numpy_ref is True:
            ref = np.array(1)
        else:
            ref = self.MyArray.array()

        like_args = tuple(a() if callable(a) else a for a in args)
        array_like = np_func(*like_args, **kwargs, like=ref)

        if numpy_ref is True:
            assert type(array_like) is np.ndarray

            np_args = tuple(a() if callable(a) else a for a in args)
            np_arr = np_func(*np_args, **kwargs)

            # Special-case np.empty to ensure values match
            if function == "empty":
                np_arr.fill(1)
                array_like.fill(1)

            assert_equal(array_like, np_arr)
        else:
            assert type(array_like) is self.MyArray
            assert array_like.function is my_func

    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
    @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
    def test_no_array_function_like(self, function, args, kwargs, ref):
        self.add_method('array', self.MyNoArrayFunctionArray)
        self.add_method(function, self.MyNoArrayFunctionArray)
        np_func = getattr(np, function)

        # Instantiate ref if it's the MyNoArrayFunctionArray class
        if ref == "MyNoArrayFunctionArray":
            ref = self.MyNoArrayFunctionArray.array()

        like_args = tuple(a() if callable(a) else a for a in args)

        with assert_raises_regex(TypeError,
                'The `like` argument must be an array-like that implements'):
            np_func(*like_args, **kwargs, like=ref)

    @pytest.mark.parametrize('numpy_ref', [True, False])
    def test_array_like_fromfile(self, numpy_ref):
        self.add_method('array', self.MyArray)
        self.add_method("fromfile", self.MyArray)

        if numpy_ref is True:
            ref = np.array(1)
        else:
            ref = self.MyArray.array()

        data = np.random.random(5)

        with tempfile.TemporaryDirectory() as tmpdir:
            fname = os.path.join(tmpdir, "testfile")
            data.tofile(fname)

            array_like = np.fromfile(fname, like=ref)
            if numpy_ref is True:
                assert type(array_like) is np.ndarray
                np_res = np.fromfile(fname, like=ref)
                assert_equal(np_res, data)
                assert_equal(array_like, np_res)
            else:
                assert type(array_like) is self.MyArray
                assert array_like.function is self.MyArray.fromfile

    def test_exception_handling(self):
        self.add_method('array', self.MyArray, enable_value_error=True)

        ref = self.MyArray.array()

        with assert_raises(TypeError):
            # Raises the error about `value_error` being invalid first
            np.array(1, value_error=True, like=ref)

    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
    def test_like_as_none(self, function, args, kwargs):
        self.add_method('array', self.MyArray)
        self.add_method(function, self.MyArray)
        np_func = getattr(np, function)

        like_args = tuple(a() if callable(a) else a for a in args)
        # required for loadtxt and genfromtxt to init w/o error.
        like_args_exp = tuple(a() if callable(a) else a for a in args)

        array_like = np_func(*like_args, **kwargs, like=None)
        expected = np_func(*like_args_exp, **kwargs)
        # Special-case np.empty to ensure values match
        if function == "empty":
            array_like.fill(1)
            expected.fill(1)
        assert_equal(array_like, expected)


def test_function_like():
    # We provide a `__get__` implementation, make sure it works
    assert type(np.mean) is np.core._multiarray_umath._ArrayFunctionDispatcher 

    class MyClass:
        def __array__(self):
            # valid argument to mean:
            return np.arange(3)

        func1 = staticmethod(np.mean)
        func2 = np.mean
        func3 = classmethod(np.mean)

    m = MyClass()
    assert m.func1([10]) == 10
    assert m.func2() == 1  # mean of the arange
    with pytest.raises(TypeError, match="unsupported operand type"):
        # Tries to operate on the class
        m.func3()

    # Manual binding also works (the above may shortcut):
    bound = np.mean.__get__(m, MyClass)
    assert bound() == 1

    bound = np.mean.__get__(None, MyClass)  # unbound actually
    assert bound([10]) == 10

    bound = np.mean.__get__(MyClass)  # classmethod
    with pytest.raises(TypeError, match="unsupported operand type"):
        bound()


def test_scipy_trapz_support_shim():
    # SciPy 1.10 and earlier "clone" trapz in this way, so we have a
    # support shim in place: https://github.com/scipy/scipy/issues/17811
    # That should be removed eventually.  This test copies what SciPy does.
    # Hopefully removable 1 year after SciPy 1.11; shim added to NumPy 1.25.
    import types
    import functools

    def _copy_func(f):
        # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)
        g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
                            argdefs=f.__defaults__, closure=f.__closure__)
        g = functools.update_wrapper(g, f)
        g.__kwdefaults__ = f.__kwdefaults__
        return g

    trapezoid = _copy_func(np.trapz)

    assert np.trapz([1, 2]) == trapezoid([1, 2])

Youez - 2016 - github.com/yon3zu
LinuXploit