Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.135.212.80
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/astroid/brain/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/astroid/brain//brain_functools.py
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt

"""Astroid hooks for understanding functools library module."""

from __future__ import annotations

from collections.abc import Iterator
from functools import partial
from itertools import chain

from astroid import BoundMethod, arguments, extract_node, helpers, nodes, objects
from astroid.context import InferenceContext
from astroid.exceptions import InferenceError, UseInferenceDefault
from astroid.inference_tip import inference_tip
from astroid.interpreter import objectmodel
from astroid.manager import AstroidManager
from astroid.nodes.node_classes import AssignName, Attribute, Call, Name
from astroid.nodes.scoped_nodes import FunctionDef
from astroid.util import UninferableBase

LRU_CACHE = "functools.lru_cache"


class LruWrappedModel(objectmodel.FunctionModel):
    """Special attribute model for functions decorated with functools.lru_cache.

    The said decorators patches at decoration time some functions onto
    the decorated function.
    """

    @property
    def attr___wrapped__(self):
        return self._instance

    @property
    def attr_cache_info(self):
        cache_info = extract_node(
            """
        from functools import _CacheInfo
        _CacheInfo(0, 0, 0, 0)
        """
        )

        class CacheInfoBoundMethod(BoundMethod):
            def infer_call_result(
                self, caller, context: InferenceContext | None = None
            ):
                yield helpers.safe_infer(cache_info)

        return CacheInfoBoundMethod(proxy=self._instance, bound=self._instance)

    @property
    def attr_cache_clear(self):
        node = extract_node("""def cache_clear(self): pass""")
        return BoundMethod(proxy=node, bound=self._instance.parent.scope())


def _transform_lru_cache(node, context: InferenceContext | None = None) -> None:
    # TODO: this is not ideal, since the node should be immutable,
    # but due to https://github.com/PyCQA/astroid/issues/354,
    # there's not much we can do now.
    # Replacing the node would work partially, because,
    # in pylint, the old node would still be available, leading
    # to spurious false positives.
    node.special_attributes = LruWrappedModel()(node)


def _functools_partial_inference(
    node: nodes.Call, context: InferenceContext | None = None
) -> Iterator[objects.PartialFunction]:
    call = arguments.CallSite.from_call(node, context=context)
    number_of_positional = len(call.positional_arguments)
    if number_of_positional < 1:
        raise UseInferenceDefault("functools.partial takes at least one argument")
    if number_of_positional == 1 and not call.keyword_arguments:
        raise UseInferenceDefault(
            "functools.partial needs at least to have some filled arguments"
        )

    partial_function = call.positional_arguments[0]
    try:
        inferred_wrapped_function = next(partial_function.infer(context=context))
    except (InferenceError, StopIteration) as exc:
        raise UseInferenceDefault from exc
    if isinstance(inferred_wrapped_function, UninferableBase):
        raise UseInferenceDefault("Cannot infer the wrapped function")
    if not isinstance(inferred_wrapped_function, FunctionDef):
        raise UseInferenceDefault("The wrapped function is not a function")

    # Determine if the passed keywords into the callsite are supported
    # by the wrapped function.
    if not inferred_wrapped_function.args:
        function_parameters = []
    else:
        function_parameters = chain(
            inferred_wrapped_function.args.args or (),
            inferred_wrapped_function.args.posonlyargs or (),
            inferred_wrapped_function.args.kwonlyargs or (),
        )
    parameter_names = {
        param.name for param in function_parameters if isinstance(param, AssignName)
    }
    if set(call.keyword_arguments) - parameter_names:
        raise UseInferenceDefault("wrapped function received unknown parameters")

    partial_function = objects.PartialFunction(
        call,
        name=inferred_wrapped_function.name,
        lineno=inferred_wrapped_function.lineno,
        col_offset=inferred_wrapped_function.col_offset,
        parent=node.parent,
    )
    partial_function.postinit(
        args=inferred_wrapped_function.args,
        body=inferred_wrapped_function.body,
        decorators=inferred_wrapped_function.decorators,
        returns=inferred_wrapped_function.returns,
        type_comment_returns=inferred_wrapped_function.type_comment_returns,
        type_comment_args=inferred_wrapped_function.type_comment_args,
        doc_node=inferred_wrapped_function.doc_node,
    )
    return iter((partial_function,))


def _looks_like_lru_cache(node) -> bool:
    """Check if the given function node is decorated with lru_cache."""
    if not node.decorators:
        return False
    for decorator in node.decorators.nodes:
        if not isinstance(decorator, Call):
            continue
        if _looks_like_functools_member(decorator, "lru_cache"):
            return True
    return False


def _looks_like_functools_member(node, member) -> bool:
    """Check if the given Call node is a functools.partial call."""
    if isinstance(node.func, Name):
        return node.func.name == member
    if isinstance(node.func, Attribute):
        return (
            node.func.attrname == member
            and isinstance(node.func.expr, Name)
            and node.func.expr.name == "functools"
        )
    return False


_looks_like_partial = partial(_looks_like_functools_member, member="partial")


AstroidManager().register_transform(
    FunctionDef, _transform_lru_cache, _looks_like_lru_cache
)


AstroidManager().register_transform(
    Call,
    inference_tip(_functools_partial_inference),
    _looks_like_partial,
)

Youez - 2016 - github.com/yon3zu
LinuXploit