Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.119.253.198
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/astroid/brain/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/astroid/brain//brain_numpy_core_multiarray.py
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt

"""Astroid hooks for numpy.core.multiarray module."""

import functools

from astroid.brain.brain_numpy_utils import infer_numpy_member, looks_like_numpy_member
from astroid.brain.helpers import register_module_extender
from astroid.builder import parse
from astroid.inference_tip import inference_tip
from astroid.manager import AstroidManager
from astroid.nodes.node_classes import Attribute, Name


def numpy_core_multiarray_transform():
    return parse(
        """
    # different functions defined in multiarray.py
    def inner(a, b):
        return numpy.ndarray([0, 0])

    def vdot(a, b):
        return numpy.ndarray([0, 0])
        """
    )


register_module_extender(
    AstroidManager(), "numpy.core.multiarray", numpy_core_multiarray_transform
)


METHODS_TO_BE_INFERRED = {
    "array": """def array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0):
            return numpy.ndarray([0, 0])""",
    "dot": """def dot(a, b, out=None):
            return numpy.ndarray([0, 0])""",
    "empty_like": """def empty_like(a, dtype=None, order='K', subok=True):
            return numpy.ndarray((0, 0))""",
    "concatenate": """def concatenate(arrays, axis=None, out=None):
            return numpy.ndarray((0, 0))""",
    "where": """def where(condition, x=None, y=None):
            return numpy.ndarray([0, 0])""",
    "empty": """def empty(shape, dtype=float, order='C'):
            return numpy.ndarray([0, 0])""",
    "bincount": """def bincount(x, weights=None, minlength=0):
            return numpy.ndarray([0, 0])""",
    "busday_count": """def busday_count(
        begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None
    ):
        return numpy.ndarray([0, 0])""",
    "busday_offset": """def busday_offset(
        dates, offsets, roll='raise', weekmask='1111100', holidays=None,
        busdaycal=None, out=None
    ):
        return numpy.ndarray([0, 0])""",
    "can_cast": """def can_cast(from_, to, casting='safe'):
            return True""",
    "copyto": """def copyto(dst, src, casting='same_kind', where=True):
            return None""",
    "datetime_as_string": """def datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind'):
            return numpy.ndarray([0, 0])""",
    "is_busday": """def is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None):
            return numpy.ndarray([0, 0])""",
    "lexsort": """def lexsort(keys, axis=-1):
            return numpy.ndarray([0, 0])""",
    "may_share_memory": """def may_share_memory(a, b, max_work=None):
            return True""",
    # Not yet available because dtype is not yet present in those brains
    #     "min_scalar_type": """def min_scalar_type(a):
    #             return numpy.dtype('int16')""",
    "packbits": """def packbits(a, axis=None, bitorder='big'):
            return numpy.ndarray([0, 0])""",
    # Not yet available because dtype is not yet present in those brains
    #     "result_type": """def result_type(*arrays_and_dtypes):
    #             return numpy.dtype('int16')""",
    "shares_memory": """def shares_memory(a, b, max_work=None):
            return True""",
    "unpackbits": """def unpackbits(a, axis=None, count=None, bitorder='big'):
            return numpy.ndarray([0, 0])""",
    "unravel_index": """def unravel_index(indices, shape, order='C'):
            return (numpy.ndarray([0, 0]),)""",
    "zeros": """def zeros(shape, dtype=float, order='C'):
            return numpy.ndarray([0, 0])""",
}

for method_name, function_src in METHODS_TO_BE_INFERRED.items():
    inference_function = functools.partial(infer_numpy_member, function_src)
    AstroidManager().register_transform(
        Attribute,
        inference_tip(inference_function),
        functools.partial(looks_like_numpy_member, method_name),
    )
    AstroidManager().register_transform(
        Name,
        inference_tip(inference_function),
        functools.partial(looks_like_numpy_member, method_name),
    )

Youez - 2016 - github.com/yon3zu
LinuXploit