Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.226.180.253
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests/test_shape_base.py
import numpy as np
import functools
import sys
import pytest

from numpy.lib.shape_base import (
    apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit,
    vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis,
    put_along_axis
    )
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_raises, assert_warns
    )


IS_64BIT = sys.maxsize > 2**32


def _add_keepdims(func):
    """ hack in keepdims behavior into a function taking an axis """
    @functools.wraps(func)
    def wrapped(a, axis, **kwargs):
        res = func(a, axis=axis, **kwargs)
        if axis is None:
            axis = 0  # res is now a scalar, so we can insert this anywhere
        return np.expand_dims(res, axis=axis)
    return wrapped


class TestTakeAlongAxis:
    def test_argequivalent(self):
        """ Test it translates from arg<func> to <func> """
        from numpy.random import rand
        a = rand(3, 4, 5)

        funcs = [
            (np.sort, np.argsort, dict()),
            (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
            (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
            (np.partition, np.argpartition, dict(kth=2)),
        ]

        for func, argfunc, kwargs in funcs:
            for axis in list(range(a.ndim)) + [None]:
                a_func = func(a, axis=axis, **kwargs)
                ai_func = argfunc(a, axis=axis, **kwargs)
                assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))

    def test_invalid(self):
        """ Test it errors when indices has too few dimensions """
        a = np.ones((10, 10))
        ai = np.ones((10, 2), dtype=np.intp)

        # sanity check
        take_along_axis(a, ai, axis=1)

        # not enough indices
        assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1)
        # bool arrays not allowed
        assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1)
        # float arrays not allowed
        assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1)
        # invalid axis
        assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)

    def test_empty(self):
        """ Test everything is ok with empty results, even with inserted dims """
        a  = np.ones((3, 4, 5))
        ai = np.ones((3, 0, 5), dtype=np.intp)

        actual = take_along_axis(a, ai, axis=1)
        assert_equal(actual.shape, ai.shape)

    def test_broadcast(self):
        """ Test that non-indexing dimensions are broadcast in both directions """
        a  = np.ones((3, 4, 1))
        ai = np.ones((1, 2, 5), dtype=np.intp)
        actual = take_along_axis(a, ai, axis=1)
        assert_equal(actual.shape, (3, 2, 5))


class TestPutAlongAxis:
    def test_replace_max(self):
        a_base = np.array([[10, 30, 20], [60, 40, 50]])

        for axis in list(range(a_base.ndim)) + [None]:
            # we mutate this in the loop
            a = a_base.copy()

            # replace the max with a small value
            i_max = _add_keepdims(np.argmax)(a, axis=axis)
            put_along_axis(a, i_max, -99, axis=axis)

            # find the new minimum, which should max
            i_min = _add_keepdims(np.argmin)(a, axis=axis)

            assert_equal(i_min, i_max)

    def test_broadcast(self):
        """ Test that non-indexing dimensions are broadcast in both directions """
        a  = np.ones((3, 4, 1))
        ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4
        put_along_axis(a, ai, 20, axis=1)
        assert_equal(take_along_axis(a, ai, axis=1), 20)


class TestApplyAlongAxis:
    def test_simple(self):
        a = np.ones((20, 10), 'd')
        assert_array_equal(
            apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))

    def test_simple101(self):
        a = np.ones((10, 101), 'd')
        assert_array_equal(
            apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))

    def test_3d(self):
        a = np.arange(27).reshape((3, 3, 3))
        assert_array_equal(apply_along_axis(np.sum, 0, a),
                           [[27, 30, 33], [36, 39, 42], [45, 48, 51]])

    def test_preserve_subclass(self):
        def double(row):
            return row * 2

        class MyNDArray(np.ndarray):
            pass

        m = np.array([[0, 1], [2, 3]]).view(MyNDArray)
        expected = np.array([[0, 2], [4, 6]]).view(MyNDArray)

        result = apply_along_axis(double, 0, m)
        assert_(isinstance(result, MyNDArray))
        assert_array_equal(result, expected)

        result = apply_along_axis(double, 1, m)
        assert_(isinstance(result, MyNDArray))
        assert_array_equal(result, expected)

    def test_subclass(self):
        class MinimalSubclass(np.ndarray):
            data = 1

        def minimal_function(array):
            return array.data

        a = np.zeros((6, 3)).view(MinimalSubclass)

        assert_array_equal(
            apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1])
        )

    def test_scalar_array(self, cls=np.ndarray):
        a = np.ones((6, 3)).view(cls)
        res = apply_along_axis(np.sum, 0, a)
        assert_(isinstance(res, cls))
        assert_array_equal(res, np.array([6, 6, 6]).view(cls))

    def test_0d_array(self, cls=np.ndarray):
        def sum_to_0d(x):
            """ Sum x, returning a 0d array of the same class """
            assert_equal(x.ndim, 1)
            return np.squeeze(np.sum(x, keepdims=True))
        a = np.ones((6, 3)).view(cls)
        res = apply_along_axis(sum_to_0d, 0, a)
        assert_(isinstance(res, cls))
        assert_array_equal(res, np.array([6, 6, 6]).view(cls))

        res = apply_along_axis(sum_to_0d, 1, a)
        assert_(isinstance(res, cls))
        assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))

    def test_axis_insertion(self, cls=np.ndarray):
        def f1to2(x):
            """produces an asymmetric non-square matrix from x"""
            assert_equal(x.ndim, 1)
            return (x[::-1] * x[1:,None]).view(cls)

        a2d = np.arange(6*3).reshape((6, 3))

        # 2d insertion along first axis
        actual = apply_along_axis(f1to2, 0, a2d)
        expected = np.stack([
            f1to2(a2d[:,i]) for i in range(a2d.shape[1])
        ], axis=-1).view(cls)
        assert_equal(type(actual), type(expected))
        assert_equal(actual, expected)

        # 2d insertion along last axis
        actual = apply_along_axis(f1to2, 1, a2d)
        expected = np.stack([
            f1to2(a2d[i,:]) for i in range(a2d.shape[0])
        ], axis=0).view(cls)
        assert_equal(type(actual), type(expected))
        assert_equal(actual, expected)

        # 3d insertion along middle axis
        a3d = np.arange(6*5*3).reshape((6, 5, 3))

        actual = apply_along_axis(f1to2, 1, a3d)
        expected = np.stack([
            np.stack([
                f1to2(a3d[i,:,j]) for i in range(a3d.shape[0])
            ], axis=0)
            for j in range(a3d.shape[2])
        ], axis=-1).view(cls)
        assert_equal(type(actual), type(expected))
        assert_equal(actual, expected)

    def test_subclass_preservation(self):
        class MinimalSubclass(np.ndarray):
            pass
        self.test_scalar_array(MinimalSubclass)
        self.test_0d_array(MinimalSubclass)
        self.test_axis_insertion(MinimalSubclass)

    def test_axis_insertion_ma(self):
        def f1to2(x):
            """produces an asymmetric non-square matrix from x"""
            assert_equal(x.ndim, 1)
            res = x[::-1] * x[1:,None]
            return np.ma.masked_where(res%5==0, res)
        a = np.arange(6*3).reshape((6, 3))
        res = apply_along_axis(f1to2, 0, a)
        assert_(isinstance(res, np.ma.masked_array))
        assert_equal(res.ndim, 3)
        assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask)
        assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask)
        assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask)

    def test_tuple_func1d(self):
        def sample_1d(x):
            return x[1], x[0]
        res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
        assert_array_equal(res, np.array([[2, 1], [4, 3]]))

    def test_empty(self):
        # can't apply_along_axis when there's no chance to call the function
        def never_call(x):
            assert_(False) # should never be reached

        a = np.empty((0, 0))
        assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
        assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)

        # but it's sometimes ok with some non-zero dimensions
        def empty_to_1(x):
            assert_(len(x) == 0)
            return 1

        a = np.empty((10, 0))
        actual = np.apply_along_axis(empty_to_1, 1, a)
        assert_equal(actual, np.ones(10))
        assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)

    def test_with_iterable_object(self):
        # from issue 5248
        d = np.array([
            [{1, 11}, {2, 22}, {3, 33}],
            [{4, 44}, {5, 55}, {6, 66}]
        ])
        actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
        expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])

        assert_equal(actual, expected)

        # issue 8642 - assert_equal doesn't detect this!
        for i in np.ndindex(actual.shape):
            assert_equal(type(actual[i]), type(expected[i]))


class TestApplyOverAxes:
    def test_simple(self):
        a = np.arange(24).reshape(2, 3, 4)
        aoa_a = apply_over_axes(np.sum, a, [0, 2])
        assert_array_equal(aoa_a, np.array([[[60], [92], [124]]]))


class TestExpandDims:
    def test_functionality(self):
        s = (2, 3, 4, 5)
        a = np.empty(s)
        for axis in range(-5, 4):
            b = expand_dims(a, axis)
            assert_(b.shape[axis] == 1)
            assert_(np.squeeze(b).shape == s)

    def test_axis_tuple(self):
        a = np.empty((3, 3, 3))
        assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
        assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
        assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
        assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)

    def test_axis_out_of_range(self):
        s = (2, 3, 4, 5)
        a = np.empty(s)
        assert_raises(np.AxisError, expand_dims, a, -6)
        assert_raises(np.AxisError, expand_dims, a, 5)

        a = np.empty((3, 3, 3))
        assert_raises(np.AxisError, expand_dims, a, (0, -6))
        assert_raises(np.AxisError, expand_dims, a, (0, 5))

    def test_repeated_axis(self):
        a = np.empty((3, 3, 3))
        assert_raises(ValueError, expand_dims, a, axis=(1, 1))

    def test_subclasses(self):
        a = np.arange(10).reshape((2, 5))
        a = np.ma.array(a, mask=a%3 == 0)

        expanded = np.expand_dims(a, axis=1)
        assert_(isinstance(expanded, np.ma.MaskedArray))
        assert_equal(expanded.shape, (2, 1, 5))
        assert_equal(expanded.mask.shape, (2, 1, 5))


class TestArraySplit:
    def test_integer_0_split(self):
        a = np.arange(10)
        assert_raises(ValueError, array_split, a, 0)

    def test_integer_split(self):
        a = np.arange(10)
        res = array_split(a, 1)
        desired = [np.arange(10)]
        compare_results(res, desired)

        res = array_split(a, 2)
        desired = [np.arange(5), np.arange(5, 10)]
        compare_results(res, desired)

        res = array_split(a, 3)
        desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
        compare_results(res, desired)

        res = array_split(a, 4)
        desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8),
                   np.arange(8, 10)]
        compare_results(res, desired)

        res = array_split(a, 5)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
                   np.arange(6, 8), np.arange(8, 10)]
        compare_results(res, desired)

        res = array_split(a, 6)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
                   np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 7)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
                   np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
                   np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 8)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5),
                   np.arange(5, 6), np.arange(6, 7), np.arange(7, 8),
                   np.arange(8, 9), np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 9)
        desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4),
                   np.arange(4, 5), np.arange(5, 6), np.arange(6, 7),
                   np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 10)
        desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
                   np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
                   np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
                   np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 11)
        desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
                   np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
                   np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
                   np.arange(9, 10), np.array([])]
        compare_results(res, desired)

    def test_integer_split_2D_rows(self):
        a = np.array([np.arange(10), np.arange(10)])
        res = array_split(a, 3, axis=0)
        tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
                   np.zeros((0, 10))]
        compare_results(res, tgt)
        assert_(a.dtype.type is res[-1].dtype.type)

        # Same thing for manual splits:
        res = array_split(a, [0, 1], axis=0)
        tgt = [np.zeros((0, 10)), np.array([np.arange(10)]),
               np.array([np.arange(10)])]
        compare_results(res, tgt)
        assert_(a.dtype.type is res[-1].dtype.type)

    def test_integer_split_2D_cols(self):
        a = np.array([np.arange(10), np.arange(10)])
        res = array_split(a, 3, axis=-1)
        desired = [np.array([np.arange(4), np.arange(4)]),
                   np.array([np.arange(4, 7), np.arange(4, 7)]),
                   np.array([np.arange(7, 10), np.arange(7, 10)])]
        compare_results(res, desired)

    def test_integer_split_2D_default(self):
        """ This will fail if we change default axis
        """
        a = np.array([np.arange(10), np.arange(10)])
        res = array_split(a, 3)
        tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
                   np.zeros((0, 10))]
        compare_results(res, tgt)
        assert_(a.dtype.type is res[-1].dtype.type)
        # perhaps should check higher dimensions

    @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
    def test_integer_split_2D_rows_greater_max_int32(self):
        a = np.broadcast_to([0], (1 << 32, 2))
        res = array_split(a, 4)
        chunk = np.broadcast_to([0], (1 << 30, 2))
        tgt = [chunk] * 4
        for i in range(len(tgt)):
            assert_equal(res[i].shape, tgt[i].shape)

    def test_index_split_simple(self):
        a = np.arange(10)
        indices = [1, 5, 7]
        res = array_split(a, indices, axis=-1)
        desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7),
                   np.arange(7, 10)]
        compare_results(res, desired)

    def test_index_split_low_bound(self):
        a = np.arange(10)
        indices = [0, 5, 7]
        res = array_split(a, indices, axis=-1)
        desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
                   np.arange(7, 10)]
        compare_results(res, desired)

    def test_index_split_high_bound(self):
        a = np.arange(10)
        indices = [0, 5, 7, 10, 12]
        res = array_split(a, indices, axis=-1)
        desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
                   np.arange(7, 10), np.array([]), np.array([])]
        compare_results(res, desired)


class TestSplit:
    # The split function is essentially the same as array_split,
    # except that it test if splitting will result in an
    # equal split.  Only test for this case.

    def test_equal_split(self):
        a = np.arange(10)
        res = split(a, 2)
        desired = [np.arange(5), np.arange(5, 10)]
        compare_results(res, desired)

    def test_unequal_split(self):
        a = np.arange(10)
        assert_raises(ValueError, split, a, 3)


class TestColumnStack:
    def test_non_iterable(self):
        assert_raises(TypeError, column_stack, 1)

    def test_1D_arrays(self):
        # example from docstring
        a = np.array((1, 2, 3))
        b = np.array((2, 3, 4))
        expected = np.array([[1, 2],
                             [2, 3],
                             [3, 4]])
        actual = np.column_stack((a, b))
        assert_equal(actual, expected)

    def test_2D_arrays(self):
        # same as hstack 2D docstring example
        a = np.array([[1], [2], [3]])
        b = np.array([[2], [3], [4]])
        expected = np.array([[1, 2],
                             [2, 3],
                             [3, 4]])
        actual = np.column_stack((a, b))
        assert_equal(actual, expected)

    def test_generator(self):
        with pytest.raises(TypeError, match="arrays to stack must be"):
            column_stack((np.arange(3) for _ in range(2)))


class TestDstack:
    def test_non_iterable(self):
        assert_raises(TypeError, dstack, 1)

    def test_0D_array(self):
        a = np.array(1)
        b = np.array(2)
        res = dstack([a, b])
        desired = np.array([[[1, 2]]])
        assert_array_equal(res, desired)

    def test_1D_array(self):
        a = np.array([1])
        b = np.array([2])
        res = dstack([a, b])
        desired = np.array([[[1, 2]]])
        assert_array_equal(res, desired)

    def test_2D_array(self):
        a = np.array([[1], [2]])
        b = np.array([[1], [2]])
        res = dstack([a, b])
        desired = np.array([[[1, 1]], [[2, 2, ]]])
        assert_array_equal(res, desired)

    def test_2D_array2(self):
        a = np.array([1, 2])
        b = np.array([1, 2])
        res = dstack([a, b])
        desired = np.array([[[1, 1], [2, 2]]])
        assert_array_equal(res, desired)

    def test_generator(self):
        with pytest.raises(TypeError, match="arrays to stack must be"):
            dstack((np.arange(3) for _ in range(2)))


# array_split has more comprehensive test of splitting.
# only do simple test on hsplit, vsplit, and dsplit
class TestHsplit:
    """Only testing for integer splits.

    """
    def test_non_iterable(self):
        assert_raises(ValueError, hsplit, 1, 1)

    def test_0D_array(self):
        a = np.array(1)
        try:
            hsplit(a, 2)
            assert_(0)
        except ValueError:
            pass

    def test_1D_array(self):
        a = np.array([1, 2, 3, 4])
        res = hsplit(a, 2)
        desired = [np.array([1, 2]), np.array([3, 4])]
        compare_results(res, desired)

    def test_2D_array(self):
        a = np.array([[1, 2, 3, 4],
                  [1, 2, 3, 4]])
        res = hsplit(a, 2)
        desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])]
        compare_results(res, desired)


class TestVsplit:
    """Only testing for integer splits.

    """
    def test_non_iterable(self):
        assert_raises(ValueError, vsplit, 1, 1)

    def test_0D_array(self):
        a = np.array(1)
        assert_raises(ValueError, vsplit, a, 2)

    def test_1D_array(self):
        a = np.array([1, 2, 3, 4])
        try:
            vsplit(a, 2)
            assert_(0)
        except ValueError:
            pass

    def test_2D_array(self):
        a = np.array([[1, 2, 3, 4],
                  [1, 2, 3, 4]])
        res = vsplit(a, 2)
        desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
        compare_results(res, desired)


class TestDsplit:
    # Only testing for integer splits.
    def test_non_iterable(self):
        assert_raises(ValueError, dsplit, 1, 1)

    def test_0D_array(self):
        a = np.array(1)
        assert_raises(ValueError, dsplit, a, 2)

    def test_1D_array(self):
        a = np.array([1, 2, 3, 4])
        assert_raises(ValueError, dsplit, a, 2)

    def test_2D_array(self):
        a = np.array([[1, 2, 3, 4],
                  [1, 2, 3, 4]])
        try:
            dsplit(a, 2)
            assert_(0)
        except ValueError:
            pass

    def test_3D_array(self):
        a = np.array([[[1, 2, 3, 4],
                   [1, 2, 3, 4]],
                  [[1, 2, 3, 4],
                   [1, 2, 3, 4]]])
        res = dsplit(a, 2)
        desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
                   np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])]
        compare_results(res, desired)


class TestSqueeze:
    def test_basic(self):
        from numpy.random import rand

        a = rand(20, 10, 10, 1, 1)
        b = rand(20, 1, 10, 1, 20)
        c = rand(1, 1, 20, 10)
        assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
        assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
        assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))

        # Squeezing to 0-dim should still give an ndarray
        a = [[[1.5]]]
        res = np.squeeze(a)
        assert_equal(res, 1.5)
        assert_equal(res.ndim, 0)
        assert_equal(type(res), np.ndarray)


class TestKron:
    def test_basic(self):
        # Using 0-dimensional ndarray
        a = np.array(1)
        b = np.array([[1, 2], [3, 4]])
        k = np.array([[1, 2], [3, 4]])
        assert_array_equal(np.kron(a, b), k)
        a = np.array([[1, 2], [3, 4]])
        b = np.array(1)
        assert_array_equal(np.kron(a, b), k)

        # Using 1-dimensional ndarray
        a = np.array([3])
        b = np.array([[1, 2], [3, 4]])
        k = np.array([[3, 6], [9, 12]])
        assert_array_equal(np.kron(a, b), k)
        a = np.array([[1, 2], [3, 4]])
        b = np.array([3])
        assert_array_equal(np.kron(a, b), k)

        # Using 3-dimensional ndarray
        a = np.array([[[1]], [[2]]])
        b = np.array([[1, 2], [3, 4]])
        k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
        assert_array_equal(np.kron(a, b), k)
        a = np.array([[1, 2], [3, 4]])
        b = np.array([[[1]], [[2]]])
        k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
        assert_array_equal(np.kron(a, b), k)

    def test_return_type(self):
        class myarray(np.ndarray):
            __array_priority__ = 1.0

        a = np.ones([2, 2])
        ma = myarray(a.shape, a.dtype, a.data)
        assert_equal(type(kron(a, a)), np.ndarray)
        assert_equal(type(kron(ma, ma)), myarray)
        assert_equal(type(kron(a, ma)), myarray)
        assert_equal(type(kron(ma, a)), myarray)

    @pytest.mark.parametrize(
        "array_class", [np.asarray, np.mat]
    )
    def test_kron_smoke(self, array_class):
        a = array_class(np.ones([3, 3]))
        b = array_class(np.ones([3, 3]))
        k = array_class(np.ones([9, 9]))

        assert_array_equal(np.kron(a, b), k)

    def test_kron_ma(self):
        x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
        k = np.ma.array(np.diag([1, 4, 4, 16]),
                mask=~np.array(np.identity(4), dtype=bool))

        assert_array_equal(k, np.kron(x, x))

    @pytest.mark.parametrize(
        "shape_a,shape_b", [
            ((1, 1), (1, 1)),
            ((1, 2, 3), (4, 5, 6)),
            ((2, 2), (2, 2, 2)),
            ((1, 0), (1, 1)),
            ((2, 0, 2), (2, 2)),
            ((2, 0, 0, 2), (2, 0, 2)),
        ])
    def test_kron_shape(self, shape_a, shape_b):
        a = np.ones(shape_a)
        b = np.ones(shape_b)
        normalised_shape_a = (1,) * max(0, len(shape_b)-len(shape_a)) + shape_a
        normalised_shape_b = (1,) * max(0, len(shape_a)-len(shape_b)) + shape_b
        expected_shape = np.multiply(normalised_shape_a, normalised_shape_b)

        k = np.kron(a, b)
        assert np.array_equal(
                k.shape, expected_shape), "Unexpected shape from kron"


class TestTile:
    def test_basic(self):
        a = np.array([0, 1, 2])
        b = [[1, 2], [3, 4]]
        assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2])
        assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]])
        assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]])
        assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
        assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
        assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4],
                                       [1, 2, 1, 2], [3, 4, 3, 4]])

    def test_tile_one_repetition_on_array_gh4679(self):
        a = np.arange(5)
        b = tile(a, 1)
        b += 2
        assert_equal(a, np.arange(5))

    def test_empty(self):
        a = np.array([[[]]])
        b = np.array([[], []])
        c = tile(b, 2).shape
        d = tile(a, (3, 2, 5)).shape
        assert_equal(c, (2, 0))
        assert_equal(d, (3, 2, 0))

    def test_kroncompare(self):
        from numpy.random import randint

        reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
        shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
        for s in shape:
            b = randint(0, 10, size=s)
            for r in reps:
                a = np.ones(r, b.dtype)
                large = tile(b, r)
                klarge = kron(a, b)
                assert_equal(large, klarge)


class TestMayShareMemory:
    def test_basic(self):
        d = np.ones((50, 60))
        d2 = np.ones((30, 60, 6))
        assert_(np.may_share_memory(d, d))
        assert_(np.may_share_memory(d, d[::-1]))
        assert_(np.may_share_memory(d, d[::2]))
        assert_(np.may_share_memory(d, d[1:, ::-1]))

        assert_(not np.may_share_memory(d[::-1], d2))
        assert_(not np.may_share_memory(d[::2], d2))
        assert_(not np.may_share_memory(d[1:, ::-1], d2))
        assert_(np.may_share_memory(d2[1:, ::-1], d2))


# Utility
def compare_results(res, desired):
    """Compare lists of arrays."""
    if len(res) != len(desired):
        raise ValueError("Iterables have different lengths")
    # See also PEP 618 for Python 3.10
    for x, y in zip(res, desired):
        assert_array_equal(x, y)

Youez - 2016 - github.com/yon3zu
LinuXploit