Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.222.182.195
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/thread-self/root/proc/thread-self/root/opt/alt/ruby20/lib64/ruby/2.0.0/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/thread-self/root/proc/thread-self/root/opt/alt/ruby20/lib64/ruby/2.0.0//mathn.rb
#--
# $Release Version: 0.5 $
# $Revision: 1.1.1.1.4.1 $

##
# = mathn
#
# mathn is a library for changing the way Ruby does math.  If you need
# more precise rounding with multiple division or exponentiation
# operations, then mathn is the right tool.
#
# Without mathn:
#
#   3 / 2 => 1 # Integer
#
# With mathn:
#
#   3 / 2 => 3/2 # Rational
#
# mathn features late rounding and lacks truncation of intermediate results:
#
# Without mathn:
#
#   20 / 9 * 3 * 14 / 7 * 3 / 2 # => 18
#
# With mathn:
#
#   20 / 9 * 3 * 14 / 7 * 3 / 2 # => 20
#
#
# When you require 'mathn', the libraries for Prime, CMath, Matrix and Vector
# are also loaded.
#
# == Copyright
#
# Author: Keiju ISHITSUKA (SHL Japan Inc.)
#--
# class Numeric follows to make this documentation findable in a reasonable
# location

class Numeric; end

require "cmath.rb"
require "matrix.rb"
require "prime.rb"

require "mathn/rational"
require "mathn/complex"

unless defined?(Math.exp!)
  Object.instance_eval{remove_const :Math}
  Math = CMath # :nodoc:
end

##
# When mathn is required, Fixnum's division and exponentiation are enhanced to
# return more precise values from mathematical expressions.
#
#   2/3*3  # => 0
#   require 'mathn'
#   2/3*3  # => 2

class Fixnum
  remove_method :/

  ##
  # +/+ defines the Rational division for Fixnum.
  #
  #   1/3  # => (1/3)

  alias / quo

  alias power! ** unless method_defined? :power!

  ##
  # Exponentiate by +other+

  def ** (other)
    if self < 0 && other.round != other
      Complex(self, 0.0) ** other
    else
      power!(other)
    end
  end

end

##
# When mathn is required Bignum's division and exponentiation are enhanced to
# return more precise values from mathematical expressions.

class Bignum
  remove_method :/

  ##
  # +/+ defines the Rational division for Bignum.
  #
  #   (2**72) / ((2**70) * 3)  # => 4/3

  alias / quo

  alias power! ** unless method_defined? :power!

  ##
  # Exponentiate by +other+

  def ** (other)
    if self < 0 && other.round != other
      Complex(self, 0.0) ** other
    else
      power!(other)
    end
  end

end

##
# When mathn is required Rational is changed to simplify the use of Rational
# operations.
#
# Normal behaviour:
#
#   Rational.new!(1,3) ** 2 # => Rational(1, 9)
#   (1 / 3) ** 2            # => 0
#
# require 'mathn' behaviour:
#
#   (1 / 3) ** 2            # => 1/9

class Rational
  remove_method :**

  ##
  # Exponentiate by +other+
  #
  #   (1/3) ** 2 # => 1/9

  def ** (other)
    if other.kind_of?(Rational)
      other2 = other
      if self < 0
        return Complex(self, 0.0) ** other
      elsif other == 0
        return Rational(1,1)
      elsif self == 0
        return Rational(0,1)
      elsif self == 1
        return Rational(1,1)
      end

      npd = numerator.prime_division
      dpd = denominator.prime_division
      if other < 0
        other = -other
        npd, dpd = dpd, npd
      end

      for elm in npd
        elm[1] = elm[1] * other
        if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
          return Float(self) ** other2
        end
        elm[1] = elm[1].to_i
      end

      for elm in dpd
        elm[1] = elm[1] * other
        if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
          return Float(self) ** other2
        end
        elm[1] = elm[1].to_i
      end

      num = Integer.from_prime_division(npd)
      den = Integer.from_prime_division(dpd)

      Rational(num,den)

    elsif other.kind_of?(Integer)
      if other > 0
        num = numerator ** other
        den = denominator ** other
      elsif other < 0
        num = denominator ** -other
        den = numerator ** -other
      elsif other == 0
        num = 1
        den = 1
      end
      Rational(num, den)
    elsif other.kind_of?(Float)
      Float(self) ** other
    else
      x , y = other.coerce(self)
      x ** y
    end
  end
end

##
# When mathn is required, the Math module changes as follows:
#
# Standard Math module behaviour:
#   Math.sqrt(4/9)     # => 0.0
#   Math.sqrt(4.0/9.0) # => 0.666666666666667
#   Math.sqrt(- 4/9)   # => Errno::EDOM: Numerical argument out of domain - sqrt
#
# After require 'mathn', this is changed to:
#
#   require 'mathn'
#   Math.sqrt(4/9)      # => 2/3
#   Math.sqrt(4.0/9.0)  # => 0.666666666666667
#   Math.sqrt(- 4/9)    # => Complex(0, 2/3)

module Math
  remove_method(:sqrt)

  ##
  # Computes the square root of +a+.  It makes use of Complex and
  # Rational to have no rounding errors if possible.
  #
  #   Math.sqrt(4/9)      # => 2/3
  #   Math.sqrt(- 4/9)    # => Complex(0, 2/3)
  #   Math.sqrt(4.0/9.0)  # => 0.666666666666667

  def sqrt(a)
    if a.kind_of?(Complex)
      abs = sqrt(a.real*a.real + a.imag*a.imag)
#      if not abs.kind_of?(Rational)
#        return a**Rational(1,2)
#      end
      x = sqrt((a.real + abs)/Rational(2))
      y = sqrt((-a.real + abs)/Rational(2))
#      if !(x.kind_of?(Rational) and y.kind_of?(Rational))
#        return a**Rational(1,2)
#      end
      if a.imag >= 0
        Complex(x, y)
      else
        Complex(x, -y)
      end
    elsif a.respond_to?(:nan?) and a.nan?
      a
    elsif a >= 0
      rsqrt(a)
    else
      Complex(0,rsqrt(-a))
    end
  end

  ##
  # Compute square root of a non negative number. This method is
  # internally used by +Math.sqrt+.

  def rsqrt(a)
    if a.kind_of?(Float)
      sqrt!(a)
    elsif a.kind_of?(Rational)
      rsqrt(a.numerator)/rsqrt(a.denominator)
    else
      src = a
      max = 2 ** 32
      byte_a = [src & 0xffffffff]
      # ruby's bug
      while (src >= max) and (src >>= 32)
        byte_a.unshift src & 0xffffffff
      end

      answer = 0
      main = 0
      side = 0
      for elm in byte_a
        main = (main << 32) + elm
        side <<= 16
        if answer != 0
          if main * 4  < side * side
            applo = main.div(side)
          else
            applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
          end
        else
          applo = sqrt!(main).to_i + 1
        end

        while (x = (side + applo) * applo) > main
          applo -= 1
        end
        main -= x
        answer = (answer << 16) + applo
        side += applo * 2
      end
      if main == 0
        answer
      else
        sqrt!(a)
      end
    end
  end

  class << self
    remove_method(:sqrt)
  end
  module_function :sqrt
  module_function :rsqrt
end

##
# When mathn is required, Float is changed to handle Complex numbers.

class Float
  alias power! **

  ##
  # Exponentiate by +other+

  def ** (other)
    if self < 0 && other.round != other
      Complex(self, 0.0) ** other
    else
      power!(other)
    end
  end

end

Youez - 2016 - github.com/yon3zu
LinuXploit