Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.191.189.164
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_einsum.py
import itertools

import pytest

import numpy as np
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_almost_equal,
    assert_raises, suppress_warnings, assert_raises_regex, assert_allclose
    )

# Setup for optimize einsum
chars = 'abcdefghij'
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))


class TestEinsum:
    def test_einsum_errors(self):
        for do_opt in [True, False]:
            # Need enough arguments
            assert_raises(ValueError, np.einsum, optimize=do_opt)
            assert_raises(ValueError, np.einsum, "", optimize=do_opt)

            # subscripts must be a string
            assert_raises(TypeError, np.einsum, 0, 0, optimize=do_opt)

            # out parameter must be an array
            assert_raises(TypeError, np.einsum, "", 0, out='test',
                          optimize=do_opt)

            # order parameter must be a valid order
            assert_raises(ValueError, np.einsum, "", 0, order='W',
                          optimize=do_opt)

            # casting parameter must be a valid casting
            assert_raises(ValueError, np.einsum, "", 0, casting='blah',
                          optimize=do_opt)

            # dtype parameter must be a valid dtype
            assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type',
                          optimize=do_opt)

            # other keyword arguments are rejected
            assert_raises(TypeError, np.einsum, "", 0, bad_arg=0,
                          optimize=do_opt)

            # issue 4528 revealed a segfault with this call
            assert_raises(TypeError, np.einsum, *(None,)*63, optimize=do_opt)

            # number of operands must match count in subscripts string
            assert_raises(ValueError, np.einsum, "", 0, 0, optimize=do_opt)
            assert_raises(ValueError, np.einsum, ",", 0, [0], [0],
                          optimize=do_opt)
            assert_raises(ValueError, np.einsum, ",", [0], optimize=do_opt)

            # can't have more subscripts than dimensions in the operand
            assert_raises(ValueError, np.einsum, "i", 0, optimize=do_opt)
            assert_raises(ValueError, np.einsum, "ij", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, "...i", 0, optimize=do_opt)
            assert_raises(ValueError, np.einsum, "i...j", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, "i...", 0, optimize=do_opt)
            assert_raises(ValueError, np.einsum, "ij...", [0, 0], optimize=do_opt)

            # invalid ellipsis
            assert_raises(ValueError, np.einsum, "i..", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, ".i...", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, "j->..j", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, "j->.j...", [0, 0], optimize=do_opt)

            # invalid subscript character
            assert_raises(ValueError, np.einsum, "i%...", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, "...j$", [0, 0], optimize=do_opt)
            assert_raises(ValueError, np.einsum, "i->&", [0, 0], optimize=do_opt)

            # output subscripts must appear in input
            assert_raises(ValueError, np.einsum, "i->ij", [0, 0], optimize=do_opt)

            # output subscripts may only be specified once
            assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]],
                          optimize=do_opt)

            # dimensions much match when being collapsed
            assert_raises(ValueError, np.einsum, "ii",
                          np.arange(6).reshape(2, 3), optimize=do_opt)
            assert_raises(ValueError, np.einsum, "ii->i",
                          np.arange(6).reshape(2, 3), optimize=do_opt)

            # broadcasting to new dimensions must be enabled explicitly
            assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3),
                          optimize=do_opt)
            assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]],
                          out=np.arange(4).reshape(2, 2), optimize=do_opt)
            with assert_raises_regex(ValueError, "'b'"):
                # gh-11221 - 'c' erroneously appeared in the error message
                a = np.ones((3, 3, 4, 5, 6))
                b = np.ones((3, 4, 5))
                np.einsum('aabcb,abc', a, b)

            # Check order kwarg, asanyarray allows 1d to pass through
            assert_raises(ValueError, np.einsum, "i->i", np.arange(6).reshape(-1, 1),
                          optimize=do_opt, order='d')

    def test_einsum_object_errors(self):
        # Exceptions created by object arithmetic should
        # successfully propogate

        class CustomException(Exception):
            pass

        class DestructoBox:

            def __init__(self, value, destruct):
                self._val = value
                self._destruct = destruct

            def __add__(self, other):
                tmp = self._val + other._val
                if tmp >= self._destruct:
                    raise CustomException
                else:
                    self._val = tmp
                    return self

            def __radd__(self, other):
                if other == 0:
                    return self
                else:
                    return self.__add__(other)

            def __mul__(self, other):
                tmp = self._val * other._val
                if tmp >= self._destruct:
                    raise CustomException
                else:
                    self._val = tmp
                    return self

            def __rmul__(self, other):
                if other == 0:
                    return self
                else:
                    return self.__mul__(other)

        a = np.array([DestructoBox(i, 5) for i in range(1, 10)],
                     dtype='object').reshape(3, 3)

        # raised from unbuffered_loop_nop1_ndim2
        assert_raises(CustomException, np.einsum, "ij->i", a)

        # raised from unbuffered_loop_nop1_ndim3
        b = np.array([DestructoBox(i, 100) for i in range(0, 27)],
                     dtype='object').reshape(3, 3, 3)
        assert_raises(CustomException, np.einsum, "i...k->...", b)

        # raised from unbuffered_loop_nop2_ndim2
        b = np.array([DestructoBox(i, 55) for i in range(1, 4)],
                     dtype='object')
        assert_raises(CustomException, np.einsum, "ij, j", a, b)

        # raised from unbuffered_loop_nop2_ndim3
        assert_raises(CustomException, np.einsum, "ij, jh", a, a)

        # raised from PyArray_EinsteinSum
        assert_raises(CustomException, np.einsum, "ij->", a)

    def test_einsum_views(self):
        # pass-through
        for do_opt in [True, False]:
            a = np.arange(6)
            a.shape = (2, 3)

            b = np.einsum("...", a, optimize=do_opt)
            assert_(b.base is a)

            b = np.einsum(a, [Ellipsis], optimize=do_opt)
            assert_(b.base is a)

            b = np.einsum("ij", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, a)

            b = np.einsum(a, [0, 1], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, a)

            # output is writeable whenever input is writeable
            b = np.einsum("...", a, optimize=do_opt)
            assert_(b.flags['WRITEABLE'])
            a.flags['WRITEABLE'] = False
            b = np.einsum("...", a, optimize=do_opt)
            assert_(not b.flags['WRITEABLE'])

            # transpose
            a = np.arange(6)
            a.shape = (2, 3)

            b = np.einsum("ji", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, a.T)

            b = np.einsum(a, [1, 0], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, a.T)

            # diagonal
            a = np.arange(9)
            a.shape = (3, 3)

            b = np.einsum("ii->i", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[i, i] for i in range(3)])

            b = np.einsum(a, [0, 0], [0], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[i, i] for i in range(3)])

            # diagonal with various ways of broadcasting an additional dimension
            a = np.arange(27)
            a.shape = (3, 3, 3)

            b = np.einsum("...ii->...i", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [[x[i, i] for i in range(3)] for x in a])

            b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [[x[i, i] for i in range(3)] for x in a])

            b = np.einsum("ii...->...i", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [[x[i, i] for i in range(3)]
                             for x in a.transpose(2, 0, 1)])

            b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [[x[i, i] for i in range(3)]
                             for x in a.transpose(2, 0, 1)])

            b = np.einsum("...ii->i...", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[:, i, i] for i in range(3)])

            b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[:, i, i] for i in range(3)])

            b = np.einsum("jii->ij", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[:, i, i] for i in range(3)])

            b = np.einsum(a, [1, 0, 0], [0, 1], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[:, i, i] for i in range(3)])

            b = np.einsum("ii...->i...", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])

            b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])

            b = np.einsum("i...i->i...", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])

            b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])

            b = np.einsum("i...i->...i", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [[x[i, i] for i in range(3)]
                             for x in a.transpose(1, 0, 2)])

            b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [[x[i, i] for i in range(3)]
                             for x in a.transpose(1, 0, 2)])

            # triple diagonal
            a = np.arange(27)
            a.shape = (3, 3, 3)

            b = np.einsum("iii->i", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[i, i, i] for i in range(3)])

            b = np.einsum(a, [0, 0, 0], [0], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, [a[i, i, i] for i in range(3)])

            # swap axes
            a = np.arange(24)
            a.shape = (2, 3, 4)

            b = np.einsum("ijk->jik", a, optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, a.swapaxes(0, 1))

            b = np.einsum(a, [0, 1, 2], [1, 0, 2], optimize=do_opt)
            assert_(b.base is a)
            assert_equal(b, a.swapaxes(0, 1))

    @np._no_nep50_warning()
    def check_einsum_sums(self, dtype, do_opt=False):
        dtype = np.dtype(dtype)
        # Check various sums.  Does many sizes to exercise unrolled loops.

        # sum(a, axis=-1)
        for n in range(1, 17):
            a = np.arange(n, dtype=dtype)
            b = np.sum(a, axis=-1)
            if hasattr(b, 'astype'):
                b = b.astype(dtype)
            assert_equal(np.einsum("i->", a, optimize=do_opt), b)
            assert_equal(np.einsum(a, [0], [], optimize=do_opt), b)

        for n in range(1, 17):
            a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
            b = np.sum(a, axis=-1)
            if hasattr(b, 'astype'):
                b = b.astype(dtype)
            assert_equal(np.einsum("...i->...", a, optimize=do_opt), b)
            assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis], optimize=do_opt), b)

        # sum(a, axis=0)
        for n in range(1, 17):
            a = np.arange(2*n, dtype=dtype).reshape(2, n)
            b = np.sum(a, axis=0)
            if hasattr(b, 'astype'):
                b = b.astype(dtype)
            assert_equal(np.einsum("i...->...", a, optimize=do_opt), b)
            assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), b)

        for n in range(1, 17):
            a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
            b = np.sum(a, axis=0)
            if hasattr(b, 'astype'):
                b = b.astype(dtype)
            assert_equal(np.einsum("i...->...", a, optimize=do_opt), b)
            assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), b)

        # trace(a)
        for n in range(1, 17):
            a = np.arange(n*n, dtype=dtype).reshape(n, n)
            b = np.trace(a)
            if hasattr(b, 'astype'):
                b = b.astype(dtype)
            assert_equal(np.einsum("ii", a, optimize=do_opt), b)
            assert_equal(np.einsum(a, [0, 0], optimize=do_opt), b)

            # gh-15961: should accept numpy int64 type in subscript list
            np_array = np.asarray([0, 0])
            assert_equal(np.einsum(a, np_array, optimize=do_opt), b)
            assert_equal(np.einsum(a, list(np_array), optimize=do_opt), b)

        # multiply(a, b)
        assert_equal(np.einsum("..., ...", 3, 4), 12)  # scalar case
        for n in range(1, 17):
            a = np.arange(3 * n, dtype=dtype).reshape(3, n)
            b = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
            assert_equal(np.einsum("..., ...", a, b, optimize=do_opt),
                         np.multiply(a, b))
            assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis], optimize=do_opt),
                         np.multiply(a, b))

        # inner(a,b)
        for n in range(1, 17):
            a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
            b = np.arange(n, dtype=dtype)
            assert_equal(np.einsum("...i, ...i", a, b, optimize=do_opt), np.inner(a, b))
            assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0], optimize=do_opt),
                         np.inner(a, b))

        for n in range(1, 11):
            a = np.arange(n * 3 * 2, dtype=dtype).reshape(n, 3, 2)
            b = np.arange(n, dtype=dtype)
            assert_equal(np.einsum("i..., i...", a, b, optimize=do_opt),
                         np.inner(a.T, b.T).T)
            assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis], optimize=do_opt),
                         np.inner(a.T, b.T).T)

        # outer(a,b)
        for n in range(1, 17):
            a = np.arange(3, dtype=dtype)+1
            b = np.arange(n, dtype=dtype)+1
            assert_equal(np.einsum("i,j", a, b, optimize=do_opt),
                         np.outer(a, b))
            assert_equal(np.einsum(a, [0], b, [1], optimize=do_opt),
                         np.outer(a, b))

        # Suppress the complex warnings for the 'as f8' tests
        with suppress_warnings() as sup:
            sup.filter(np.ComplexWarning)

            # matvec(a,b) / a.dot(b) where a is matrix, b is vector
            for n in range(1, 17):
                a = np.arange(4*n, dtype=dtype).reshape(4, n)
                b = np.arange(n, dtype=dtype)
                assert_equal(np.einsum("ij, j", a, b, optimize=do_opt),
                             np.dot(a, b))
                assert_equal(np.einsum(a, [0, 1], b, [1], optimize=do_opt),
                             np.dot(a, b))

                c = np.arange(4, dtype=dtype)
                np.einsum("ij,j", a, b, out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c,
                             np.dot(a.astype('f8'),
                                    b.astype('f8')).astype(dtype))
                c[...] = 0
                np.einsum(a, [0, 1], b, [1], out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c,
                             np.dot(a.astype('f8'),
                                    b.astype('f8')).astype(dtype))

            for n in range(1, 17):
                a = np.arange(4*n, dtype=dtype).reshape(4, n)
                b = np.arange(n, dtype=dtype)
                assert_equal(np.einsum("ji,j", a.T, b.T, optimize=do_opt),
                             np.dot(b.T, a.T))
                assert_equal(np.einsum(a.T, [1, 0], b.T, [1], optimize=do_opt),
                             np.dot(b.T, a.T))

                c = np.arange(4, dtype=dtype)
                np.einsum("ji,j", a.T, b.T, out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c,
                             np.dot(b.T.astype('f8'),
                                    a.T.astype('f8')).astype(dtype))
                c[...] = 0
                np.einsum(a.T, [1, 0], b.T, [1], out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c,
                             np.dot(b.T.astype('f8'),
                                    a.T.astype('f8')).astype(dtype))

            # matmat(a,b) / a.dot(b) where a is matrix, b is matrix
            for n in range(1, 17):
                if n < 8 or dtype != 'f2':
                    a = np.arange(4*n, dtype=dtype).reshape(4, n)
                    b = np.arange(n*6, dtype=dtype).reshape(n, 6)
                    assert_equal(np.einsum("ij,jk", a, b, optimize=do_opt),
                                 np.dot(a, b))
                    assert_equal(np.einsum(a, [0, 1], b, [1, 2], optimize=do_opt),
                                 np.dot(a, b))

            for n in range(1, 17):
                a = np.arange(4*n, dtype=dtype).reshape(4, n)
                b = np.arange(n*6, dtype=dtype).reshape(n, 6)
                c = np.arange(24, dtype=dtype).reshape(4, 6)
                np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe',
                          optimize=do_opt)
                assert_equal(c,
                             np.dot(a.astype('f8'),
                                    b.astype('f8')).astype(dtype))
                c[...] = 0
                np.einsum(a, [0, 1], b, [1, 2], out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c,
                             np.dot(a.astype('f8'),
                                    b.astype('f8')).astype(dtype))

            # matrix triple product (note this is not currently an efficient
            # way to multiply 3 matrices)
            a = np.arange(12, dtype=dtype).reshape(3, 4)
            b = np.arange(20, dtype=dtype).reshape(4, 5)
            c = np.arange(30, dtype=dtype).reshape(5, 6)
            if dtype != 'f2':
                assert_equal(np.einsum("ij,jk,kl", a, b, c, optimize=do_opt),
                             a.dot(b).dot(c))
                assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3],
                                       optimize=do_opt), a.dot(b).dot(c))

            d = np.arange(18, dtype=dtype).reshape(3, 6)
            np.einsum("ij,jk,kl", a, b, c, out=d,
                      dtype='f8', casting='unsafe', optimize=do_opt)
            tgt = a.astype('f8').dot(b.astype('f8'))
            tgt = tgt.dot(c.astype('f8')).astype(dtype)
            assert_equal(d, tgt)

            d[...] = 0
            np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d,
                      dtype='f8', casting='unsafe', optimize=do_opt)
            tgt = a.astype('f8').dot(b.astype('f8'))
            tgt = tgt.dot(c.astype('f8')).astype(dtype)
            assert_equal(d, tgt)

            # tensordot(a, b)
            if np.dtype(dtype) != np.dtype('f2'):
                a = np.arange(60, dtype=dtype).reshape(3, 4, 5)
                b = np.arange(24, dtype=dtype).reshape(4, 3, 2)
                assert_equal(np.einsum("ijk, jil -> kl", a, b),
                             np.tensordot(a, b, axes=([1, 0], [0, 1])))
                assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]),
                             np.tensordot(a, b, axes=([1, 0], [0, 1])))

                c = np.arange(10, dtype=dtype).reshape(5, 2)
                np.einsum("ijk,jil->kl", a, b, out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
                             axes=([1, 0], [0, 1])).astype(dtype))
                c[...] = 0
                np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c,
                          dtype='f8', casting='unsafe', optimize=do_opt)
                assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
                             axes=([1, 0], [0, 1])).astype(dtype))

        # logical_and(logical_and(a!=0, b!=0), c!=0)
        neg_val = -2 if dtype.kind != "u" else np.iinfo(dtype).max - 1
        a = np.array([1,   3,   neg_val, 0,  12,  13,   0,   1], dtype=dtype)
        b = np.array([0,   3.5, 0., neg_val,  0,   1,    3,   12], dtype=dtype)
        c = np.array([True, True, False, True, True, False, True, True])

        assert_equal(np.einsum("i,i,i->i", a, b, c,
                     dtype='?', casting='unsafe', optimize=do_opt),
                     np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
        assert_equal(np.einsum(a, [0], b, [0], c, [0], [0],
                     dtype='?', casting='unsafe'),
                     np.logical_and(np.logical_and(a != 0, b != 0), c != 0))

        a = np.arange(9, dtype=dtype)
        assert_equal(np.einsum(",i->", 3, a), 3*np.sum(a))
        assert_equal(np.einsum(3, [], a, [0], []), 3*np.sum(a))
        assert_equal(np.einsum("i,->", a, 3), 3*np.sum(a))
        assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a))

        # Various stride0, contiguous, and SSE aligned variants
        for n in range(1, 25):
            a = np.arange(n, dtype=dtype)
            if np.dtype(dtype).itemsize > 1:
                assert_equal(np.einsum("...,...", a, a, optimize=do_opt),
                             np.multiply(a, a))
                assert_equal(np.einsum("i,i", a, a, optimize=do_opt), np.dot(a, a))
                assert_equal(np.einsum("i,->i", a, 2, optimize=do_opt), 2*a)
                assert_equal(np.einsum(",i->i", 2, a, optimize=do_opt), 2*a)
                assert_equal(np.einsum("i,->", a, 2, optimize=do_opt), 2*np.sum(a))
                assert_equal(np.einsum(",i->", 2, a, optimize=do_opt), 2*np.sum(a))

                assert_equal(np.einsum("...,...", a[1:], a[:-1], optimize=do_opt),
                             np.multiply(a[1:], a[:-1]))
                assert_equal(np.einsum("i,i", a[1:], a[:-1], optimize=do_opt),
                             np.dot(a[1:], a[:-1]))
                assert_equal(np.einsum("i,->i", a[1:], 2, optimize=do_opt), 2*a[1:])
                assert_equal(np.einsum(",i->i", 2, a[1:], optimize=do_opt), 2*a[1:])
                assert_equal(np.einsum("i,->", a[1:], 2, optimize=do_opt),
                             2*np.sum(a[1:]))
                assert_equal(np.einsum(",i->", 2, a[1:], optimize=do_opt),
                             2*np.sum(a[1:]))

        # An object array, summed as the data type
        a = np.arange(9, dtype=object)

        b = np.einsum("i->", a, dtype=dtype, casting='unsafe')
        assert_equal(b, np.sum(a))
        if hasattr(b, "dtype"):
            # Can be a python object when dtype is object
            assert_equal(b.dtype, np.dtype(dtype))

        b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe')
        assert_equal(b, np.sum(a))
        if hasattr(b, "dtype"):
            # Can be a python object when dtype is object
            assert_equal(b.dtype, np.dtype(dtype))

        # A case which was failing (ticket #1885)
        p = np.arange(2) + 1
        q = np.arange(4).reshape(2, 2) + 3
        r = np.arange(4).reshape(2, 2) + 7
        assert_equal(np.einsum('z,mz,zm->', p, q, r), 253)

        # singleton dimensions broadcast (gh-10343)
        p = np.ones((10,2))
        q = np.ones((1,2))
        assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True),
                           np.einsum('ij,ij->j', p, q, optimize=False))
        assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True),
                           [10.] * 2)

        # a blas-compatible contraction broadcasting case which was failing
        # for optimize=True (ticket #10930)
        x = np.array([2., 3.])
        y = np.array([4.])
        assert_array_equal(np.einsum("i, i", x, y, optimize=False), 20.)
        assert_array_equal(np.einsum("i, i", x, y, optimize=True), 20.)

        # all-ones array was bypassing bug (ticket #10930)
        p = np.ones((1, 5)) / 2
        q = np.ones((5, 5)) / 2
        for optimize in (True, False):
            assert_array_equal(np.einsum("...ij,...jk->...ik", p, p,
                                         optimize=optimize),
                               np.einsum("...ij,...jk->...ik", p, q,
                                         optimize=optimize))
            assert_array_equal(np.einsum("...ij,...jk->...ik", p, q,
                                         optimize=optimize),
                               np.full((1, 5), 1.25))

        # Cases which were failing (gh-10899)
        x = np.eye(2, dtype=dtype)
        y = np.ones(2, dtype=dtype)
        assert_array_equal(np.einsum("ji,i->", x, y, optimize=optimize),
                           [2.])  # contig_contig_outstride0_two
        assert_array_equal(np.einsum("i,ij->", y, x, optimize=optimize),
                           [2.])  # stride0_contig_outstride0_two
        assert_array_equal(np.einsum("ij,i->", x, y, optimize=optimize),
                           [2.])  # contig_stride0_outstride0_two

    def test_einsum_sums_int8(self):
        self.check_einsum_sums('i1')

    def test_einsum_sums_uint8(self):
        self.check_einsum_sums('u1')

    def test_einsum_sums_int16(self):
        self.check_einsum_sums('i2')

    def test_einsum_sums_uint16(self):
        self.check_einsum_sums('u2')

    def test_einsum_sums_int32(self):
        self.check_einsum_sums('i4')
        self.check_einsum_sums('i4', True)

    def test_einsum_sums_uint32(self):
        self.check_einsum_sums('u4')
        self.check_einsum_sums('u4', True)

    def test_einsum_sums_int64(self):
        self.check_einsum_sums('i8')

    def test_einsum_sums_uint64(self):
        self.check_einsum_sums('u8')

    def test_einsum_sums_float16(self):
        self.check_einsum_sums('f2')

    def test_einsum_sums_float32(self):
        self.check_einsum_sums('f4')

    def test_einsum_sums_float64(self):
        self.check_einsum_sums('f8')
        self.check_einsum_sums('f8', True)

    def test_einsum_sums_longdouble(self):
        self.check_einsum_sums(np.longdouble)

    def test_einsum_sums_cfloat64(self):
        self.check_einsum_sums('c8')
        self.check_einsum_sums('c8', True)

    def test_einsum_sums_cfloat128(self):
        self.check_einsum_sums('c16')

    def test_einsum_sums_clongdouble(self):
        self.check_einsum_sums(np.clongdouble)

    def test_einsum_sums_object(self):
        self.check_einsum_sums('object')
        self.check_einsum_sums('object', True)

    def test_einsum_misc(self):
        # This call used to crash because of a bug in
        # PyArray_AssignZero
        a = np.ones((1, 2))
        b = np.ones((2, 2, 1))
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
        assert_equal(np.einsum('ij...,j...->i...', a, b, optimize=True), [[[2], [2]]])

        # Regression test for issue #10369 (test unicode inputs with Python 2)
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
        assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4]), 20)
        assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4],
                               optimize='greedy'), 20)

        # The iterator had an issue with buffering this reduction
        a = np.ones((5, 12, 4, 2, 3), np.int64)
        b = np.ones((5, 12, 11), np.int64)
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
                     np.einsum('ijklm,ijn->', a, b))
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b, optimize=True),
                     np.einsum('ijklm,ijn->', a, b, optimize=True))

        # Issue #2027, was a problem in the contiguous 3-argument
        # inner loop implementation
        a = np.arange(1, 3)
        b = np.arange(1, 5).reshape(2, 2)
        c = np.arange(1, 9).reshape(4, 2)
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
                     [[[1,  3], [3,  9], [5, 15], [7, 21]],
                     [[8, 16], [16, 32], [24, 48], [32, 64]]])
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c, optimize=True),
                     [[[1,  3], [3,  9], [5, 15], [7, 21]],
                     [[8, 16], [16, 32], [24, 48], [32, 64]]])

        # Ensure explicitly setting out=None does not cause an error
        # see issue gh-15776 and issue gh-15256
        assert_equal(np.einsum('i,j', [1], [2], out=None), [[2]])

    def test_object_loop(self):

        class Mult:
            def __mul__(self, other):
                return 42

        objMult = np.array([Mult()])
        objNULL = np.ndarray(buffer = b'\0' * np.intp(0).itemsize, shape=1, dtype=object)

        with pytest.raises(TypeError):
            np.einsum("i,j", [1], objNULL)
        with pytest.raises(TypeError):
            np.einsum("i,j", objNULL, [1])
        assert np.einsum("i,j", objMult, objMult) == 42

    def test_subscript_range(self):
        # Issue #7741, make sure that all letters of Latin alphabet (both uppercase & lowercase) can be used
        # when creating a subscript from arrays
        a = np.ones((2, 3))
        b = np.ones((3, 4))
        np.einsum(a, [0, 20], b, [20, 2], [0, 2], optimize=False)
        np.einsum(a, [0, 27], b, [27, 2], [0, 2], optimize=False)
        np.einsum(a, [0, 51], b, [51, 2], [0, 2], optimize=False)
        assert_raises(ValueError, lambda: np.einsum(a, [0, 52], b, [52, 2], [0, 2], optimize=False))
        assert_raises(ValueError, lambda: np.einsum(a, [-1, 5], b, [5, 2], [-1, 2], optimize=False))

    def test_einsum_broadcast(self):
        # Issue #2455 change in handling ellipsis
        # remove the 'middle broadcast' error
        # only use the 'RIGHT' iteration in prepare_op_axes
        # adds auto broadcast on left where it belongs
        # broadcast on right has to be explicit
        # We need to test the optimized parsing as well

        A = np.arange(2 * 3 * 4).reshape(2, 3, 4)
        B = np.arange(3)
        ref = np.einsum('ijk,j->ijk', A, B, optimize=False)
        for opt in [True, False]:
            assert_equal(np.einsum('ij...,j...->ij...', A, B, optimize=opt), ref)
            assert_equal(np.einsum('ij...,...j->ij...', A, B, optimize=opt), ref)
            assert_equal(np.einsum('ij...,j->ij...', A, B, optimize=opt), ref)  # used to raise error

        A = np.arange(12).reshape((4, 3))
        B = np.arange(6).reshape((3, 2))
        ref = np.einsum('ik,kj->ij', A, B, optimize=False)
        for opt in [True, False]:
            assert_equal(np.einsum('ik...,k...->i...', A, B, optimize=opt), ref)
            assert_equal(np.einsum('ik...,...kj->i...j', A, B, optimize=opt), ref)
            assert_equal(np.einsum('...k,kj', A, B, optimize=opt), ref)  # used to raise error
            assert_equal(np.einsum('ik,k...->i...', A, B, optimize=opt), ref)  # used to raise error

        dims = [2, 3, 4, 5]
        a = np.arange(np.prod(dims)).reshape(dims)
        v = np.arange(dims[2])
        ref = np.einsum('ijkl,k->ijl', a, v, optimize=False)
        for opt in [True, False]:
            assert_equal(np.einsum('ijkl,k', a, v, optimize=opt), ref)
            assert_equal(np.einsum('...kl,k', a, v, optimize=opt), ref)  # used to raise error
            assert_equal(np.einsum('...kl,k...', a, v, optimize=opt), ref)

        J, K, M = 160, 160, 120
        A = np.arange(J * K * M).reshape(1, 1, 1, J, K, M)
        B = np.arange(J * K * M * 3).reshape(J, K, M, 3)
        ref = np.einsum('...lmn,...lmno->...o', A, B, optimize=False)
        for opt in [True, False]:
            assert_equal(np.einsum('...lmn,lmno->...o', A, B,
                                   optimize=opt), ref)  # used to raise error

    def test_einsum_fixedstridebug(self):
        # Issue #4485 obscure einsum bug
        # This case revealed a bug in nditer where it reported a stride
        # as 'fixed' (0) when it was in fact not fixed during processing
        # (0 or 4). The reason for the bug was that the check for a fixed
        # stride was using the information from the 2D inner loop reuse
        # to restrict the iteration dimensions it had to validate to be
        # the same, but that 2D inner loop reuse logic is only triggered
        # during the buffer copying step, and hence it was invalid to
        # rely on those values. The fix is to check all the dimensions
        # of the stride in question, which in the test case reveals that
        # the stride is not fixed.
        #
        # NOTE: This test is triggered by the fact that the default buffersize,
        #       used by einsum, is 8192, and 3*2731 = 8193, is larger than that
        #       and results in a mismatch between the buffering and the
        #       striding for operand A.
        A = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
        B = np.arange(2 * 3 * 2731).reshape(2, 3, 2731).astype(np.int16)
        es = np.einsum('cl, cpx->lpx',  A,  B)
        tp = np.tensordot(A,  B,  axes=(0,  0))
        assert_equal(es,  tp)
        # The following is the original test case from the bug report,
        # made repeatable by changing random arrays to aranges.
        A = np.arange(3 * 3).reshape(3, 3).astype(np.float64)
        B = np.arange(3 * 3 * 64 * 64).reshape(3, 3, 64, 64).astype(np.float32)
        es = np.einsum('cl, cpxy->lpxy',  A, B)
        tp = np.tensordot(A, B,  axes=(0, 0))
        assert_equal(es, tp)

    def test_einsum_fixed_collapsingbug(self):
        # Issue #5147.
        # The bug only occurred when output argument of einssum was used.
        x = np.random.normal(0, 1, (5, 5, 5, 5))
        y1 = np.zeros((5, 5))
        np.einsum('aabb->ab', x, out=y1)
        idx = np.arange(5)
        y2 = x[idx[:, None], idx[:, None], idx, idx]
        assert_equal(y1, y2)

    def test_einsum_failed_on_p9_and_s390x(self):
        # Issues gh-14692 and gh-12689
        # Bug with signed vs unsigned char errored on power9 and s390x Linux
        tensor = np.random.random_sample((10, 10, 10, 10))
        x = np.einsum('ijij->', tensor)
        y = tensor.trace(axis1=0, axis2=2).trace()
        assert_allclose(x, y)

    def test_einsum_all_contig_non_contig_output(self):
        # Issue gh-5907, tests that the all contiguous special case
        # actually checks the contiguity of the output
        x = np.ones((5, 5))
        out = np.ones(10)[::2]
        correct_base = np.ones(10)
        correct_base[::2] = 5
        # Always worked (inner iteration is done with 0-stride):
        np.einsum('mi,mi,mi->m', x, x, x, out=out)
        assert_array_equal(out.base, correct_base)
        # Example 1:
        out = np.ones(10)[::2]
        np.einsum('im,im,im->m', x, x, x, out=out)
        assert_array_equal(out.base, correct_base)
        # Example 2, buffering causes x to be contiguous but
        # special cases do not catch the operation before:
        out = np.ones((2, 2, 2))[..., 0]
        correct_base = np.ones((2, 2, 2))
        correct_base[..., 0] = 2
        x = np.ones((2, 2), np.float32)
        np.einsum('ij,jk->ik', x, x, out=out)
        assert_array_equal(out.base, correct_base)

    @pytest.mark.parametrize("dtype",
             np.typecodes["AllFloat"] + np.typecodes["AllInteger"])
    def test_different_paths(self, dtype):
        # Test originally added to cover broken float16 path: gh-20305
        # Likely most are covered elsewhere, at least partially.
        dtype = np.dtype(dtype)
        # Simple test, designed to exercise most specialized code paths,
        # note the +0.5 for floats.  This makes sure we use a float value
        # where the results must be exact.
        arr = (np.arange(7) + 0.5).astype(dtype)
        scalar = np.array(2, dtype=dtype)

        # contig -> scalar:
        res = np.einsum('i->', arr)
        assert res == arr.sum()
        # contig, contig -> contig:
        res = np.einsum('i,i->i', arr, arr)
        assert_array_equal(res, arr * arr)
        # noncontig, noncontig -> contig:
        res = np.einsum('i,i->i', arr.repeat(2)[::2], arr.repeat(2)[::2])
        assert_array_equal(res, arr * arr)
        # contig + contig -> scalar
        assert np.einsum('i,i->', arr, arr) == (arr * arr).sum()
        # contig + scalar -> contig (with out)
        out = np.ones(7, dtype=dtype)
        res = np.einsum('i,->i', arr, dtype.type(2), out=out)
        assert_array_equal(res, arr * dtype.type(2))
        # scalar + contig -> contig (with out)
        res = np.einsum(',i->i', scalar, arr)
        assert_array_equal(res, arr * dtype.type(2))
        # scalar + contig -> scalar
        res = np.einsum(',i->', scalar, arr)
        # Use einsum to compare to not have difference due to sum round-offs:
        assert res == np.einsum('i->', scalar * arr)
        # contig + scalar -> scalar
        res = np.einsum('i,->', arr, scalar)
        # Use einsum to compare to not have difference due to sum round-offs:
        assert res == np.einsum('i->', scalar * arr)
        # contig + contig + contig -> scalar
        arr = np.array([0.5, 0.5, 0.25, 4.5, 3.], dtype=dtype)
        res = np.einsum('i,i,i->', arr, arr, arr)
        assert_array_equal(res, (arr * arr * arr).sum())
        # four arrays:
        res = np.einsum('i,i,i,i->', arr, arr, arr, arr)
        assert_array_equal(res, (arr * arr * arr * arr).sum())

    def test_small_boolean_arrays(self):
        # See gh-5946.
        # Use array of True embedded in False.
        a = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
        a[...] = True
        out = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
        tgt = np.ones((2, 1, 1), dtype=np.bool_)
        res = np.einsum('...ij,...jk->...ik', a, a, out=out)
        assert_equal(res, tgt)

    def test_out_is_res(self):
        a = np.arange(9).reshape(3, 3)
        res = np.einsum('...ij,...jk->...ik', a, a, out=a)
        assert res is a

    def optimize_compare(self, subscripts, operands=None):
        # Tests all paths of the optimization function against
        # conventional einsum
        if operands is None:
            args = [subscripts]
            terms = subscripts.split('->')[0].split(',')
            for term in terms:
                dims = [global_size_dict[x] for x in term]
                args.append(np.random.rand(*dims))
        else:
            args = [subscripts] + operands

        noopt = np.einsum(*args, optimize=False)
        opt = np.einsum(*args, optimize='greedy')
        assert_almost_equal(opt, noopt)
        opt = np.einsum(*args, optimize='optimal')
        assert_almost_equal(opt, noopt)

    def test_hadamard_like_products(self):
        # Hadamard outer products
        self.optimize_compare('a,ab,abc->abc')
        self.optimize_compare('a,b,ab->ab')

    def test_index_transformations(self):
        # Simple index transformation cases
        self.optimize_compare('ea,fb,gc,hd,abcd->efgh')
        self.optimize_compare('ea,fb,abcd,gc,hd->efgh')
        self.optimize_compare('abcd,ea,fb,gc,hd->efgh')

    def test_complex(self):
        # Long test cases
        self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
        self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
        self.optimize_compare('cd,bdhe,aidb,hgca,gc,hgibcd,hgac')
        self.optimize_compare('abhe,hidj,jgba,hiab,gab')
        self.optimize_compare('bde,cdh,agdb,hica,ibd,hgicd,hiac')
        self.optimize_compare('chd,bde,agbc,hiad,hgc,hgi,hiad')
        self.optimize_compare('chd,bde,agbc,hiad,bdi,cgh,agdb')
        self.optimize_compare('bdhe,acad,hiab,agac,hibd')

    def test_collapse(self):
        # Inner products
        self.optimize_compare('ab,ab,c->')
        self.optimize_compare('ab,ab,c->c')
        self.optimize_compare('ab,ab,cd,cd->')
        self.optimize_compare('ab,ab,cd,cd->ac')
        self.optimize_compare('ab,ab,cd,cd->cd')
        self.optimize_compare('ab,ab,cd,cd,ef,ef->')

    def test_expand(self):
        # Outer products
        self.optimize_compare('ab,cd,ef->abcdef')
        self.optimize_compare('ab,cd,ef->acdf')
        self.optimize_compare('ab,cd,de->abcde')
        self.optimize_compare('ab,cd,de->be')
        self.optimize_compare('ab,bcd,cd->abcd')
        self.optimize_compare('ab,bcd,cd->abd')

    def test_edge_cases(self):
        # Difficult edge cases for optimization
        self.optimize_compare('eb,cb,fb->cef')
        self.optimize_compare('dd,fb,be,cdb->cef')
        self.optimize_compare('bca,cdb,dbf,afc->')
        self.optimize_compare('dcc,fce,ea,dbf->ab')
        self.optimize_compare('fdf,cdd,ccd,afe->ae')
        self.optimize_compare('abcd,ad')
        self.optimize_compare('ed,fcd,ff,bcf->be')
        self.optimize_compare('baa,dcf,af,cde->be')
        self.optimize_compare('bd,db,eac->ace')
        self.optimize_compare('fff,fae,bef,def->abd')
        self.optimize_compare('efc,dbc,acf,fd->abe')
        self.optimize_compare('ba,ac,da->bcd')

    def test_inner_product(self):
        # Inner products
        self.optimize_compare('ab,ab')
        self.optimize_compare('ab,ba')
        self.optimize_compare('abc,abc')
        self.optimize_compare('abc,bac')
        self.optimize_compare('abc,cba')

    def test_random_cases(self):
        # Randomly built test cases
        self.optimize_compare('aab,fa,df,ecc->bde')
        self.optimize_compare('ecb,fef,bad,ed->ac')
        self.optimize_compare('bcf,bbb,fbf,fc->')
        self.optimize_compare('bb,ff,be->e')
        self.optimize_compare('bcb,bb,fc,fff->')
        self.optimize_compare('fbb,dfd,fc,fc->')
        self.optimize_compare('afd,ba,cc,dc->bf')
        self.optimize_compare('adb,bc,fa,cfc->d')
        self.optimize_compare('bbd,bda,fc,db->acf')
        self.optimize_compare('dba,ead,cad->bce')
        self.optimize_compare('aef,fbc,dca->bde')

    def test_combined_views_mapping(self):
        # gh-10792
        a = np.arange(9).reshape(1, 1, 3, 1, 3)
        b = np.einsum('bbcdc->d', a)
        assert_equal(b, [12])

    def test_broadcasting_dot_cases(self):
        # Ensures broadcasting cases are not mistaken for GEMM

        a = np.random.rand(1, 5, 4)
        b = np.random.rand(4, 6)
        c = np.random.rand(5, 6)
        d = np.random.rand(10)

        self.optimize_compare('ijk,kl,jl', operands=[a, b, c])
        self.optimize_compare('ijk,kl,jl,i->i', operands=[a, b, c, d])

        e = np.random.rand(1, 1, 5, 4)
        f = np.random.rand(7, 7)
        self.optimize_compare('abjk,kl,jl', operands=[e, b, c])
        self.optimize_compare('abjk,kl,jl,ab->ab', operands=[e, b, c, f])

        # Edge case found in gh-11308
        g = np.arange(64).reshape(2, 4, 8)
        self.optimize_compare('obk,ijk->ioj', operands=[g, g])

    def test_output_order(self):
        # Ensure output order is respected for optimize cases, the below
        # conraction should yield a reshaped tensor view
        # gh-16415

        a = np.ones((2, 3, 5), order='F')
        b = np.ones((4, 3), order='F')

        for opt in [True, False]:
            tmp = np.einsum('...ft,mf->...mt', a, b, order='a', optimize=opt)
            assert_(tmp.flags.f_contiguous)

            tmp = np.einsum('...ft,mf->...mt', a, b, order='f', optimize=opt)
            assert_(tmp.flags.f_contiguous)

            tmp = np.einsum('...ft,mf->...mt', a, b, order='c', optimize=opt)
            assert_(tmp.flags.c_contiguous)

            tmp = np.einsum('...ft,mf->...mt', a, b, order='k', optimize=opt)
            assert_(tmp.flags.c_contiguous is False)
            assert_(tmp.flags.f_contiguous is False)

            tmp = np.einsum('...ft,mf->...mt', a, b, optimize=opt)
            assert_(tmp.flags.c_contiguous is False)
            assert_(tmp.flags.f_contiguous is False)

        c = np.ones((4, 3), order='C')
        for opt in [True, False]:
            tmp = np.einsum('...ft,mf->...mt', a, c, order='a', optimize=opt)
            assert_(tmp.flags.c_contiguous)

        d = np.ones((2, 3, 5), order='C')
        for opt in [True, False]:
            tmp = np.einsum('...ft,mf->...mt', d, c, order='a', optimize=opt)
            assert_(tmp.flags.c_contiguous)

class TestEinsumPath:
    def build_operands(self, string, size_dict=global_size_dict):

        # Builds views based off initial operands
        operands = [string]
        terms = string.split('->')[0].split(',')
        for term in terms:
            dims = [size_dict[x] for x in term]
            operands.append(np.random.rand(*dims))

        return operands

    def assert_path_equal(self, comp, benchmark):
        # Checks if list of tuples are equivalent
        ret = (len(comp) == len(benchmark))
        assert_(ret)
        for pos in range(len(comp) - 1):
            ret &= isinstance(comp[pos + 1], tuple)
            ret &= (comp[pos + 1] == benchmark[pos + 1])
        assert_(ret)

    def test_memory_contraints(self):
        # Ensure memory constraints are satisfied

        outer_test = self.build_operands('a,b,c->abc')

        path, path_str = np.einsum_path(*outer_test, optimize=('greedy', 0))
        self.assert_path_equal(path, ['einsum_path', (0, 1, 2)])

        path, path_str = np.einsum_path(*outer_test, optimize=('optimal', 0))
        self.assert_path_equal(path, ['einsum_path', (0, 1, 2)])

        long_test = self.build_operands('acdf,jbje,gihb,hfac')
        path, path_str = np.einsum_path(*long_test, optimize=('greedy', 0))
        self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])

        path, path_str = np.einsum_path(*long_test, optimize=('optimal', 0))
        self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])

    def test_long_paths(self):
        # Long complex cases

        # Long test 1
        long_test1 = self.build_operands('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
        path, path_str = np.einsum_path(*long_test1, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path',
                                      (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)])

        path, path_str = np.einsum_path(*long_test1, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path',
                                      (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)])

        # Long test 2
        long_test2 = self.build_operands('chd,bde,agbc,hiad,bdi,cgh,agdb')
        path, path_str = np.einsum_path(*long_test2, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path',
                                      (3, 4), (0, 3), (3, 4), (1, 3), (1, 2), (0, 1)])

        path, path_str = np.einsum_path(*long_test2, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path',
                                      (0, 5), (1, 4), (3, 4), (1, 3), (1, 2), (0, 1)])

    def test_edge_paths(self):
        # Difficult edge cases

        # Edge test1
        edge_test1 = self.build_operands('eb,cb,fb->cef')
        path, path_str = np.einsum_path(*edge_test1, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)])

        path, path_str = np.einsum_path(*edge_test1, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)])

        # Edge test2
        edge_test2 = self.build_operands('dd,fb,be,cdb->cef')
        path, path_str = np.einsum_path(*edge_test2, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)])

        path, path_str = np.einsum_path(*edge_test2, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)])

        # Edge test3
        edge_test3 = self.build_operands('bca,cdb,dbf,afc->')
        path, path_str = np.einsum_path(*edge_test3, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])

        path, path_str = np.einsum_path(*edge_test3, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])

        # Edge test4
        edge_test4 = self.build_operands('dcc,fce,ea,dbf->ab')
        path, path_str = np.einsum_path(*edge_test4, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)])

        path, path_str = np.einsum_path(*edge_test4, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])

        # Edge test5
        edge_test4 = self.build_operands('a,ac,ab,ad,cd,bd,bc->',
                                         size_dict={"a": 20, "b": 20, "c": 20, "d": 20})
        path, path_str = np.einsum_path(*edge_test4, optimize='greedy')
        self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)])

        path, path_str = np.einsum_path(*edge_test4, optimize='optimal')
        self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)])

    def test_path_type_input(self):
        # Test explicit path handling
        path_test = self.build_operands('dcc,fce,ea,dbf->ab')

        path, path_str = np.einsum_path(*path_test, optimize=False)
        self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])

        path, path_str = np.einsum_path(*path_test, optimize=True)
        self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)])

        exp_path = ['einsum_path', (0, 2), (0, 2), (0, 1)]
        path, path_str = np.einsum_path(*path_test, optimize=exp_path)
        self.assert_path_equal(path, exp_path)

        # Double check einsum works on the input path
        noopt = np.einsum(*path_test, optimize=False)
        opt = np.einsum(*path_test, optimize=exp_path)
        assert_almost_equal(noopt, opt)

    def test_path_type_input_internal_trace(self):
        #gh-20962
        path_test = self.build_operands('cab,cdd->ab')
        exp_path = ['einsum_path', (1,), (0, 1)]

        path, path_str = np.einsum_path(*path_test, optimize=exp_path)
        self.assert_path_equal(path, exp_path)

        # Double check einsum works on the input path
        noopt = np.einsum(*path_test, optimize=False)
        opt = np.einsum(*path_test, optimize=exp_path)
        assert_almost_equal(noopt, opt)

    def test_path_type_input_invalid(self):
        path_test = self.build_operands('ab,bc,cd,de->ae')
        exp_path = ['einsum_path', (2, 3), (0, 1)]
        assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
        assert_raises(
            RuntimeError, np.einsum_path, *path_test, optimize=exp_path)

        path_test = self.build_operands('a,a,a->a')
        exp_path = ['einsum_path', (1,), (0, 1)]
        assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
        assert_raises(
            RuntimeError, np.einsum_path, *path_test, optimize=exp_path)

    def test_spaces(self):
        #gh-10794
        arr = np.array([[1]])
        for sp in itertools.product(['', ' '], repeat=4):
            # no error for any spacing
            np.einsum('{}...a{}->{}...a{}'.format(*sp), arr)

def test_overlap():
    a = np.arange(9, dtype=int).reshape(3, 3)
    b = np.arange(9, dtype=int).reshape(3, 3)
    d = np.dot(a, b)
    # sanity check
    c = np.einsum('ij,jk->ik', a, b)
    assert_equal(c, d)
    #gh-10080, out overlaps one of the operands
    c = np.einsum('ij,jk->ik', a, b, out=b)
    assert_equal(c, d)

Youez - 2016 - github.com/yon3zu
LinuXploit