Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.227.134.95
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/tests/test_array_object.py
import operator

from numpy.testing import assert_raises, suppress_warnings
import numpy as np
import pytest

from .. import ones, asarray, reshape, result_type, all, equal
from .._array_object import Array
from .._dtypes import (
    _all_dtypes,
    _boolean_dtypes,
    _real_floating_dtypes,
    _floating_dtypes,
    _complex_floating_dtypes,
    _integer_dtypes,
    _integer_or_boolean_dtypes,
    _real_numeric_dtypes,
    _numeric_dtypes,
    int8,
    int16,
    int32,
    int64,
    uint64,
    bool as bool_,
)


def test_validate_index():
    # The indexing tests in the official array API test suite test that the
    # array object correctly handles the subset of indices that are required
    # by the spec. But the NumPy array API implementation specifically
    # disallows any index not required by the spec, via Array._validate_index.
    # This test focuses on testing that non-valid indices are correctly
    # rejected. See
    # https://data-apis.org/array-api/latest/API_specification/indexing.html
    # and the docstring of Array._validate_index for the exact indexing
    # behavior that should be allowed. This does not test indices that are
    # already invalid in NumPy itself because Array will generally just pass
    # such indices directly to the underlying np.ndarray.

    a = ones((3, 4))

    # Out of bounds slices are not allowed
    assert_raises(IndexError, lambda: a[:4])
    assert_raises(IndexError, lambda: a[:-4])
    assert_raises(IndexError, lambda: a[:3:-1])
    assert_raises(IndexError, lambda: a[:-5:-1])
    assert_raises(IndexError, lambda: a[4:])
    assert_raises(IndexError, lambda: a[-4:])
    assert_raises(IndexError, lambda: a[4::-1])
    assert_raises(IndexError, lambda: a[-4::-1])

    assert_raises(IndexError, lambda: a[...,:5])
    assert_raises(IndexError, lambda: a[...,:-5])
    assert_raises(IndexError, lambda: a[...,:5:-1])
    assert_raises(IndexError, lambda: a[...,:-6:-1])
    assert_raises(IndexError, lambda: a[...,5:])
    assert_raises(IndexError, lambda: a[...,-5:])
    assert_raises(IndexError, lambda: a[...,5::-1])
    assert_raises(IndexError, lambda: a[...,-5::-1])

    # Boolean indices cannot be part of a larger tuple index
    assert_raises(IndexError, lambda: a[a[:,0]==1,0])
    assert_raises(IndexError, lambda: a[a[:,0]==1,...])
    assert_raises(IndexError, lambda: a[..., a[0]==1])
    assert_raises(IndexError, lambda: a[[True, True, True]])
    assert_raises(IndexError, lambda: a[(True, True, True),])

    # Integer array indices are not allowed (except for 0-D)
    idx = asarray([[0, 1]])
    assert_raises(IndexError, lambda: a[idx])
    assert_raises(IndexError, lambda: a[idx,])
    assert_raises(IndexError, lambda: a[[0, 1]])
    assert_raises(IndexError, lambda: a[(0, 1), (0, 1)])
    assert_raises(IndexError, lambda: a[[0, 1]])
    assert_raises(IndexError, lambda: a[np.array([[0, 1]])])

    # Multiaxis indices must contain exactly as many indices as dimensions
    assert_raises(IndexError, lambda: a[()])
    assert_raises(IndexError, lambda: a[0,])
    assert_raises(IndexError, lambda: a[0])
    assert_raises(IndexError, lambda: a[:])

def test_operators():
    # For every operator, we test that it works for the required type
    # combinations and raises TypeError otherwise
    binary_op_dtypes = {
        "__add__": "numeric",
        "__and__": "integer_or_boolean",
        "__eq__": "all",
        "__floordiv__": "real numeric",
        "__ge__": "real numeric",
        "__gt__": "real numeric",
        "__le__": "real numeric",
        "__lshift__": "integer",
        "__lt__": "real numeric",
        "__mod__": "real numeric",
        "__mul__": "numeric",
        "__ne__": "all",
        "__or__": "integer_or_boolean",
        "__pow__": "numeric",
        "__rshift__": "integer",
        "__sub__": "numeric",
        "__truediv__": "floating",
        "__xor__": "integer_or_boolean",
    }
    # Recompute each time because of in-place ops
    def _array_vals():
        for d in _integer_dtypes:
            yield asarray(1, dtype=d)
        for d in _boolean_dtypes:
            yield asarray(False, dtype=d)
        for d in _floating_dtypes:
            yield asarray(1.0, dtype=d)


    BIG_INT = int(1e30)
    for op, dtypes in binary_op_dtypes.items():
        ops = [op]
        if op not in ["__eq__", "__ne__", "__le__", "__ge__", "__lt__", "__gt__"]:
            rop = "__r" + op[2:]
            iop = "__i" + op[2:]
            ops += [rop, iop]
        for s in [1, 1.0, 1j, BIG_INT, False]:
            for _op in ops:
                for a in _array_vals():
                    # Test array op scalar. From the spec, the following combinations
                    # are supported:

                    # - Python bool for a bool array dtype,
                    # - a Python int within the bounds of the given dtype for integer array dtypes,
                    # - a Python int or float for real floating-point array dtypes
                    # - a Python int, float, or complex for complex floating-point array dtypes

                    if ((dtypes == "all"
                         or dtypes == "numeric" and a.dtype in _numeric_dtypes
                         or dtypes == "real numeric" and a.dtype in _real_numeric_dtypes
                         or dtypes == "integer" and a.dtype in _integer_dtypes
                         or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes
                         or dtypes == "boolean" and a.dtype in _boolean_dtypes
                         or dtypes == "floating" and a.dtype in _floating_dtypes
                        )
                        # bool is a subtype of int, which is why we avoid
                        # isinstance here.
                        and (a.dtype in _boolean_dtypes and type(s) == bool
                             or a.dtype in _integer_dtypes and type(s) == int
                             or a.dtype in _real_floating_dtypes and type(s) in [float, int]
                             or a.dtype in _complex_floating_dtypes and type(s) in [complex, float, int]
                        )):
                        if a.dtype in _integer_dtypes and s == BIG_INT:
                            assert_raises(OverflowError, lambda: getattr(a, _op)(s))
                        else:
                            # Only test for no error
                            with suppress_warnings() as sup:
                                # ignore warnings from pow(BIG_INT)
                                sup.filter(RuntimeWarning,
                                           "invalid value encountered in power")
                                getattr(a, _op)(s)
                    else:
                        assert_raises(TypeError, lambda: getattr(a, _op)(s))

                # Test array op array.
                for _op in ops:
                    for x in _array_vals():
                        for y in _array_vals():
                            # See the promotion table in NEP 47 or the array
                            # API spec page on type promotion. Mixed kind
                            # promotion is not defined.
                            if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
                                or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
                                or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
                                or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
                                or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes
                                or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes
                                or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
                                or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
                                ):
                                assert_raises(TypeError, lambda: getattr(x, _op)(y))
                            # Ensure in-place operators only promote to the same dtype as the left operand.
                            elif (
                                _op.startswith("__i")
                                and result_type(x.dtype, y.dtype) != x.dtype
                            ):
                                assert_raises(TypeError, lambda: getattr(x, _op)(y))
                            # Ensure only those dtypes that are required for every operator are allowed.
                            elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
                                                      or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
                                or (dtypes == "real numeric" and x.dtype in _real_numeric_dtypes and y.dtype in _real_numeric_dtypes)
                                or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
                                or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
                                or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
                                                                       or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes)
                                or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
                                or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes
                            ):
                                getattr(x, _op)(y)
                            else:
                                assert_raises(TypeError, lambda: getattr(x, _op)(y))

    unary_op_dtypes = {
        "__abs__": "numeric",
        "__invert__": "integer_or_boolean",
        "__neg__": "numeric",
        "__pos__": "numeric",
    }
    for op, dtypes in unary_op_dtypes.items():
        for a in _array_vals():
            if (
                dtypes == "numeric"
                and a.dtype in _numeric_dtypes
                or dtypes == "integer_or_boolean"
                and a.dtype in _integer_or_boolean_dtypes
            ):
                # Only test for no error
                getattr(a, op)()
            else:
                assert_raises(TypeError, lambda: getattr(a, op)())

    # Finally, matmul() must be tested separately, because it works a bit
    # different from the other operations.
    def _matmul_array_vals():
        for a in _array_vals():
            yield a
        for d in _all_dtypes:
            yield ones((3, 4), dtype=d)
            yield ones((4, 2), dtype=d)
            yield ones((4, 4), dtype=d)

    # Scalars always error
    for _op in ["__matmul__", "__rmatmul__", "__imatmul__"]:
        for s in [1, 1.0, False]:
            for a in _matmul_array_vals():
                if (type(s) in [float, int] and a.dtype in _floating_dtypes
                    or type(s) == int and a.dtype in _integer_dtypes):
                    # Type promotion is valid, but @ is not allowed on 0-D
                    # inputs, so the error is a ValueError
                    assert_raises(ValueError, lambda: getattr(a, _op)(s))
                else:
                    assert_raises(TypeError, lambda: getattr(a, _op)(s))

    for x in _matmul_array_vals():
        for y in _matmul_array_vals():
            if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
                or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
                or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
                or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
                or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
                or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
                or x.dtype in _boolean_dtypes
                or y.dtype in _boolean_dtypes
                ):
                assert_raises(TypeError, lambda: x.__matmul__(y))
                assert_raises(TypeError, lambda: y.__rmatmul__(x))
                assert_raises(TypeError, lambda: x.__imatmul__(y))
            elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]:
                assert_raises(ValueError, lambda: x.__matmul__(y))
                assert_raises(ValueError, lambda: y.__rmatmul__(x))
                if result_type(x.dtype, y.dtype) != x.dtype:
                    assert_raises(TypeError, lambda: x.__imatmul__(y))
                else:
                    assert_raises(ValueError, lambda: x.__imatmul__(y))
            else:
                x.__matmul__(y)
                y.__rmatmul__(x)
                if result_type(x.dtype, y.dtype) != x.dtype:
                    assert_raises(TypeError, lambda: x.__imatmul__(y))
                elif y.shape[0] != y.shape[1]:
                    # This one fails because x @ y has a different shape from x
                    assert_raises(ValueError, lambda: x.__imatmul__(y))
                else:
                    x.__imatmul__(y)


def test_python_scalar_construtors():
    b = asarray(False)
    i = asarray(0)
    f = asarray(0.0)
    c = asarray(0j)

    assert bool(b) == False
    assert int(i) == 0
    assert float(f) == 0.0
    assert operator.index(i) == 0

    # bool/int/float/complex should only be allowed on 0-D arrays.
    assert_raises(TypeError, lambda: bool(asarray([False])))
    assert_raises(TypeError, lambda: int(asarray([0])))
    assert_raises(TypeError, lambda: float(asarray([0.0])))
    assert_raises(TypeError, lambda: complex(asarray([0j])))
    assert_raises(TypeError, lambda: operator.index(asarray([0])))

    # bool should work on all types of arrays
    assert bool(b) is bool(i) is bool(f) is bool(c) is False

    # int should fail on complex arrays
    assert int(b) == int(i) == int(f) == 0
    assert_raises(TypeError, lambda: int(c))

    # float should fail on complex arrays
    assert float(b) == float(i) == float(f) == 0.0
    assert_raises(TypeError, lambda: float(c))

    # complex should work on all types of arrays
    assert complex(b) == complex(i) == complex(f) == complex(c) == 0j

    # index should only work on integer arrays
    assert operator.index(i) == 0
    assert_raises(TypeError, lambda: operator.index(b))
    assert_raises(TypeError, lambda: operator.index(f))
    assert_raises(TypeError, lambda: operator.index(c))


def test_device_property():
    a = ones((3, 4))
    assert a.device == 'cpu'

    assert all(equal(a.to_device('cpu'), a))
    assert_raises(ValueError, lambda: a.to_device('gpu'))

    assert all(equal(asarray(a, device='cpu'), a))
    assert_raises(ValueError, lambda: asarray(a, device='gpu'))

def test_array_properties():
    a = ones((1, 2, 3))
    b = ones((2, 3))
    assert_raises(ValueError, lambda: a.T)

    assert isinstance(b.T, Array)
    assert b.T.shape == (3, 2)

    assert isinstance(a.mT, Array)
    assert a.mT.shape == (1, 3, 2)
    assert isinstance(b.mT, Array)
    assert b.mT.shape == (3, 2)

def test___array__():
    a = ones((2, 3), dtype=int16)
    assert np.asarray(a) is a._array
    b = np.asarray(a, dtype=np.float64)
    assert np.all(np.equal(b, np.ones((2, 3), dtype=np.float64)))
    assert b.dtype == np.float64

def test_allow_newaxis():
    a = ones(5)
    indexed_a = a[None, :]
    assert indexed_a.shape == (1, 5)

def test_disallow_flat_indexing_with_newaxis():
    a = ones((3, 3, 3))
    with pytest.raises(IndexError):
        a[None, 0, 0]

def test_disallow_mask_with_newaxis():
    a = ones((3, 3, 3))
    with pytest.raises(IndexError):
        a[None, asarray(True)]

@pytest.mark.parametrize("shape", [(), (5,), (3, 3, 3)])
@pytest.mark.parametrize("index", ["string", False, True])
def test_error_on_invalid_index(shape, index):
    a = ones(shape)
    with pytest.raises(IndexError):
        a[index]

def test_mask_0d_array_without_errors():
    a = ones(())
    a[asarray(True)]

@pytest.mark.parametrize(
    "i", [slice(5), slice(5, 0), asarray(True), asarray([0, 1])]
)
def test_error_on_invalid_index_with_ellipsis(i):
    a = ones((3, 3, 3))
    with pytest.raises(IndexError):
        a[..., i]
    with pytest.raises(IndexError):
        a[i, ...]

def test_array_keys_use_private_array():
    """
    Indexing operations convert array keys before indexing the internal array

    Fails when array_api array keys are not converted into NumPy-proper arrays
    in __getitem__(). This is achieved by passing array_api arrays with 0-sized
    dimensions, which NumPy-proper treats erroneously - not sure why!

    TODO: Find and use appropriate __setitem__() case.
    """
    a = ones((0, 0), dtype=bool_)
    assert a[a].shape == (0,)

    a = ones((0,), dtype=bool_)
    key = ones((0, 0), dtype=bool_)
    with pytest.raises(IndexError):
        a[key]

Youez - 2016 - github.com/yon3zu
LinuXploit