Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.221.240.14
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/thread-self/root/opt/alt/ruby25/lib64/ruby/2.5.0/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/thread-self/root/opt/alt/ruby25/lib64/ruby/2.5.0/profiler.rb
# frozen_string_literal: true
# Profile provides a way to Profile your Ruby application.
#
# Profiling your program is a way of determining which methods are called and
# how long each method takes to complete.  This way you can detect which
# methods are possible bottlenecks.
#
# Profiling your program will slow down your execution time considerably,
# so activate it only when you need it.  Don't confuse benchmarking with
# profiling.
#
# There are two ways to activate Profiling:
#
# == Command line
#
# Run your Ruby script with <code>-rprofile</code>:
#
#   ruby -rprofile example.rb
#
# If you're profiling an executable in your <code>$PATH</code> you can use
# <code>ruby -S</code>:
#
#   ruby -rprofile -S some_executable
#
# == From code
#
# Just require 'profile':
#
#   require 'profile'
#
#   def slow_method
#     5000.times do
#       9999999999999999*999999999
#     end
#   end
#
#   def fast_method
#     5000.times do
#       9999999999999999+999999999
#     end
#   end
#
#   slow_method
#   fast_method
#
# The output in both cases is a report when the execution is over:
#
#   ruby -rprofile example.rb
#
#     %   cumulative   self              self     total
#    time   seconds   seconds    calls  ms/call  ms/call  name
#    68.42     0.13      0.13        2    65.00    95.00  Integer#times
#    15.79     0.16      0.03     5000     0.01     0.01  Fixnum#*
#    15.79     0.19      0.03     5000     0.01     0.01  Fixnum#+
#     0.00     0.19      0.00        2     0.00     0.00  IO#set_encoding
#     0.00     0.19      0.00        1     0.00   100.00  Object#slow_method
#     0.00     0.19      0.00        2     0.00     0.00  Module#method_added
#     0.00     0.19      0.00        1     0.00    90.00  Object#fast_method
#     0.00     0.19      0.00        1     0.00   190.00  #toplevel

module Profiler__
  class Wrapper < Struct.new(:defined_class, :method_id, :hash) # :nodoc:
    private :defined_class=, :method_id=, :hash=

    def initialize(klass, mid)
      super(klass, mid, nil)
      self.hash = Struct.instance_method(:hash).bind(self).call
    end

    def to_s
      "#{defined_class.inspect}#".sub(/\A\#<Class:(.*)>#\z/, '\1.') << method_id.to_s
    end
    alias inspect to_s
  end

  # internal values
  @@start = nil # the start time that profiling began
  @@stacks = nil # the map of stacks keyed by thread
  @@maps = nil # the map of call data keyed by thread, class and id. Call data contains the call count, total time,
  PROFILE_CALL_PROC = TracePoint.new(*%i[call c_call b_call]) {|tp| # :nodoc:
    now = Process.times[0]
    stack = (@@stacks[Thread.current] ||= [])
    stack.push [now, 0.0]
  }
  PROFILE_RETURN_PROC = TracePoint.new(*%i[return c_return b_return]) {|tp| # :nodoc:
    now = Process.times[0]
    key = Wrapper.new(tp.defined_class, tp.method_id)
    stack = (@@stacks[Thread.current] ||= [])
    if tick = stack.pop
      threadmap = (@@maps[Thread.current] ||= {})
      data = (threadmap[key] ||= [0, 0.0, 0.0, key])
      data[0] += 1
      cost = now - tick[0]
      data[1] += cost
      data[2] += cost - tick[1]
      stack[-1][1] += cost if stack[-1]
    end
  }
module_function
  # Starts the profiler.
  #
  # See Profiler__ for more information.
  def start_profile
    @@start = Process.times[0]
    @@stacks = {}
    @@maps = {}
    PROFILE_CALL_PROC.enable
    PROFILE_RETURN_PROC.enable
  end
  # Stops the profiler.
  #
  # See Profiler__ for more information.
  def stop_profile
    PROFILE_CALL_PROC.disable
    PROFILE_RETURN_PROC.disable
  end
  # Outputs the results from the profiler.
  #
  # See Profiler__ for more information.
  def print_profile(f)
    stop_profile
    total = Process.times[0] - @@start
    if total == 0 then total = 0.01 end
    totals = {}
    @@maps.values.each do |threadmap|
      threadmap.each do |key, data|
        total_data = (totals[key] ||= [0, 0.0, 0.0, key])
        total_data[0] += data[0]
        total_data[1] += data[1]
        total_data[2] += data[2]
      end
    end

    # Maybe we should show a per thread output and a totals view?

    data = totals.values
    data = data.sort_by{|x| -x[2]}
    sum = 0
    f.printf "  %%   cumulative   self              self     total\n"
    f.printf " time   seconds   seconds    calls  ms/call  ms/call  name\n"
    for d in data
      sum += d[2]
      f.printf "%6.2f %8.2f  %8.2f %8d ", d[2]/total*100, sum, d[2], d[0]
      f.printf "%8.2f %8.2f  %s\n", d[2]*1000/d[0], d[1]*1000/d[0], d[3]
    end
    f.printf "%6.2f %8.2f  %8.2f %8d ", 0.0, total, 0.0, 1     # ???
    f.printf "%8.2f %8.2f  %s\n", 0.0, total*1000, "#toplevel" # ???
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit