Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.15.1.23
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/schema.py
"""schema is a library for validating Python data structures, such as those
obtained from config-files, forms, external services or command-line
parsing, converted from JSON/YAML (or something else) to Python data-types."""

import inspect
import re

try:
    from contextlib import ExitStack
except ImportError:
    from contextlib2 import ExitStack


__version__ = "0.7.5"
__all__ = [
    "Schema",
    "And",
    "Or",
    "Regex",
    "Optional",
    "Use",
    "Forbidden",
    "Const",
    "Literal",
    "SchemaError",
    "SchemaWrongKeyError",
    "SchemaMissingKeyError",
    "SchemaForbiddenKeyError",
    "SchemaUnexpectedTypeError",
    "SchemaOnlyOneAllowedError",
]


class SchemaError(Exception):
    """Error during Schema validation."""

    def __init__(self, autos, errors=None):
        self.autos = autos if type(autos) is list else [autos]
        self.errors = errors if type(errors) is list else [errors]
        Exception.__init__(self, self.code)

    @property
    def code(self):
        """
        Removes duplicates values in auto and error list.
        parameters.
        """

        def uniq(seq):
            """
            Utility function that removes duplicate.
            """
            seen = set()
            seen_add = seen.add
            # This way removes duplicates while preserving the order.
            return [x for x in seq if x not in seen and not seen_add(x)]

        data_set = uniq(i for i in self.autos if i is not None)
        error_list = uniq(i for i in self.errors if i is not None)
        if error_list:
            return "\n".join(error_list)
        return "\n".join(data_set)


class SchemaWrongKeyError(SchemaError):
    """Error Should be raised when an unexpected key is detected within the
    data set being."""

    pass


class SchemaMissingKeyError(SchemaError):
    """Error should be raised when a mandatory key is not found within the
    data set being validated"""

    pass


class SchemaOnlyOneAllowedError(SchemaError):
    """Error should be raised when an only_one Or key has multiple matching candidates"""

    pass


class SchemaForbiddenKeyError(SchemaError):
    """Error should be raised when a forbidden key is found within the
    data set being validated, and its value matches the value that was specified"""

    pass


class SchemaUnexpectedTypeError(SchemaError):
    """Error should be raised when a type mismatch is detected within the
    data set being validated."""

    pass


class And(object):
    """
    Utility function to combine validation directives in AND Boolean fashion.
    """

    def __init__(self, *args, **kw):
        self._args = args
        if not set(kw).issubset({"error", "schema", "ignore_extra_keys"}):
            diff = {"error", "schema", "ignore_extra_keys"}.difference(kw)
            raise TypeError("Unknown keyword arguments %r" % list(diff))
        self._error = kw.get("error")
        self._ignore_extra_keys = kw.get("ignore_extra_keys", False)
        # You can pass your inherited Schema class.
        self._schema = kw.get("schema", Schema)

    def __repr__(self):
        return "%s(%s)" % (self.__class__.__name__, ", ".join(repr(a) for a in self._args))

    @property
    def args(self):
        """The provided parameters"""
        return self._args

    def validate(self, data, **kwargs):
        """
        Validate data using defined sub schema/expressions ensuring all
        values are valid.
        :param data: to be validated with sub defined schemas.
        :return: returns validated data
        """
        for s in [self._schema(s, error=self._error, ignore_extra_keys=self._ignore_extra_keys) for s in self._args]:
            data = s.validate(data, **kwargs)
        return data


class Or(And):
    """Utility function to combine validation directives in a OR Boolean
    fashion."""

    def __init__(self, *args, **kwargs):
        self.only_one = kwargs.pop("only_one", False)
        self.match_count = 0
        super(Or, self).__init__(*args, **kwargs)

    def reset(self):
        failed = self.match_count > 1 and self.only_one
        self.match_count = 0
        if failed:
            raise SchemaOnlyOneAllowedError(["There are multiple keys present " + "from the %r condition" % self])

    def validate(self, data, **kwargs):
        """
        Validate data using sub defined schema/expressions ensuring at least
        one value is valid.
        :param data: data to be validated by provided schema.
        :return: return validated data if not validation
        """
        autos, errors = [], []
        for s in [self._schema(s, error=self._error, ignore_extra_keys=self._ignore_extra_keys) for s in self._args]:
            try:
                validation = s.validate(data, **kwargs)
                self.match_count += 1
                if self.match_count > 1 and self.only_one:
                    break
                return validation
            except SchemaError as _x:
                autos += _x.autos
                errors += _x.errors
        raise SchemaError(
            ["%r did not validate %r" % (self, data)] + autos,
            [self._error.format(data) if self._error else None] + errors,
        )


class Regex(object):
    """
    Enables schema.py to validate string using regular expressions.
    """

    # Map all flags bits to a more readable description
    NAMES = [
        "re.ASCII",
        "re.DEBUG",
        "re.VERBOSE",
        "re.UNICODE",
        "re.DOTALL",
        "re.MULTILINE",
        "re.LOCALE",
        "re.IGNORECASE",
        "re.TEMPLATE",
    ]

    def __init__(self, pattern_str, flags=0, error=None):
        self._pattern_str = pattern_str
        flags_list = [
            Regex.NAMES[i] for i, f in enumerate("{0:09b}".format(int(flags))) if f != "0"
        ]  # Name for each bit

        if flags_list:
            self._flags_names = ", flags=" + "|".join(flags_list)
        else:
            self._flags_names = ""

        self._pattern = re.compile(pattern_str, flags=flags)
        self._error = error

    def __repr__(self):
        return "%s(%r%s)" % (self.__class__.__name__, self._pattern_str, self._flags_names)

    @property
    def pattern_str(self):
        """The pattern for the represented regular expression"""
        return self._pattern_str

    def validate(self, data, **kwargs):
        """
        Validated data using defined regex.
        :param data: data to be validated
        :return: return validated data.
        """
        e = self._error

        try:
            if self._pattern.search(data):
                return data
            else:
                raise SchemaError("%r does not match %r" % (self, data), e.format(data) if e else None)
        except TypeError:
            raise SchemaError("%r is not string nor buffer" % data, e)


class Use(object):
    """
    For more general use cases, you can use the Use class to transform
    the data while it is being validate.
    """

    def __init__(self, callable_, error=None):
        if not callable(callable_):
            raise TypeError("Expected a callable, not %r" % callable_)
        self._callable = callable_
        self._error = error

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self._callable)

    def validate(self, data, **kwargs):
        try:
            return self._callable(data)
        except SchemaError as x:
            raise SchemaError([None] + x.autos, [self._error.format(data) if self._error else None] + x.errors)
        except BaseException as x:
            f = _callable_str(self._callable)
            raise SchemaError("%s(%r) raised %r" % (f, data, x), self._error.format(data) if self._error else None)


COMPARABLE, CALLABLE, VALIDATOR, TYPE, DICT, ITERABLE = range(6)


def _priority(s):
    """Return priority for a given object."""
    if type(s) in (list, tuple, set, frozenset):
        return ITERABLE
    if type(s) is dict:
        return DICT
    if issubclass(type(s), type):
        return TYPE
    if isinstance(s, Literal):
        return COMPARABLE
    if hasattr(s, "validate"):
        return VALIDATOR
    if callable(s):
        return CALLABLE
    else:
        return COMPARABLE


def _invoke_with_optional_kwargs(f, **kwargs):
    s = inspect.signature(f)
    if len(s.parameters) == 0:
        return f()
    return f(**kwargs)


class Schema(object):
    """
    Entry point of the library, use this class to instantiate validation
    schema for the data that will be validated.
    """

    def __init__(self, schema, error=None, ignore_extra_keys=False, name=None, description=None, as_reference=False):
        self._schema = schema
        self._error = error
        self._ignore_extra_keys = ignore_extra_keys
        self._name = name
        self._description = description
        # Ask json_schema to create a definition for this schema and use it as part of another
        self.as_reference = as_reference
        if as_reference and name is None:
            raise ValueError("Schema used as reference should have a name")

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self._schema)

    @property
    def schema(self):
        return self._schema

    @property
    def description(self):
        return self._description

    @property
    def name(self):
        return self._name

    @property
    def ignore_extra_keys(self):
        return self._ignore_extra_keys

    @staticmethod
    def _dict_key_priority(s):
        """Return priority for a given key object."""
        if isinstance(s, Hook):
            return _priority(s._schema) - 0.5
        if isinstance(s, Optional):
            return _priority(s._schema) + 0.5
        return _priority(s)

    @staticmethod
    def _is_optional_type(s):
        """Return True if the given key is optional (does not have to be found)"""
        return any(isinstance(s, optional_type) for optional_type in [Optional, Hook])

    def is_valid(self, data, **kwargs):
        """Return whether the given data has passed all the validations
        that were specified in the given schema.
        """
        try:
            self.validate(data, **kwargs)
        except SchemaError:
            return False
        else:
            return True

    def _prepend_schema_name(self, message):
        """
        If a custom schema name has been defined, prepends it to the error
        message that gets raised when a schema error occurs.
        """
        if self._name:
            message = "{0!r} {1!s}".format(self._name, message)
        return message

    def validate(self, data, **kwargs):
        Schema = self.__class__
        s = self._schema
        e = self._error
        i = self._ignore_extra_keys

        if isinstance(s, Literal):
            s = s.schema

        flavor = _priority(s)
        if flavor == ITERABLE:
            data = Schema(type(s), error=e).validate(data, **kwargs)
            o = Or(*s, error=e, schema=Schema, ignore_extra_keys=i)
            return type(data)(o.validate(d, **kwargs) for d in data)
        if flavor == DICT:
            exitstack = ExitStack()
            data = Schema(dict, error=e).validate(data, **kwargs)
            new = type(data)()  # new - is a dict of the validated values
            coverage = set()  # matched schema keys
            # for each key and value find a schema entry matching them, if any
            sorted_skeys = sorted(s, key=self._dict_key_priority)
            for skey in sorted_skeys:
                if hasattr(skey, "reset"):
                    exitstack.callback(skey.reset)

            with exitstack:
                # Evaluate dictionaries last
                data_items = sorted(data.items(), key=lambda value: isinstance(value[1], dict))
                for key, value in data_items:
                    for skey in sorted_skeys:
                        svalue = s[skey]
                        try:
                            nkey = Schema(skey, error=e).validate(key, **kwargs)
                        except SchemaError:
                            pass
                        else:
                            if isinstance(skey, Hook):
                                # As the content of the value makes little sense for
                                # keys with a hook, we reverse its meaning:
                                # we will only call the handler if the value does match
                                # In the case of the forbidden key hook,
                                # we will raise the SchemaErrorForbiddenKey exception
                                # on match, allowing for excluding a key only if its
                                # value has a certain type, and allowing Forbidden to
                                # work well in combination with Optional.
                                try:
                                    nvalue = Schema(svalue, error=e).validate(value, **kwargs)
                                except SchemaError:
                                    continue
                                skey.handler(nkey, data, e)
                            else:
                                try:
                                    nvalue = Schema(svalue, error=e, ignore_extra_keys=i).validate(value, **kwargs)
                                except SchemaError as x:
                                    k = "Key '%s' error:" % nkey
                                    message = self._prepend_schema_name(k)
                                    raise SchemaError([message] + x.autos, [e.format(data) if e else None] + x.errors)
                                else:
                                    new[nkey] = nvalue
                                    coverage.add(skey)
                                    break
            required = set(k for k in s if not self._is_optional_type(k))
            if not required.issubset(coverage):
                missing_keys = required - coverage
                s_missing_keys = ", ".join(repr(k) for k in sorted(missing_keys, key=repr))
                message = "Missing key%s: %s" % (_plural_s(missing_keys), s_missing_keys)
                message = self._prepend_schema_name(message)
                raise SchemaMissingKeyError(message, e.format(data) if e else None)
            if not self._ignore_extra_keys and (len(new) != len(data)):
                wrong_keys = set(data.keys()) - set(new.keys())
                s_wrong_keys = ", ".join(repr(k) for k in sorted(wrong_keys, key=repr))
                message = "Wrong key%s %s in %r" % (_plural_s(wrong_keys), s_wrong_keys, data)
                message = self._prepend_schema_name(message)
                raise SchemaWrongKeyError(message, e.format(data) if e else None)

            # Apply default-having optionals that haven't been used:
            defaults = set(k for k in s if isinstance(k, Optional) and hasattr(k, "default")) - coverage
            for default in defaults:
                new[default.key] = _invoke_with_optional_kwargs(default.default, **kwargs) if callable(default.default) else default.default

            return new
        if flavor == TYPE:
            if isinstance(data, s) and not (isinstance(data, bool) and s == int):
                return data
            else:
                message = "%r should be instance of %r" % (data, s.__name__)
                message = self._prepend_schema_name(message)
                raise SchemaUnexpectedTypeError(message, e.format(data) if e else None)
        if flavor == VALIDATOR:
            try:
                return s.validate(data, **kwargs)
            except SchemaError as x:
                raise SchemaError([None] + x.autos, [e.format(data) if e else None] + x.errors)
            except BaseException as x:
                message = "%r.validate(%r) raised %r" % (s, data, x)
                message = self._prepend_schema_name(message)
                raise SchemaError(message, e.format(data) if e else None)
        if flavor == CALLABLE:
            f = _callable_str(s)
            try:
                if s(data):
                    return data
            except SchemaError as x:
                raise SchemaError([None] + x.autos, [e.format(data) if e else None] + x.errors)
            except BaseException as x:
                message = "%s(%r) raised %r" % (f, data, x)
                message = self._prepend_schema_name(message)
                raise SchemaError(message, e.format(data) if e else None)
            message = "%s(%r) should evaluate to True" % (f, data)
            message = self._prepend_schema_name(message)
            raise SchemaError(message, e.format(data) if e else None)
        if s == data:
            return data
        else:
            message = "%r does not match %r" % (s, data)
            message = self._prepend_schema_name(message)
            raise SchemaError(message, e.format(data) if e else None)

    def json_schema(self, schema_id, use_refs=False, **kwargs):
        """Generate a draft-07 JSON schema dict representing the Schema.
        This method must be called with a schema_id.

        :param schema_id: The value of the $id on the main schema
        :param use_refs: Enable reusing object references in the resulting JSON schema.
                         Schemas with references are harder to read by humans, but are a lot smaller when there
                         is a lot of reuse
        """

        seen = dict()  # For use_refs
        definitions_by_name = {}

        def _json_schema(schema, is_main_schema=True, description=None, allow_reference=True):
            Schema = self.__class__

            def _create_or_use_ref(return_dict):
                """If not already seen, return the provided part of the schema unchanged.
                If already seen, give an id to the already seen dict and return a reference to the previous part
                of the schema instead.
                """
                if not use_refs or is_main_schema:
                    return return_schema

                hashed = hash(repr(sorted(return_dict.items())))

                if hashed not in seen:
                    seen[hashed] = return_dict
                    return return_dict
                else:
                    id_str = "#" + str(hashed)
                    seen[hashed]["$id"] = id_str
                    return {"$ref": id_str}

            def _get_type_name(python_type):
                """Return the JSON schema name for a Python type"""
                if python_type == str:
                    return "string"
                elif python_type == int:
                    return "integer"
                elif python_type == float:
                    return "number"
                elif python_type == bool:
                    return "boolean"
                elif python_type == list:
                    return "array"
                elif python_type == dict:
                    return "object"
                return "string"

            def _to_json_type(value):
                """Attempt to convert a constant value (for "const" and "default") to a JSON serializable value"""
                if value is None or type(value) in (str, int, float, bool, list, dict):
                    return value

                if type(value) in (tuple, set, frozenset):
                    return list(value)

                if isinstance(value, Literal):
                    return value.schema

                return str(value)

            def _to_schema(s, ignore_extra_keys):
                if not isinstance(s, Schema):
                    return Schema(s, ignore_extra_keys=ignore_extra_keys)

                return s

            s = schema.schema
            i = schema.ignore_extra_keys
            flavor = _priority(s)

            return_schema = {}

            return_description = description or schema.description
            if return_description:
                return_schema["description"] = return_description

            # Check if we have to create a common definition and use as reference
            if allow_reference and schema.as_reference:
                # Generate sub schema if not already done
                if schema.name not in definitions_by_name:
                    definitions_by_name[schema.name] = {}  # Avoid infinite loop
                    definitions_by_name[schema.name] = _json_schema(schema, is_main_schema=False, allow_reference=False)

                return_schema["$ref"] = "#/definitions/" + schema.name
            else:
                if flavor == TYPE:
                    # Handle type
                    return_schema["type"] = _get_type_name(s)
                elif flavor == ITERABLE:
                    # Handle arrays or dict schema

                    return_schema["type"] = "array"
                    if len(s) == 1:
                        return_schema["items"] = _json_schema(_to_schema(s[0], i), is_main_schema=False)
                    elif len(s) > 1:
                        return_schema["items"] = _json_schema(Schema(Or(*s)), is_main_schema=False)
                elif isinstance(s, Or):
                    # Handle Or values

                    # Check if we can use an enum
                    if all(priority == COMPARABLE for priority in [_priority(value) for value in s.args]):
                        or_values = [str(s) if isinstance(s, Literal) else s for s in s.args]
                        # All values are simple, can use enum or const
                        if len(or_values) == 1:
                            return_schema["const"] = _to_json_type(or_values[0])
                            return return_schema
                        return_schema["enum"] = or_values
                    else:
                        # No enum, let's go with recursive calls
                        any_of_values = []
                        for or_key in s.args:
                            new_value = _json_schema(_to_schema(or_key, i), is_main_schema=False)
                            if new_value != {} and new_value not in any_of_values:
                                any_of_values.append(new_value)
                        if len(any_of_values) == 1:
                            # Only one representable condition remains, do not put under anyOf
                            return_schema.update(any_of_values[0])
                        else:
                            return_schema["anyOf"] = any_of_values
                elif isinstance(s, And):
                    # Handle And values
                    all_of_values = []
                    for and_key in s.args:
                        new_value = _json_schema(_to_schema(and_key, i), is_main_schema=False)
                        if new_value != {} and new_value not in all_of_values:
                            all_of_values.append(new_value)
                    if len(all_of_values) == 1:
                        # Only one representable condition remains, do not put under allOf
                        return_schema.update(all_of_values[0])
                    else:
                        return_schema["allOf"] = all_of_values
                elif flavor == COMPARABLE:
                    return_schema["const"] = _to_json_type(s)
                elif flavor == VALIDATOR and type(s) == Regex:
                    return_schema["type"] = "string"
                    return_schema["pattern"] = s.pattern_str
                else:
                    if flavor != DICT:
                        # If not handled, do not check
                        return return_schema

                    # Schema is a dict

                    required_keys = []
                    expanded_schema = {}
                    additional_properties = i
                    for key in s:
                        if isinstance(key, Hook):
                            continue

                        def _key_allows_additional_properties(key):
                            """Check if a key is broad enough to allow additional properties"""
                            if isinstance(key, Optional):
                                return _key_allows_additional_properties(key.schema)

                            return key == str or key == object

                        def _get_key_description(key):
                            """Get the description associated to a key (as specified in a Literal object). Return None if not a Literal"""
                            if isinstance(key, Optional):
                                return _get_key_description(key.schema)

                            if isinstance(key, Literal):
                                return key.description

                            return None

                        def _get_key_name(key):
                            """Get the name of a key (as specified in a Literal object). Return the key unchanged if not a Literal"""
                            if isinstance(key, Optional):
                                return _get_key_name(key.schema)

                            if isinstance(key, Literal):
                                return key.schema

                            return key

                        additional_properties = additional_properties or _key_allows_additional_properties(key)
                        sub_schema = _to_schema(s[key], ignore_extra_keys=i)
                        key_name = _get_key_name(key)

                        if isinstance(key_name, str):
                            if not isinstance(key, Optional):
                                required_keys.append(key_name)
                            expanded_schema[key_name] = _json_schema(
                                sub_schema, is_main_schema=False, description=_get_key_description(key)
                            )
                            if isinstance(key, Optional) and hasattr(key, "default"):
                                expanded_schema[key_name]["default"] = _to_json_type(_invoke_with_optional_kwargs(key.default, **kwargs) if callable(key.default) else key.default)
                        elif isinstance(key_name, Or):
                            # JSON schema does not support having a key named one name or another, so we just add both options
                            # This is less strict because we cannot enforce that one or the other is required

                            for or_key in key_name.args:
                                expanded_schema[_get_key_name(or_key)] = _json_schema(
                                    sub_schema, is_main_schema=False, description=_get_key_description(or_key)
                                )

                    return_schema.update(
                        {
                            "type": "object",
                            "properties": expanded_schema,
                            "required": required_keys,
                            "additionalProperties": additional_properties,
                        }
                    )

            if is_main_schema:
                return_schema.update({"$id": schema_id, "$schema": "http://json-schema.org/draft-07/schema#"})
                if self._name:
                    return_schema["title"] = self._name

                if definitions_by_name:
                    return_schema["definitions"] = {}
                    for definition_name, definition in definitions_by_name.items():
                        return_schema["definitions"][definition_name] = definition

            return _create_or_use_ref(return_schema)

        return _json_schema(self, True)


class Optional(Schema):
    """Marker for an optional part of the validation Schema."""

    _MARKER = object()

    def __init__(self, *args, **kwargs):
        default = kwargs.pop("default", self._MARKER)
        super(Optional, self).__init__(*args, **kwargs)
        if default is not self._MARKER:
            # See if I can come up with a static key to use for myself:
            if _priority(self._schema) != COMPARABLE:
                raise TypeError(
                    "Optional keys with defaults must have simple, "
                    "predictable values, like literal strings or ints. "
                    '"%r" is too complex.' % (self._schema,)
                )
            self.default = default
            self.key = str(self._schema)

    def __hash__(self):
        return hash(self._schema)

    def __eq__(self, other):
        return (
            self.__class__ is other.__class__
            and getattr(self, "default", self._MARKER) == getattr(other, "default", self._MARKER)
            and self._schema == other._schema
        )

    def reset(self):
        if hasattr(self._schema, "reset"):
            self._schema.reset()


class Hook(Schema):
    def __init__(self, *args, **kwargs):
        self.handler = kwargs.pop("handler", lambda *args: None)
        super(Hook, self).__init__(*args, **kwargs)
        self.key = self._schema


class Forbidden(Hook):
    def __init__(self, *args, **kwargs):
        kwargs["handler"] = self._default_function
        super(Forbidden, self).__init__(*args, **kwargs)

    @staticmethod
    def _default_function(nkey, data, error):
        raise SchemaForbiddenKeyError("Forbidden key encountered: %r in %r" % (nkey, data), error)


class Literal(object):
    def __init__(self, value, description=None):
        self._schema = value
        self._description = description

    def __str__(self):
        return self._schema

    def __repr__(self):
        return 'Literal("' + self.schema + '", description="' + (self.description or "") + '")'

    @property
    def description(self):
        return self._description

    @property
    def schema(self):
        return self._schema


class Const(Schema):
    def validate(self, data, **kwargs):
        super(Const, self).validate(data, **kwargs)
        return data


def _callable_str(callable_):
    if hasattr(callable_, "__name__"):
        return callable_.__name__
    return str(callable_)


def _plural_s(sized):
    return "s" if len(sized) > 1 else ""

Youez - 2016 - github.com/yon3zu
LinuXploit