Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.116.63.107
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests/test_recfunctions.py
import pytest

import numpy as np
import numpy.ma as ma
from numpy.ma.mrecords import MaskedRecords
from numpy.ma.testutils import assert_equal
from numpy.testing import assert_, assert_raises
from numpy.lib.recfunctions import (
    drop_fields, rename_fields, get_fieldstructure, recursive_fill_fields,
    find_duplicates, merge_arrays, append_fields, stack_arrays, join_by,
    repack_fields, unstructured_to_structured, structured_to_unstructured,
    apply_along_fields, require_fields, assign_fields_by_name)
get_fieldspec = np.lib.recfunctions._get_fieldspec
get_names = np.lib.recfunctions.get_names
get_names_flat = np.lib.recfunctions.get_names_flat
zip_descr = np.lib.recfunctions._zip_descr
zip_dtype = np.lib.recfunctions._zip_dtype


class TestRecFunctions:
    # Misc tests

    def setup_method(self):
        x = np.array([1, 2, ])
        y = np.array([10, 20, 30])
        z = np.array([('A', 1.), ('B', 2.)],
                     dtype=[('A', '|S3'), ('B', float)])
        w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
                     dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
        self.data = (w, x, y, z)

    def test_zip_descr(self):
        # Test zip_descr
        (w, x, y, z) = self.data

        # Std array
        test = zip_descr((x, x), flatten=True)
        assert_equal(test,
                     np.dtype([('', int), ('', int)]))
        test = zip_descr((x, x), flatten=False)
        assert_equal(test,
                     np.dtype([('', int), ('', int)]))

        # Std & flexible-dtype
        test = zip_descr((x, z), flatten=True)
        assert_equal(test,
                     np.dtype([('', int), ('A', '|S3'), ('B', float)]))
        test = zip_descr((x, z), flatten=False)
        assert_equal(test,
                     np.dtype([('', int),
                               ('', [('A', '|S3'), ('B', float)])]))

        # Standard & nested dtype
        test = zip_descr((x, w), flatten=True)
        assert_equal(test,
                     np.dtype([('', int),
                               ('a', int),
                               ('ba', float), ('bb', int)]))
        test = zip_descr((x, w), flatten=False)
        assert_equal(test,
                     np.dtype([('', int),
                               ('', [('a', int),
                                     ('b', [('ba', float), ('bb', int)])])]))

    def test_drop_fields(self):
        # Test drop_fields
        a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
                     dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])

        # A basic field
        test = drop_fields(a, 'a')
        control = np.array([((2, 3.0),), ((5, 6.0),)],
                           dtype=[('b', [('ba', float), ('bb', int)])])
        assert_equal(test, control)

        # Another basic field (but nesting two fields)
        test = drop_fields(a, 'b')
        control = np.array([(1,), (4,)], dtype=[('a', int)])
        assert_equal(test, control)

        # A nested sub-field
        test = drop_fields(a, ['ba', ])
        control = np.array([(1, (3.0,)), (4, (6.0,))],
                           dtype=[('a', int), ('b', [('bb', int)])])
        assert_equal(test, control)

        # All the nested sub-field from a field: zap that field
        test = drop_fields(a, ['ba', 'bb'])
        control = np.array([(1,), (4,)], dtype=[('a', int)])
        assert_equal(test, control)

        # dropping all fields results in an array with no fields
        test = drop_fields(a, ['a', 'b'])
        control = np.array([(), ()], dtype=[])
        assert_equal(test, control)

    def test_rename_fields(self):
        # Test rename fields
        a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
                     dtype=[('a', int),
                            ('b', [('ba', float), ('bb', (float, 2))])])
        test = rename_fields(a, {'a': 'A', 'bb': 'BB'})
        newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])]
        control = a.view(newdtype)
        assert_equal(test.dtype, newdtype)
        assert_equal(test, control)

    def test_get_names(self):
        # Test get_names
        ndtype = np.dtype([('A', '|S3'), ('B', float)])
        test = get_names(ndtype)
        assert_equal(test, ('A', 'B'))

        ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
        test = get_names(ndtype)
        assert_equal(test, ('a', ('b', ('ba', 'bb'))))

        ndtype = np.dtype([('a', int), ('b', [])])
        test = get_names(ndtype)
        assert_equal(test, ('a', ('b', ())))

        ndtype = np.dtype([])
        test = get_names(ndtype)
        assert_equal(test, ())

    def test_get_names_flat(self):
        # Test get_names_flat
        ndtype = np.dtype([('A', '|S3'), ('B', float)])
        test = get_names_flat(ndtype)
        assert_equal(test, ('A', 'B'))

        ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
        test = get_names_flat(ndtype)
        assert_equal(test, ('a', 'b', 'ba', 'bb'))

        ndtype = np.dtype([('a', int), ('b', [])])
        test = get_names_flat(ndtype)
        assert_equal(test, ('a', 'b'))

        ndtype = np.dtype([])
        test = get_names_flat(ndtype)
        assert_equal(test, ())

    def test_get_fieldstructure(self):
        # Test get_fieldstructure

        # No nested fields
        ndtype = np.dtype([('A', '|S3'), ('B', float)])
        test = get_fieldstructure(ndtype)
        assert_equal(test, {'A': [], 'B': []})

        # One 1-nested field
        ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])])
        test = get_fieldstructure(ndtype)
        assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']})

        # One 2-nested fields
        ndtype = np.dtype([('A', int),
                           ('B', [('BA', int),
                                  ('BB', [('BBA', int), ('BBB', int)])])])
        test = get_fieldstructure(ndtype)
        control = {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'],
                   'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
        assert_equal(test, control)

        # 0 fields
        ndtype = np.dtype([])
        test = get_fieldstructure(ndtype)
        assert_equal(test, {})

    def test_find_duplicates(self):
        # Test find_duplicates
        a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
                      (1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))],
                     mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)),
                           (0, (0, 0)), (1, (0, 0)), (0, (1, 0))],
                     dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])])

        test = find_duplicates(a, ignoremask=False, return_index=True)
        control = [0, 2]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

        test = find_duplicates(a, key='A', return_index=True)
        control = [0, 1, 2, 3, 5]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

        test = find_duplicates(a, key='B', return_index=True)
        control = [0, 1, 2, 4]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

        test = find_duplicates(a, key='BA', return_index=True)
        control = [0, 1, 2, 4]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

        test = find_duplicates(a, key='BB', return_index=True)
        control = [0, 1, 2, 3, 4]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

    def test_find_duplicates_ignoremask(self):
        # Test the ignoremask option of find_duplicates
        ndtype = [('a', int)]
        a = ma.array([1, 1, 1, 2, 2, 3, 3],
                     mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
        test = find_duplicates(a, ignoremask=True, return_index=True)
        control = [0, 1, 3, 4]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

        test = find_duplicates(a, ignoremask=False, return_index=True)
        control = [0, 1, 2, 3, 4, 6]
        assert_equal(sorted(test[-1]), control)
        assert_equal(test[0], a[test[-1]])

    def test_repack_fields(self):
        dt = np.dtype('u1,f4,i8', align=True)
        a = np.zeros(2, dtype=dt)

        assert_equal(repack_fields(dt), np.dtype('u1,f4,i8'))
        assert_equal(repack_fields(a).itemsize, 13)
        assert_equal(repack_fields(repack_fields(dt), align=True), dt)

        # make sure type is preserved
        dt = np.dtype((np.record, dt))
        assert_(repack_fields(dt).type is np.record)

    def test_structured_to_unstructured(self, tmp_path):
        a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
        out = structured_to_unstructured(a)
        assert_equal(out, np.zeros((4,5), dtype='f8'))

        b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
                     dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
        out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1)
        assert_equal(out, np.array([ 3. ,  5.5,  9. , 11. ]))
        out = np.mean(structured_to_unstructured(b[['x']]), axis=-1)
        assert_equal(out, np.array([ 1. ,  4. ,  7. , 10. ]))

        c = np.arange(20).reshape((4,5))
        out = unstructured_to_structured(c, a.dtype)
        want = np.array([( 0, ( 1.,  2), [ 3.,  4.]),
                         ( 5, ( 6.,  7), [ 8.,  9.]),
                         (10, (11., 12), [13., 14.]),
                         (15, (16., 17), [18., 19.])],
                     dtype=[('a', 'i4'),
                            ('b', [('f0', 'f4'), ('f1', 'u2')]),
                            ('c', 'f4', (2,))])
        assert_equal(out, want)

        d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
                     dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
        assert_equal(apply_along_fields(np.mean, d),
                     np.array([ 8.0/3,  16.0/3,  26.0/3, 11. ]))
        assert_equal(apply_along_fields(np.mean, d[['x', 'z']]),
                     np.array([ 3. ,  5.5,  9. , 11. ]))

        # check that for uniform field dtypes we get a view, not a copy:
        d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
                     dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')])
        dd = structured_to_unstructured(d)
        ddd = unstructured_to_structured(dd, d.dtype)
        assert_(np.shares_memory(dd, d))
        assert_(np.shares_memory(ddd, d))

        # check that reversing the order of attributes works
        dd_attrib_rev = structured_to_unstructured(d[['z', 'x']])
        assert_equal(dd_attrib_rev, [[5, 1], [7, 4], [11, 7], [12, 10]])
        assert_(np.shares_memory(dd_attrib_rev, d))

        # including uniform fields with subarrays unpacked
        d = np.array([(1, [2,  3], [[ 4,  5], [ 6,  7]]),
                      (8, [9, 10], [[11, 12], [13, 14]])],
                     dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
                            ('x2', ('i4', (2, 2)))])
        dd = structured_to_unstructured(d)
        ddd = unstructured_to_structured(dd, d.dtype)
        assert_(np.shares_memory(dd, d))
        assert_(np.shares_memory(ddd, d))

        # check that reversing with sub-arrays works as expected
        d_rev = d[::-1]
        dd_rev = structured_to_unstructured(d_rev)
        assert_equal(dd_rev, [[8, 9, 10, 11, 12, 13, 14],
                              [1, 2, 3, 4, 5, 6, 7]])

        # check that sub-arrays keep the order of their values
        d_attrib_rev = d[['x2', 'x1', 'x0']]
        dd_attrib_rev = structured_to_unstructured(d_attrib_rev)
        assert_equal(dd_attrib_rev, [[4, 5, 6, 7, 2, 3, 1],
                                     [11, 12, 13, 14, 9, 10, 8]])

        # with ignored field at the end
        d = np.array([(1, [2,  3], [[4, 5], [6, 7]], 32),
                      (8, [9, 10], [[11, 12], [13, 14]], 64)],
                     dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
                            ('x2', ('i4', (2, 2))), ('ignored', 'u1')])
        dd = structured_to_unstructured(d[['x0', 'x1', 'x2']])
        assert_(np.shares_memory(dd, d))
        assert_equal(dd, [[1, 2, 3, 4, 5, 6, 7],
                          [8, 9, 10, 11, 12, 13, 14]])

        # test that nested fields with identical names don't break anything
        point = np.dtype([('x', int), ('y', int)])
        triangle = np.dtype([('a', point), ('b', point), ('c', point)])
        arr = np.zeros(10, triangle)
        res = structured_to_unstructured(arr, dtype=int)
        assert_equal(res, np.zeros((10, 6), dtype=int))


        # test nested combinations of subarrays and structured arrays, gh-13333
        def subarray(dt, shape):
            return np.dtype((dt, shape))

        def structured(*dts):
            return np.dtype([('x{}'.format(i), dt) for i, dt in enumerate(dts)])

        def inspect(dt, dtype=None):
            arr = np.zeros((), dt)
            ret = structured_to_unstructured(arr, dtype=dtype)
            backarr = unstructured_to_structured(ret, dt)
            return ret.shape, ret.dtype, backarr.dtype

        dt = structured(subarray(structured(np.int32, np.int32), 3))
        assert_equal(inspect(dt), ((6,), np.int32, dt))

        dt = structured(subarray(subarray(np.int32, 2), 2))
        assert_equal(inspect(dt), ((4,), np.int32, dt))

        dt = structured(np.int32)
        assert_equal(inspect(dt), ((1,), np.int32, dt))

        dt = structured(np.int32, subarray(subarray(np.int32, 2), 2))
        assert_equal(inspect(dt), ((5,), np.int32, dt))

        dt = structured()
        assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt))

        # these currently don't work, but we may make it work in the future
        assert_raises(NotImplementedError, structured_to_unstructured,
                                           np.zeros(3, dt), dtype=np.int32)
        assert_raises(NotImplementedError, unstructured_to_structured,
                                           np.zeros((3,0), dtype=np.int32))

        # test supported ndarray subclasses
        d_plain = np.array([(1, 2), (3, 4)], dtype=[('a', 'i4'), ('b', 'i4')])
        dd_expected = structured_to_unstructured(d_plain, copy=True)

        # recarray
        d = d_plain.view(np.recarray)

        dd = structured_to_unstructured(d, copy=False)
        ddd = structured_to_unstructured(d, copy=True)
        assert_(np.shares_memory(d, dd))
        assert_(type(dd) is np.recarray)
        assert_(type(ddd) is np.recarray)
        assert_equal(dd, dd_expected)
        assert_equal(ddd, dd_expected)

        # memmap
        d = np.memmap(tmp_path / 'memmap',
                      mode='w+',
                      dtype=d_plain.dtype,
                      shape=d_plain.shape)
        d[:] = d_plain
        dd = structured_to_unstructured(d, copy=False)
        ddd = structured_to_unstructured(d, copy=True)
        assert_(np.shares_memory(d, dd))
        assert_(type(dd) is np.memmap)
        assert_(type(ddd) is np.memmap)
        assert_equal(dd, dd_expected)
        assert_equal(ddd, dd_expected)

    def test_unstructured_to_structured(self):
        # test if dtype is the args of np.dtype
        a = np.zeros((20, 2))
        test_dtype_args = [('x', float), ('y', float)]
        test_dtype = np.dtype(test_dtype_args)
        field1 = unstructured_to_structured(a, dtype=test_dtype_args)  # now
        field2 = unstructured_to_structured(a, dtype=test_dtype)  # before
        assert_equal(field1, field2)

    def test_field_assignment_by_name(self):
        a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
        newdt = [('b', 'f4'), ('c', 'u1')]

        assert_equal(require_fields(a, newdt), np.ones(2, newdt))

        b = np.array([(1,2), (3,4)], dtype=newdt)
        assign_fields_by_name(a, b, zero_unassigned=False)
        assert_equal(a, np.array([(1,1,2),(1,3,4)], dtype=a.dtype))
        assign_fields_by_name(a, b)
        assert_equal(a, np.array([(0,1,2),(0,3,4)], dtype=a.dtype))

        # test nested fields
        a = np.ones(2, dtype=[('a', [('b', 'f8'), ('c', 'u1')])])
        newdt = [('a', [('c', 'u1')])]
        assert_equal(require_fields(a, newdt), np.ones(2, newdt))
        b = np.array([((2,),), ((3,),)], dtype=newdt)
        assign_fields_by_name(a, b, zero_unassigned=False)
        assert_equal(a, np.array([((1,2),), ((1,3),)], dtype=a.dtype))
        assign_fields_by_name(a, b)
        assert_equal(a, np.array([((0,2),), ((0,3),)], dtype=a.dtype))

        # test unstructured code path for 0d arrays
        a, b = np.array(3), np.array(0)
        assign_fields_by_name(b, a)
        assert_equal(b[()], 3)


class TestRecursiveFillFields:
    # Test recursive_fill_fields.
    def test_simple_flexible(self):
        # Test recursive_fill_fields on flexible-array
        a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)])
        b = np.zeros((3,), dtype=a.dtype)
        test = recursive_fill_fields(a, b)
        control = np.array([(1, 10.), (2, 20.), (0, 0.)],
                           dtype=[('A', int), ('B', float)])
        assert_equal(test, control)

    def test_masked_flexible(self):
        # Test recursive_fill_fields on masked flexible-array
        a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)],
                     dtype=[('A', int), ('B', float)])
        b = ma.zeros((3,), dtype=a.dtype)
        test = recursive_fill_fields(a, b)
        control = ma.array([(1, 10.), (2, 20.), (0, 0.)],
                           mask=[(0, 1), (1, 0), (0, 0)],
                           dtype=[('A', int), ('B', float)])
        assert_equal(test, control)


class TestMergeArrays:
    # Test merge_arrays

    def setup_method(self):
        x = np.array([1, 2, ])
        y = np.array([10, 20, 30])
        z = np.array(
            [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
        w = np.array(
            [(1, (2, 3.0, ())), (4, (5, 6.0, ()))],
            dtype=[('a', int), ('b', [('ba', float), ('bb', int), ('bc', [])])])
        self.data = (w, x, y, z)

    def test_solo(self):
        # Test merge_arrays on a single array.
        (_, x, _, z) = self.data

        test = merge_arrays(x)
        control = np.array([(1,), (2,)], dtype=[('f0', int)])
        assert_equal(test, control)
        test = merge_arrays((x,))
        assert_equal(test, control)

        test = merge_arrays(z, flatten=False)
        assert_equal(test, z)
        test = merge_arrays(z, flatten=True)
        assert_equal(test, z)

    def test_solo_w_flatten(self):
        # Test merge_arrays on a single array w & w/o flattening
        w = self.data[0]
        test = merge_arrays(w, flatten=False)
        assert_equal(test, w)

        test = merge_arrays(w, flatten=True)
        control = np.array([(1, 2, 3.0), (4, 5, 6.0)],
                           dtype=[('a', int), ('ba', float), ('bb', int)])
        assert_equal(test, control)

    def test_standard(self):
        # Test standard & standard
        # Test merge arrays
        (_, x, y, _) = self.data
        test = merge_arrays((x, y), usemask=False)
        control = np.array([(1, 10), (2, 20), (-1, 30)],
                           dtype=[('f0', int), ('f1', int)])
        assert_equal(test, control)

        test = merge_arrays((x, y), usemask=True)
        control = ma.array([(1, 10), (2, 20), (-1, 30)],
                           mask=[(0, 0), (0, 0), (1, 0)],
                           dtype=[('f0', int), ('f1', int)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

    def test_flatten(self):
        # Test standard & flexible
        (_, x, _, z) = self.data
        test = merge_arrays((x, z), flatten=True)
        control = np.array([(1, 'A', 1.), (2, 'B', 2.)],
                           dtype=[('f0', int), ('A', '|S3'), ('B', float)])
        assert_equal(test, control)

        test = merge_arrays((x, z), flatten=False)
        control = np.array([(1, ('A', 1.)), (2, ('B', 2.))],
                           dtype=[('f0', int),
                                  ('f1', [('A', '|S3'), ('B', float)])])
        assert_equal(test, control)

    def test_flatten_wflexible(self):
        # Test flatten standard & nested
        (w, x, _, _) = self.data
        test = merge_arrays((x, w), flatten=True)
        control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)],
                           dtype=[('f0', int),
                                  ('a', int), ('ba', float), ('bb', int)])
        assert_equal(test, control)

        test = merge_arrays((x, w), flatten=False)
        controldtype = [('f0', int),
                                ('f1', [('a', int),
                                        ('b', [('ba', float), ('bb', int), ('bc', [])])])]
        control = np.array([(1., (1, (2, 3.0, ()))), (2, (4, (5, 6.0, ())))],
                           dtype=controldtype)
        assert_equal(test, control)

    def test_wmasked_arrays(self):
        # Test merge_arrays masked arrays
        (_, x, _, _) = self.data
        mx = ma.array([1, 2, 3], mask=[1, 0, 0])
        test = merge_arrays((x, mx), usemask=True)
        control = ma.array([(1, 1), (2, 2), (-1, 3)],
                           mask=[(0, 1), (0, 0), (1, 0)],
                           dtype=[('f0', int), ('f1', int)])
        assert_equal(test, control)
        test = merge_arrays((x, mx), usemask=True, asrecarray=True)
        assert_equal(test, control)
        assert_(isinstance(test, MaskedRecords))

    def test_w_singlefield(self):
        # Test single field
        test = merge_arrays((np.array([1, 2]).view([('a', int)]),
                             np.array([10., 20., 30.])),)
        control = ma.array([(1, 10.), (2, 20.), (-1, 30.)],
                           mask=[(0, 0), (0, 0), (1, 0)],
                           dtype=[('a', int), ('f1', float)])
        assert_equal(test, control)

    def test_w_shorter_flex(self):
        # Test merge_arrays w/ a shorter flexndarray.
        z = self.data[-1]

        # Fixme, this test looks incomplete and broken
        #test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
        #control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
        #                   dtype=[('A', '|S3'), ('B', float), ('C', int)])
        #assert_equal(test, control)

        # Hack to avoid pyflakes warnings about unused variables
        merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
        np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
                 dtype=[('A', '|S3'), ('B', float), ('C', int)])

    def test_singlerecord(self):
        (_, x, y, z) = self.data
        test = merge_arrays((x[0], y[0], z[0]), usemask=False)
        control = np.array([(1, 10, ('A', 1))],
                           dtype=[('f0', int),
                                  ('f1', int),
                                  ('f2', [('A', '|S3'), ('B', float)])])
        assert_equal(test, control)


class TestAppendFields:
    # Test append_fields

    def setup_method(self):
        x = np.array([1, 2, ])
        y = np.array([10, 20, 30])
        z = np.array(
            [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
        w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
                     dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
        self.data = (w, x, y, z)

    def test_append_single(self):
        # Test simple case
        (_, x, _, _) = self.data
        test = append_fields(x, 'A', data=[10, 20, 30])
        control = ma.array([(1, 10), (2, 20), (-1, 30)],
                           mask=[(0, 0), (0, 0), (1, 0)],
                           dtype=[('f0', int), ('A', int)],)
        assert_equal(test, control)

    def test_append_double(self):
        # Test simple case
        (_, x, _, _) = self.data
        test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]])
        control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)],
                           mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)],
                           dtype=[('f0', int), ('A', int), ('B', int)],)
        assert_equal(test, control)

    def test_append_on_flex(self):
        # Test append_fields on flexible type arrays
        z = self.data[-1]
        test = append_fields(z, 'C', data=[10, 20, 30])
        control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)],
                           mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)],
                           dtype=[('A', '|S3'), ('B', float), ('C', int)],)
        assert_equal(test, control)

    def test_append_on_nested(self):
        # Test append_fields on nested fields
        w = self.data[0]
        test = append_fields(w, 'C', data=[10, 20, 30])
        control = ma.array([(1, (2, 3.0), 10),
                            (4, (5, 6.0), 20),
                            (-1, (-1, -1.), 30)],
                           mask=[(
                               0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)],
                           dtype=[('a', int),
                                  ('b', [('ba', float), ('bb', int)]),
                                  ('C', int)],)
        assert_equal(test, control)


class TestStackArrays:
    # Test stack_arrays
    def setup_method(self):
        x = np.array([1, 2, ])
        y = np.array([10, 20, 30])
        z = np.array(
            [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
        w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
                     dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
        self.data = (w, x, y, z)

    def test_solo(self):
        # Test stack_arrays on single arrays
        (_, x, _, _) = self.data
        test = stack_arrays((x,))
        assert_equal(test, x)
        assert_(test is x)

        test = stack_arrays(x)
        assert_equal(test, x)
        assert_(test is x)

    def test_unnamed_fields(self):
        # Tests combinations of arrays w/o named fields
        (_, x, y, _) = self.data

        test = stack_arrays((x, x), usemask=False)
        control = np.array([1, 2, 1, 2])
        assert_equal(test, control)

        test = stack_arrays((x, y), usemask=False)
        control = np.array([1, 2, 10, 20, 30])
        assert_equal(test, control)

        test = stack_arrays((y, x), usemask=False)
        control = np.array([10, 20, 30, 1, 2])
        assert_equal(test, control)

    def test_unnamed_and_named_fields(self):
        # Test combination of arrays w/ & w/o named fields
        (_, x, _, z) = self.data

        test = stack_arrays((x, z))
        control = ma.array([(1, -1, -1), (2, -1, -1),
                            (-1, 'A', 1), (-1, 'B', 2)],
                           mask=[(0, 1, 1), (0, 1, 1),
                                 (1, 0, 0), (1, 0, 0)],
                           dtype=[('f0', int), ('A', '|S3'), ('B', float)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

        test = stack_arrays((z, x))
        control = ma.array([('A', 1, -1), ('B', 2, -1),
                            (-1, -1, 1), (-1, -1, 2), ],
                           mask=[(0, 0, 1), (0, 0, 1),
                                 (1, 1, 0), (1, 1, 0)],
                           dtype=[('A', '|S3'), ('B', float), ('f2', int)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

        test = stack_arrays((z, z, x))
        control = ma.array([('A', 1, -1), ('B', 2, -1),
                            ('A', 1, -1), ('B', 2, -1),
                            (-1, -1, 1), (-1, -1, 2), ],
                           mask=[(0, 0, 1), (0, 0, 1),
                                 (0, 0, 1), (0, 0, 1),
                                 (1, 1, 0), (1, 1, 0)],
                           dtype=[('A', '|S3'), ('B', float), ('f2', int)])
        assert_equal(test, control)

    def test_matching_named_fields(self):
        # Test combination of arrays w/ matching field names
        (_, x, _, z) = self.data
        zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
                      dtype=[('A', '|S3'), ('B', float), ('C', float)])
        test = stack_arrays((z, zz))
        control = ma.array([('A', 1, -1), ('B', 2, -1),
                            (
                                'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
                           dtype=[('A', '|S3'), ('B', float), ('C', float)],
                           mask=[(0, 0, 1), (0, 0, 1),
                                 (0, 0, 0), (0, 0, 0), (0, 0, 0)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

        test = stack_arrays((z, zz, x))
        ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)]
        control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1),
                            ('a', 10., 100., -1), ('b', 20., 200., -1),
                            ('c', 30., 300., -1),
                            (-1, -1, -1, 1), (-1, -1, -1, 2)],
                           dtype=ndtype,
                           mask=[(0, 0, 1, 1), (0, 0, 1, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1),
                                 (1, 1, 1, 0), (1, 1, 1, 0)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

    def test_defaults(self):
        # Test defaults: no exception raised if keys of defaults are not fields.
        (_, _, _, z) = self.data
        zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
                      dtype=[('A', '|S3'), ('B', float), ('C', float)])
        defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.}
        test = stack_arrays((z, zz), defaults=defaults)
        control = ma.array([('A', 1, -9999.), ('B', 2, -9999.),
                            (
                                'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
                           dtype=[('A', '|S3'), ('B', float), ('C', float)],
                           mask=[(0, 0, 1), (0, 0, 1),
                                 (0, 0, 0), (0, 0, 0), (0, 0, 0)])
        assert_equal(test, control)
        assert_equal(test.data, control.data)
        assert_equal(test.mask, control.mask)

    def test_autoconversion(self):
        # Tests autoconversion
        adtype = [('A', int), ('B', bool), ('C', float)]
        a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
        bdtype = [('A', int), ('B', float), ('C', float)]
        b = ma.array([(4, 5, 6)], dtype=bdtype)
        control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)],
                           dtype=bdtype)
        test = stack_arrays((a, b), autoconvert=True)
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)
        with assert_raises(TypeError):
            stack_arrays((a, b), autoconvert=False)

    def test_checktitles(self):
        # Test using titles in the field names
        adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
        a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
        bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
        b = ma.array([(4, 5, 6)], dtype=bdtype)
        test = stack_arrays((a, b))
        control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)],
                           dtype=bdtype)
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

    def test_subdtype(self):
        z = np.array([
            ('A', 1), ('B', 2)
        ], dtype=[('A', '|S3'), ('B', float, (1,))])
        zz = np.array([
            ('a', [10.], 100.), ('b', [20.], 200.), ('c', [30.], 300.)
        ], dtype=[('A', '|S3'), ('B', float, (1,)), ('C', float)])

        res = stack_arrays((z, zz))
        expected = ma.array(
            data=[
                (b'A', [1.0], 0),
                (b'B', [2.0], 0),
                (b'a', [10.0], 100.0),
                (b'b', [20.0], 200.0),
                (b'c', [30.0], 300.0)],
            mask=[
                (False, [False],  True),
                (False, [False],  True),
                (False, [False], False),
                (False, [False], False),
                (False, [False], False)
            ],
            dtype=zz.dtype
        )
        assert_equal(res.dtype, expected.dtype)
        assert_equal(res, expected)
        assert_equal(res.mask, expected.mask)


class TestJoinBy:
    def setup_method(self):
        self.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
                                   np.arange(100, 110))),
                          dtype=[('a', int), ('b', int), ('c', int)])
        self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75),
                                   np.arange(100, 110))),
                          dtype=[('a', int), ('b', int), ('d', int)])

    def test_inner_join(self):
        # Basic test of join_by
        a, b = self.a, self.b

        test = join_by('a', a, b, jointype='inner')
        control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101),
                            (7, 57, 67, 107, 102), (8, 58, 68, 108, 103),
                            (9, 59, 69, 109, 104)],
                           dtype=[('a', int), ('b1', int), ('b2', int),
                                  ('c', int), ('d', int)])
        assert_equal(test, control)

    def test_join(self):
        a, b = self.a, self.b

        # Fixme, this test is broken
        #test = join_by(('a', 'b'), a, b)
        #control = np.array([(5, 55, 105, 100), (6, 56, 106, 101),
        #                    (7, 57, 107, 102), (8, 58, 108, 103),
        #                    (9, 59, 109, 104)],
        #                   dtype=[('a', int), ('b', int),
        #                          ('c', int), ('d', int)])
        #assert_equal(test, control)

        # Hack to avoid pyflakes unused variable warnings
        join_by(('a', 'b'), a, b)
        np.array([(5, 55, 105, 100), (6, 56, 106, 101),
                  (7, 57, 107, 102), (8, 58, 108, 103),
                  (9, 59, 109, 104)],
                  dtype=[('a', int), ('b', int),
                         ('c', int), ('d', int)])

    def test_join_subdtype(self):
        # tests the bug in https://stackoverflow.com/q/44769632/102441
        foo = np.array([(1,)],
                       dtype=[('key', int)])
        bar = np.array([(1, np.array([1,2,3]))],
                       dtype=[('key', int), ('value', 'uint16', 3)])
        res = join_by('key', foo, bar)
        assert_equal(res, bar.view(ma.MaskedArray))

    def test_outer_join(self):
        a, b = self.a, self.b

        test = join_by(('a', 'b'), a, b, 'outer')
        control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
                            (2, 52, 102, -1), (3, 53, 103, -1),
                            (4, 54, 104, -1), (5, 55, 105, -1),
                            (5, 65, -1, 100), (6, 56, 106, -1),
                            (6, 66, -1, 101), (7, 57, 107, -1),
                            (7, 67, -1, 102), (8, 58, 108, -1),
                            (8, 68, -1, 103), (9, 59, 109, -1),
                            (9, 69, -1, 104), (10, 70, -1, 105),
                            (11, 71, -1, 106), (12, 72, -1, 107),
                            (13, 73, -1, 108), (14, 74, -1, 109)],
                           mask=[(0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 1, 0), (0, 0, 0, 1),
                                 (0, 0, 1, 0), (0, 0, 0, 1),
                                 (0, 0, 1, 0), (0, 0, 0, 1),
                                 (0, 0, 1, 0), (0, 0, 0, 1),
                                 (0, 0, 1, 0), (0, 0, 1, 0),
                                 (0, 0, 1, 0), (0, 0, 1, 0),
                                 (0, 0, 1, 0), (0, 0, 1, 0)],
                           dtype=[('a', int), ('b', int),
                                  ('c', int), ('d', int)])
        assert_equal(test, control)

    def test_leftouter_join(self):
        a, b = self.a, self.b

        test = join_by(('a', 'b'), a, b, 'leftouter')
        control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
                            (2, 52, 102, -1), (3, 53, 103, -1),
                            (4, 54, 104, -1), (5, 55, 105, -1),
                            (6, 56, 106, -1), (7, 57, 107, -1),
                            (8, 58, 108, -1), (9, 59, 109, -1)],
                           mask=[(0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1)],
                           dtype=[('a', int), ('b', int), ('c', int), ('d', int)])
        assert_equal(test, control)

    def test_different_field_order(self):
        # gh-8940
        a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
        b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
        # this should not give a FutureWarning:
        j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False)
        assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2'])

    def test_duplicate_keys(self):
        a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
        b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
        assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b)

    def test_same_name_different_dtypes_key(self):
        a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')])
        b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])
        expected_dtype = np.dtype([
            ('key', 'S10'), ('value1', '<f4'), ('value2', '<f4')])

        a = np.array([('Sarah',  8.0), ('John', 6.0)], dtype=a_dtype)
        b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype)
        res = join_by('key', a, b)

        assert_equal(res.dtype, expected_dtype)

    def test_same_name_different_dtypes(self):
        # gh-9338
        a_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])
        b_dtype = np.dtype([('key', 'S10'), ('value', '<f8')])
        expected_dtype = np.dtype([
            ('key', '|S10'), ('value1', '<f4'), ('value2', '<f8')])

        a = np.array([('Sarah',  8.0), ('John', 6.0)], dtype=a_dtype)
        b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype)
        res = join_by('key', a, b)

        assert_equal(res.dtype, expected_dtype)

    def test_subarray_key(self):
        a_dtype = np.dtype([('pos', int, 3), ('f', '<f4')])
        a = np.array([([1, 1, 1], np.pi), ([1, 2, 3], 0.0)], dtype=a_dtype)

        b_dtype = np.dtype([('pos', int, 3), ('g', '<f4')])
        b = np.array([([1, 1, 1], 3), ([3, 2, 1], 0.0)], dtype=b_dtype)

        expected_dtype = np.dtype([('pos', int, 3), ('f', '<f4'), ('g', '<f4')])
        expected = np.array([([1, 1, 1], np.pi, 3)], dtype=expected_dtype)

        res = join_by('pos', a, b)
        assert_equal(res.dtype, expected_dtype)
        assert_equal(res, expected)

    def test_padded_dtype(self):
        dt = np.dtype('i1,f4', align=True)
        dt.names = ('k', 'v')
        assert_(len(dt.descr), 3)  # padding field is inserted

        a = np.array([(1, 3), (3, 2)], dt)
        b = np.array([(1, 1), (2, 2)], dt)
        res = join_by('k', a, b)

        # no padding fields remain
        expected_dtype = np.dtype([
            ('k', 'i1'), ('v1', 'f4'), ('v2', 'f4')
        ])

        assert_equal(res.dtype, expected_dtype)


class TestJoinBy2:
    @classmethod
    def setup_method(cls):
        cls.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
                                  np.arange(100, 110))),
                         dtype=[('a', int), ('b', int), ('c', int)])
        cls.b = np.array(list(zip(np.arange(10), np.arange(65, 75),
                                  np.arange(100, 110))),
                         dtype=[('a', int), ('b', int), ('d', int)])

    def test_no_r1postfix(self):
        # Basic test of join_by no_r1postfix
        a, b = self.a, self.b

        test = join_by(
            'a', a, b, r1postfix='', r2postfix='2', jointype='inner')
        control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
                            (2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
                            (4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
                            (6, 56, 71, 106, 106), (7, 57, 72, 107, 107),
                            (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)],
                           dtype=[('a', int), ('b', int), ('b2', int),
                                  ('c', int), ('d', int)])
        assert_equal(test, control)

    def test_no_postfix(self):
        assert_raises(ValueError, join_by, 'a', self.a, self.b,
                      r1postfix='', r2postfix='')

    def test_no_r2postfix(self):
        # Basic test of join_by no_r2postfix
        a, b = self.a, self.b

        test = join_by(
            'a', a, b, r1postfix='1', r2postfix='', jointype='inner')
        control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
                            (2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
                            (4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
                            (6, 56, 71, 106, 106), (7, 57, 72, 107, 107),
                            (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)],
                           dtype=[('a', int), ('b1', int), ('b', int),
                                  ('c', int), ('d', int)])
        assert_equal(test, control)

    def test_two_keys_two_vars(self):
        a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
                              np.arange(50, 60), np.arange(10, 20))),
                     dtype=[('k', int), ('a', int), ('b', int), ('c', int)])

        b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
                              np.arange(65, 75), np.arange(0, 10))),
                     dtype=[('k', int), ('a', int), ('b', int), ('c', int)])

        control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1),
                            (10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3),
                            (10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5),
                            (10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7),
                            (10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)],
                           dtype=[('k', int), ('a', int), ('b1', int),
                                  ('b2', int), ('c1', int), ('c2', int)])
        test = join_by(
            ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner')
        assert_equal(test.dtype, control.dtype)
        assert_equal(test, control)

class TestAppendFieldsObj:
    """
    Test append_fields with arrays containing objects
    """
    # https://github.com/numpy/numpy/issues/2346

    def setup_method(self):
        from datetime import date
        self.data = dict(obj=date(2000, 1, 1))

    def test_append_to_objects(self):
        "Test append_fields when the base array contains objects"
        obj = self.data['obj']
        x = np.array([(obj, 1.), (obj, 2.)],
                      dtype=[('A', object), ('B', float)])
        y = np.array([10, 20], dtype=int)
        test = append_fields(x, 'C', data=y, usemask=False)
        control = np.array([(obj, 1.0, 10), (obj, 2.0, 20)],
                           dtype=[('A', object), ('B', float), ('C', int)])
        assert_equal(test, control)

Youez - 2016 - github.com/yon3zu
LinuXploit