Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.227.140.100
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/_elementwise_functions.py
from __future__ import annotations

from ._dtypes import (
    _boolean_dtypes,
    _floating_dtypes,
    _real_floating_dtypes,
    _complex_floating_dtypes,
    _integer_dtypes,
    _integer_or_boolean_dtypes,
    _real_numeric_dtypes,
    _numeric_dtypes,
    _result_type,
)
from ._array_object import Array

import numpy as np


def abs(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in abs")
    return Array._new(np.abs(x._array))


# Note: the function name is different here
def acos(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in acos")
    return Array._new(np.arccos(x._array))


# Note: the function name is different here
def acosh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in acosh")
    return Array._new(np.arccosh(x._array))


def add(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.add <numpy.add>`.

    See its docstring for more information.
    """
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in add")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.add(x1._array, x2._array))


# Note: the function name is different here
def asin(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in asin")
    return Array._new(np.arcsin(x._array))


# Note: the function name is different here
def asinh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in asinh")
    return Array._new(np.arcsinh(x._array))


# Note: the function name is different here
def atan(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in atan")
    return Array._new(np.arctan(x._array))


# Note: the function name is different here
def atan2(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
        raise TypeError("Only real floating-point dtypes are allowed in atan2")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.arctan2(x1._array, x2._array))


# Note: the function name is different here
def atanh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in atanh")
    return Array._new(np.arctanh(x._array))


def bitwise_and(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`.

    See its docstring for more information.
    """
    if (
        x1.dtype not in _integer_or_boolean_dtypes
        or x2.dtype not in _integer_or_boolean_dtypes
    ):
        raise TypeError("Only integer or boolean dtypes are allowed in bitwise_and")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.bitwise_and(x1._array, x2._array))


# Note: the function name is different here
def bitwise_left_shift(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`.

    See its docstring for more information.
    """
    if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
        raise TypeError("Only integer dtypes are allowed in bitwise_left_shift")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    # Note: bitwise_left_shift is only defined for x2 nonnegative.
    if np.any(x2._array < 0):
        raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
    return Array._new(np.left_shift(x1._array, x2._array))


# Note: the function name is different here
def bitwise_invert(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`.

    See its docstring for more information.
    """
    if x.dtype not in _integer_or_boolean_dtypes:
        raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert")
    return Array._new(np.invert(x._array))


def bitwise_or(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`.

    See its docstring for more information.
    """
    if (
        x1.dtype not in _integer_or_boolean_dtypes
        or x2.dtype not in _integer_or_boolean_dtypes
    ):
        raise TypeError("Only integer or boolean dtypes are allowed in bitwise_or")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.bitwise_or(x1._array, x2._array))


# Note: the function name is different here
def bitwise_right_shift(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`.

    See its docstring for more information.
    """
    if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
        raise TypeError("Only integer dtypes are allowed in bitwise_right_shift")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    # Note: bitwise_right_shift is only defined for x2 nonnegative.
    if np.any(x2._array < 0):
        raise ValueError("bitwise_right_shift(x1, x2) is only defined for x2 >= 0")
    return Array._new(np.right_shift(x1._array, x2._array))


def bitwise_xor(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`.

    See its docstring for more information.
    """
    if (
        x1.dtype not in _integer_or_boolean_dtypes
        or x2.dtype not in _integer_or_boolean_dtypes
    ):
        raise TypeError("Only integer or boolean dtypes are allowed in bitwise_xor")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.bitwise_xor(x1._array, x2._array))


def ceil(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`.

    See its docstring for more information.
    """
    if x.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in ceil")
    if x.dtype in _integer_dtypes:
        # Note: The return dtype of ceil is the same as the input
        return x
    return Array._new(np.ceil(x._array))


def conj(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.conj <numpy.conj>`.

    See its docstring for more information.
    """
    if x.dtype not in _complex_floating_dtypes:
        raise TypeError("Only complex floating-point dtypes are allowed in conj")
    return Array._new(np.conj(x))


def cos(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in cos")
    return Array._new(np.cos(x._array))


def cosh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in cosh")
    return Array._new(np.cosh(x._array))


def divide(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`.

    See its docstring for more information.
    """
    if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in divide")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.divide(x1._array, x2._array))


def equal(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`.

    See its docstring for more information.
    """
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.equal(x1._array, x2._array))


def exp(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in exp")
    return Array._new(np.exp(x._array))


def expm1(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in expm1")
    return Array._new(np.expm1(x._array))


def floor(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`.

    See its docstring for more information.
    """
    if x.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in floor")
    if x.dtype in _integer_dtypes:
        # Note: The return dtype of floor is the same as the input
        return x
    return Array._new(np.floor(x._array))


def floor_divide(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in floor_divide")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.floor_divide(x1._array, x2._array))


def greater(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in greater")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.greater(x1._array, x2._array))


def greater_equal(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in greater_equal")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.greater_equal(x1._array, x2._array))


def imag(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.imag <numpy.imag>`.

    See its docstring for more information.
    """
    if x.dtype not in _complex_floating_dtypes:
        raise TypeError("Only complex floating-point dtypes are allowed in imag")
    return Array._new(np.imag(x))


def isfinite(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in isfinite")
    return Array._new(np.isfinite(x._array))


def isinf(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in isinf")
    return Array._new(np.isinf(x._array))


def isnan(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in isnan")
    return Array._new(np.isnan(x._array))


def less(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.less <numpy.less>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in less")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.less(x1._array, x2._array))


def less_equal(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in less_equal")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.less_equal(x1._array, x2._array))


def log(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.log <numpy.log>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in log")
    return Array._new(np.log(x._array))


def log1p(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in log1p")
    return Array._new(np.log1p(x._array))


def log2(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in log2")
    return Array._new(np.log2(x._array))


def log10(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in log10")
    return Array._new(np.log10(x._array))


def logaddexp(x1: Array, x2: Array) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
        raise TypeError("Only real floating-point dtypes are allowed in logaddexp")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.logaddexp(x1._array, x2._array))


def logical_and(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`.

    See its docstring for more information.
    """
    if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
        raise TypeError("Only boolean dtypes are allowed in logical_and")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.logical_and(x1._array, x2._array))


def logical_not(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`.

    See its docstring for more information.
    """
    if x.dtype not in _boolean_dtypes:
        raise TypeError("Only boolean dtypes are allowed in logical_not")
    return Array._new(np.logical_not(x._array))


def logical_or(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`.

    See its docstring for more information.
    """
    if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
        raise TypeError("Only boolean dtypes are allowed in logical_or")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.logical_or(x1._array, x2._array))


def logical_xor(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`.

    See its docstring for more information.
    """
    if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
        raise TypeError("Only boolean dtypes are allowed in logical_xor")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.logical_xor(x1._array, x2._array))


def multiply(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`.

    See its docstring for more information.
    """
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in multiply")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.multiply(x1._array, x2._array))


def negative(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in negative")
    return Array._new(np.negative(x._array))


def not_equal(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`.

    See its docstring for more information.
    """
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.not_equal(x1._array, x2._array))


def positive(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in positive")
    return Array._new(np.positive(x._array))


# Note: the function name is different here
def pow(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.power <numpy.power>`.

    See its docstring for more information.
    """
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in pow")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.power(x1._array, x2._array))


def real(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.real <numpy.real>`.

    See its docstring for more information.
    """
    if x.dtype not in _complex_floating_dtypes:
        raise TypeError("Only complex floating-point dtypes are allowed in real")
    return Array._new(np.real(x))


def remainder(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`.

    See its docstring for more information.
    """
    if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in remainder")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.remainder(x1._array, x2._array))


def round(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.round <numpy.round>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in round")
    return Array._new(np.round(x._array))


def sign(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in sign")
    return Array._new(np.sign(x._array))


def sin(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in sin")
    return Array._new(np.sin(x._array))


def sinh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in sinh")
    return Array._new(np.sinh(x._array))


def square(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.square <numpy.square>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in square")
    return Array._new(np.square(x._array))


def sqrt(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in sqrt")
    return Array._new(np.sqrt(x._array))


def subtract(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`.

    See its docstring for more information.
    """
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError("Only numeric dtypes are allowed in subtract")
    # Call result type here just to raise on disallowed type combinations
    _result_type(x1.dtype, x2.dtype)
    x1, x2 = Array._normalize_two_args(x1, x2)
    return Array._new(np.subtract(x1._array, x2._array))


def tan(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in tan")
    return Array._new(np.tan(x._array))


def tanh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`.

    See its docstring for more information.
    """
    if x.dtype not in _floating_dtypes:
        raise TypeError("Only floating-point dtypes are allowed in tanh")
    return Array._new(np.tanh(x._array))


def trunc(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`.

    See its docstring for more information.
    """
    if x.dtype not in _real_numeric_dtypes:
        raise TypeError("Only real numeric dtypes are allowed in trunc")
    if x.dtype in _integer_dtypes:
        # Note: The return dtype of trunc is the same as the input
        return x
    return Array._new(np.trunc(x._array))

Youez - 2016 - github.com/yon3zu
LinuXploit