Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.137.198.37
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/hc_python/lib64/python3.8/site-packages/pydantic/v1/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/hc_python/lib64/python3.8/site-packages/pydantic/v1/dataclasses.py
"""
The main purpose is to enhance stdlib dataclasses by adding validation
A pydantic dataclass can be generated from scratch or from a stdlib one.

Behind the scene, a pydantic dataclass is just like a regular one on which we attach
a `BaseModel` and magic methods to trigger the validation of the data.
`__init__` and `__post_init__` are hence overridden and have extra logic to be
able to validate input data.

When a pydantic dataclass is generated from scratch, it's just a plain dataclass
with validation triggered at initialization

The tricky part if for stdlib dataclasses that are converted after into pydantic ones e.g.

```py
@dataclasses.dataclass
class M:
    x: int

ValidatedM = pydantic.dataclasses.dataclass(M)
```

We indeed still want to support equality, hashing, repr, ... as if it was the stdlib one!

```py
assert isinstance(ValidatedM(x=1), M)
assert ValidatedM(x=1) == M(x=1)
```

This means we **don't want to create a new dataclass that inherits from it**
The trick is to create a wrapper around `M` that will act as a proxy to trigger
validation without altering default `M` behaviour.
"""
import copy
import dataclasses
import sys
from contextlib import contextmanager
from functools import wraps

try:
    from functools import cached_property
except ImportError:
    # cached_property available only for python3.8+
    pass

from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Generator, Optional, Type, TypeVar, Union, overload

from typing_extensions import dataclass_transform

from pydantic.v1.class_validators import gather_all_validators
from pydantic.v1.config import BaseConfig, ConfigDict, Extra, get_config
from pydantic.v1.error_wrappers import ValidationError
from pydantic.v1.errors import DataclassTypeError
from pydantic.v1.fields import Field, FieldInfo, Required, Undefined
from pydantic.v1.main import create_model, validate_model
from pydantic.v1.utils import ClassAttribute

if TYPE_CHECKING:
    from pydantic.v1.main import BaseModel
    from pydantic.v1.typing import CallableGenerator, NoArgAnyCallable

    DataclassT = TypeVar('DataclassT', bound='Dataclass')

    DataclassClassOrWrapper = Union[Type['Dataclass'], 'DataclassProxy']

    class Dataclass:
        # stdlib attributes
        __dataclass_fields__: ClassVar[Dict[str, Any]]
        __dataclass_params__: ClassVar[Any]  # in reality `dataclasses._DataclassParams`
        __post_init__: ClassVar[Callable[..., None]]

        # Added by pydantic
        __pydantic_run_validation__: ClassVar[bool]
        __post_init_post_parse__: ClassVar[Callable[..., None]]
        __pydantic_initialised__: ClassVar[bool]
        __pydantic_model__: ClassVar[Type[BaseModel]]
        __pydantic_validate_values__: ClassVar[Callable[['Dataclass'], None]]
        __pydantic_has_field_info_default__: ClassVar[bool]  # whether a `pydantic.Field` is used as default value

        def __init__(self, *args: object, **kwargs: object) -> None:
            pass

        @classmethod
        def __get_validators__(cls: Type['Dataclass']) -> 'CallableGenerator':
            pass

        @classmethod
        def __validate__(cls: Type['DataclassT'], v: Any) -> 'DataclassT':
            pass


__all__ = [
    'dataclass',
    'set_validation',
    'create_pydantic_model_from_dataclass',
    'is_builtin_dataclass',
    'make_dataclass_validator',
]

_T = TypeVar('_T')

if sys.version_info >= (3, 10):

    @dataclass_transform(field_specifiers=(dataclasses.field, Field))
    @overload
    def dataclass(
        *,
        init: bool = True,
        repr: bool = True,
        eq: bool = True,
        order: bool = False,
        unsafe_hash: bool = False,
        frozen: bool = False,
        config: Union[ConfigDict, Type[object], None] = None,
        validate_on_init: Optional[bool] = None,
        use_proxy: Optional[bool] = None,
        kw_only: bool = ...,
    ) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']:
        ...

    @dataclass_transform(field_specifiers=(dataclasses.field, Field))
    @overload
    def dataclass(
        _cls: Type[_T],
        *,
        init: bool = True,
        repr: bool = True,
        eq: bool = True,
        order: bool = False,
        unsafe_hash: bool = False,
        frozen: bool = False,
        config: Union[ConfigDict, Type[object], None] = None,
        validate_on_init: Optional[bool] = None,
        use_proxy: Optional[bool] = None,
        kw_only: bool = ...,
    ) -> 'DataclassClassOrWrapper':
        ...

else:

    @dataclass_transform(field_specifiers=(dataclasses.field, Field))
    @overload
    def dataclass(
        *,
        init: bool = True,
        repr: bool = True,
        eq: bool = True,
        order: bool = False,
        unsafe_hash: bool = False,
        frozen: bool = False,
        config: Union[ConfigDict, Type[object], None] = None,
        validate_on_init: Optional[bool] = None,
        use_proxy: Optional[bool] = None,
    ) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']:
        ...

    @dataclass_transform(field_specifiers=(dataclasses.field, Field))
    @overload
    def dataclass(
        _cls: Type[_T],
        *,
        init: bool = True,
        repr: bool = True,
        eq: bool = True,
        order: bool = False,
        unsafe_hash: bool = False,
        frozen: bool = False,
        config: Union[ConfigDict, Type[object], None] = None,
        validate_on_init: Optional[bool] = None,
        use_proxy: Optional[bool] = None,
    ) -> 'DataclassClassOrWrapper':
        ...


@dataclass_transform(field_specifiers=(dataclasses.field, Field))
def dataclass(
    _cls: Optional[Type[_T]] = None,
    *,
    init: bool = True,
    repr: bool = True,
    eq: bool = True,
    order: bool = False,
    unsafe_hash: bool = False,
    frozen: bool = False,
    config: Union[ConfigDict, Type[object], None] = None,
    validate_on_init: Optional[bool] = None,
    use_proxy: Optional[bool] = None,
    kw_only: bool = False,
) -> Union[Callable[[Type[_T]], 'DataclassClassOrWrapper'], 'DataclassClassOrWrapper']:
    """
    Like the python standard lib dataclasses but with type validation.
    The result is either a pydantic dataclass that will validate input data
    or a wrapper that will trigger validation around a stdlib dataclass
    to avoid modifying it directly
    """
    the_config = get_config(config)

    def wrap(cls: Type[Any]) -> 'DataclassClassOrWrapper':
        should_use_proxy = (
            use_proxy
            if use_proxy is not None
            else (
                is_builtin_dataclass(cls)
                and (cls.__bases__[0] is object or set(dir(cls)) == set(dir(cls.__bases__[0])))
            )
        )
        if should_use_proxy:
            dc_cls_doc = ''
            dc_cls = DataclassProxy(cls)
            default_validate_on_init = False
        else:
            dc_cls_doc = cls.__doc__ or ''  # needs to be done before generating dataclass
            if sys.version_info >= (3, 10):
                dc_cls = dataclasses.dataclass(
                    cls,
                    init=init,
                    repr=repr,
                    eq=eq,
                    order=order,
                    unsafe_hash=unsafe_hash,
                    frozen=frozen,
                    kw_only=kw_only,
                )
            else:
                dc_cls = dataclasses.dataclass(  # type: ignore
                    cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen
                )
            default_validate_on_init = True

        should_validate_on_init = default_validate_on_init if validate_on_init is None else validate_on_init
        _add_pydantic_validation_attributes(cls, the_config, should_validate_on_init, dc_cls_doc)
        dc_cls.__pydantic_model__.__try_update_forward_refs__(**{cls.__name__: cls})
        return dc_cls

    if _cls is None:
        return wrap

    return wrap(_cls)


@contextmanager
def set_validation(cls: Type['DataclassT'], value: bool) -> Generator[Type['DataclassT'], None, None]:
    original_run_validation = cls.__pydantic_run_validation__
    try:
        cls.__pydantic_run_validation__ = value
        yield cls
    finally:
        cls.__pydantic_run_validation__ = original_run_validation


class DataclassProxy:
    __slots__ = '__dataclass__'

    def __init__(self, dc_cls: Type['Dataclass']) -> None:
        object.__setattr__(self, '__dataclass__', dc_cls)

    def __call__(self, *args: Any, **kwargs: Any) -> Any:
        with set_validation(self.__dataclass__, True):
            return self.__dataclass__(*args, **kwargs)

    def __getattr__(self, name: str) -> Any:
        return getattr(self.__dataclass__, name)

    def __setattr__(self, __name: str, __value: Any) -> None:
        return setattr(self.__dataclass__, __name, __value)

    def __instancecheck__(self, instance: Any) -> bool:
        return isinstance(instance, self.__dataclass__)

    def __copy__(self) -> 'DataclassProxy':
        return DataclassProxy(copy.copy(self.__dataclass__))

    def __deepcopy__(self, memo: Any) -> 'DataclassProxy':
        return DataclassProxy(copy.deepcopy(self.__dataclass__, memo))


def _add_pydantic_validation_attributes(  # noqa: C901 (ignore complexity)
    dc_cls: Type['Dataclass'],
    config: Type[BaseConfig],
    validate_on_init: bool,
    dc_cls_doc: str,
) -> None:
    """
    We need to replace the right method. If no `__post_init__` has been set in the stdlib dataclass
    it won't even exist (code is generated on the fly by `dataclasses`)
    By default, we run validation after `__init__` or `__post_init__` if defined
    """
    init = dc_cls.__init__

    @wraps(init)
    def handle_extra_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None:
        if config.extra == Extra.ignore:
            init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__})

        elif config.extra == Extra.allow:
            for k, v in kwargs.items():
                self.__dict__.setdefault(k, v)
            init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__})

        else:
            init(self, *args, **kwargs)

    if hasattr(dc_cls, '__post_init__'):
        try:
            post_init = dc_cls.__post_init__.__wrapped__  # type: ignore[attr-defined]
        except AttributeError:
            post_init = dc_cls.__post_init__

        @wraps(post_init)
        def new_post_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None:
            if config.post_init_call == 'before_validation':
                post_init(self, *args, **kwargs)

            if self.__class__.__pydantic_run_validation__:
                self.__pydantic_validate_values__()
                if hasattr(self, '__post_init_post_parse__'):
                    self.__post_init_post_parse__(*args, **kwargs)

            if config.post_init_call == 'after_validation':
                post_init(self, *args, **kwargs)

        setattr(dc_cls, '__init__', handle_extra_init)
        setattr(dc_cls, '__post_init__', new_post_init)

    else:

        @wraps(init)
        def new_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None:
            handle_extra_init(self, *args, **kwargs)

            if self.__class__.__pydantic_run_validation__:
                self.__pydantic_validate_values__()

            if hasattr(self, '__post_init_post_parse__'):
                # We need to find again the initvars. To do that we use `__dataclass_fields__` instead of
                # public method `dataclasses.fields`

                # get all initvars and their default values
                initvars_and_values: Dict[str, Any] = {}
                for i, f in enumerate(self.__class__.__dataclass_fields__.values()):
                    if f._field_type is dataclasses._FIELD_INITVAR:  # type: ignore[attr-defined]
                        try:
                            # set arg value by default
                            initvars_and_values[f.name] = args[i]
                        except IndexError:
                            initvars_and_values[f.name] = kwargs.get(f.name, f.default)

                self.__post_init_post_parse__(**initvars_and_values)

        setattr(dc_cls, '__init__', new_init)

    setattr(dc_cls, '__pydantic_run_validation__', ClassAttribute('__pydantic_run_validation__', validate_on_init))
    setattr(dc_cls, '__pydantic_initialised__', False)
    setattr(dc_cls, '__pydantic_model__', create_pydantic_model_from_dataclass(dc_cls, config, dc_cls_doc))
    setattr(dc_cls, '__pydantic_validate_values__', _dataclass_validate_values)
    setattr(dc_cls, '__validate__', classmethod(_validate_dataclass))
    setattr(dc_cls, '__get_validators__', classmethod(_get_validators))

    if dc_cls.__pydantic_model__.__config__.validate_assignment and not dc_cls.__dataclass_params__.frozen:
        setattr(dc_cls, '__setattr__', _dataclass_validate_assignment_setattr)


def _get_validators(cls: 'DataclassClassOrWrapper') -> 'CallableGenerator':
    yield cls.__validate__


def _validate_dataclass(cls: Type['DataclassT'], v: Any) -> 'DataclassT':
    with set_validation(cls, True):
        if isinstance(v, cls):
            v.__pydantic_validate_values__()
            return v
        elif isinstance(v, (list, tuple)):
            return cls(*v)
        elif isinstance(v, dict):
            return cls(**v)
        else:
            raise DataclassTypeError(class_name=cls.__name__)


def create_pydantic_model_from_dataclass(
    dc_cls: Type['Dataclass'],
    config: Type[Any] = BaseConfig,
    dc_cls_doc: Optional[str] = None,
) -> Type['BaseModel']:
    field_definitions: Dict[str, Any] = {}
    for field in dataclasses.fields(dc_cls):
        default: Any = Undefined
        default_factory: Optional['NoArgAnyCallable'] = None
        field_info: FieldInfo

        if field.default is not dataclasses.MISSING:
            default = field.default
        elif field.default_factory is not dataclasses.MISSING:
            default_factory = field.default_factory
        else:
            default = Required

        if isinstance(default, FieldInfo):
            field_info = default
            dc_cls.__pydantic_has_field_info_default__ = True
        else:
            field_info = Field(default=default, default_factory=default_factory, **field.metadata)

        field_definitions[field.name] = (field.type, field_info)

    validators = gather_all_validators(dc_cls)
    model: Type['BaseModel'] = create_model(
        dc_cls.__name__,
        __config__=config,
        __module__=dc_cls.__module__,
        __validators__=validators,
        __cls_kwargs__={'__resolve_forward_refs__': False},
        **field_definitions,
    )
    model.__doc__ = dc_cls_doc if dc_cls_doc is not None else dc_cls.__doc__ or ''
    return model


if sys.version_info >= (3, 8):

    def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool:
        return isinstance(getattr(type(obj), k, None), cached_property)

else:

    def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool:
        return False


def _dataclass_validate_values(self: 'Dataclass') -> None:
    # validation errors can occur if this function is called twice on an already initialised dataclass.
    # for example if Extra.forbid is enabled, it would consider __pydantic_initialised__ an invalid extra property
    if getattr(self, '__pydantic_initialised__'):
        return
    if getattr(self, '__pydantic_has_field_info_default__', False):
        # We need to remove `FieldInfo` values since they are not valid as input
        # It's ok to do that because they are obviously the default values!
        input_data = {
            k: v
            for k, v in self.__dict__.items()
            if not (isinstance(v, FieldInfo) or _is_field_cached_property(self, k))
        }
    else:
        input_data = {k: v for k, v in self.__dict__.items() if not _is_field_cached_property(self, k)}
    d, _, validation_error = validate_model(self.__pydantic_model__, input_data, cls=self.__class__)
    if validation_error:
        raise validation_error
    self.__dict__.update(d)
    object.__setattr__(self, '__pydantic_initialised__', True)


def _dataclass_validate_assignment_setattr(self: 'Dataclass', name: str, value: Any) -> None:
    if self.__pydantic_initialised__:
        d = dict(self.__dict__)
        d.pop(name, None)
        known_field = self.__pydantic_model__.__fields__.get(name, None)
        if known_field:
            value, error_ = known_field.validate(value, d, loc=name, cls=self.__class__)
            if error_:
                raise ValidationError([error_], self.__class__)

    object.__setattr__(self, name, value)


def is_builtin_dataclass(_cls: Type[Any]) -> bool:
    """
    Whether a class is a stdlib dataclass
    (useful to discriminated a pydantic dataclass that is actually a wrapper around a stdlib dataclass)

    we check that
    - `_cls` is a dataclass
    - `_cls` is not a processed pydantic dataclass (with a basemodel attached)
    - `_cls` is not a pydantic dataclass inheriting directly from a stdlib dataclass
    e.g.
    ```
    @dataclasses.dataclass
    class A:
        x: int

    @pydantic.dataclasses.dataclass
    class B(A):
        y: int
    ```
    In this case, when we first check `B`, we make an extra check and look at the annotations ('y'),
    which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x')
    """
    return (
        dataclasses.is_dataclass(_cls)
        and not hasattr(_cls, '__pydantic_model__')
        and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {})))
    )


def make_dataclass_validator(dc_cls: Type['Dataclass'], config: Type[BaseConfig]) -> 'CallableGenerator':
    """
    Create a pydantic.dataclass from a builtin dataclass to add type validation
    and yield the validators
    It retrieves the parameters of the dataclass and forwards them to the newly created dataclass
    """
    yield from _get_validators(dataclass(dc_cls, config=config, use_proxy=True))

Youez - 2016 - github.com/yon3zu
LinuXploit