Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.142.198.250
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/hc_python/lib64/python3.8/site-packages/pydantic/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/hc_python/lib64/python3.8/site-packages/pydantic//mypy.py
"""This module includes classes and functions designed specifically for use with the mypy plugin."""

from __future__ import annotations

import sys
from configparser import ConfigParser
from typing import Any, Callable, Iterator

from mypy.errorcodes import ErrorCode
from mypy.expandtype import expand_type, expand_type_by_instance
from mypy.nodes import (
    ARG_NAMED,
    ARG_NAMED_OPT,
    ARG_OPT,
    ARG_POS,
    ARG_STAR2,
    INVARIANT,
    MDEF,
    Argument,
    AssignmentStmt,
    Block,
    CallExpr,
    ClassDef,
    Context,
    Decorator,
    DictExpr,
    EllipsisExpr,
    Expression,
    FuncDef,
    IfStmt,
    JsonDict,
    MemberExpr,
    NameExpr,
    PassStmt,
    PlaceholderNode,
    RefExpr,
    Statement,
    StrExpr,
    SymbolTableNode,
    TempNode,
    TypeAlias,
    TypeInfo,
    Var,
)
from mypy.options import Options
from mypy.plugin import (
    CheckerPluginInterface,
    ClassDefContext,
    FunctionContext,
    MethodContext,
    Plugin,
    ReportConfigContext,
    SemanticAnalyzerPluginInterface,
)
from mypy.plugins import dataclasses
from mypy.plugins.common import (
    deserialize_and_fixup_type,
)
from mypy.semanal import set_callable_name
from mypy.server.trigger import make_wildcard_trigger
from mypy.state import state
from mypy.typeops import map_type_from_supertype
from mypy.types import (
    AnyType,
    CallableType,
    Instance,
    NoneType,
    Overloaded,
    Type,
    TypeOfAny,
    TypeType,
    TypeVarType,
    UnionType,
    get_proper_type,
)
from mypy.typevars import fill_typevars
from mypy.util import get_unique_redefinition_name
from mypy.version import __version__ as mypy_version

from pydantic._internal import _fields
from pydantic.version import parse_mypy_version

try:
    from mypy.types import TypeVarDef  # type: ignore[attr-defined]
except ImportError:  # pragma: no cover
    # Backward-compatible with TypeVarDef from Mypy 0.930.
    from mypy.types import TypeVarType as TypeVarDef

CONFIGFILE_KEY = 'pydantic-mypy'
METADATA_KEY = 'pydantic-mypy-metadata'
BASEMODEL_FULLNAME = 'pydantic.main.BaseModel'
BASESETTINGS_FULLNAME = 'pydantic_settings.main.BaseSettings'
ROOT_MODEL_FULLNAME = 'pydantic.root_model.RootModel'
MODEL_METACLASS_FULLNAME = 'pydantic._internal._model_construction.ModelMetaclass'
FIELD_FULLNAME = 'pydantic.fields.Field'
DATACLASS_FULLNAME = 'pydantic.dataclasses.dataclass'
MODEL_VALIDATOR_FULLNAME = 'pydantic.functional_validators.model_validator'
DECORATOR_FULLNAMES = {
    'pydantic.functional_validators.field_validator',
    'pydantic.functional_validators.model_validator',
    'pydantic.functional_serializers.serializer',
    'pydantic.functional_serializers.model_serializer',
    'pydantic.deprecated.class_validators.validator',
    'pydantic.deprecated.class_validators.root_validator',
}


MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version)
BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__'

# Increment version if plugin changes and mypy caches should be invalidated
__version__ = 2


def plugin(version: str) -> type[Plugin]:
    """`version` is the mypy version string.

    We might want to use this to print a warning if the mypy version being used is
    newer, or especially older, than we expect (or need).

    Args:
        version: The mypy version string.

    Return:
        The Pydantic mypy plugin type.
    """
    return PydanticPlugin


class PydanticPlugin(Plugin):
    """The Pydantic mypy plugin."""

    def __init__(self, options: Options) -> None:
        self.plugin_config = PydanticPluginConfig(options)
        self._plugin_data = self.plugin_config.to_data()
        super().__init__(options)

    def get_base_class_hook(self, fullname: str) -> Callable[[ClassDefContext], bool] | None:
        """Update Pydantic model class."""
        sym = self.lookup_fully_qualified(fullname)
        if sym and isinstance(sym.node, TypeInfo):  # pragma: no branch
            # No branching may occur if the mypy cache has not been cleared
            if any(base.fullname == BASEMODEL_FULLNAME for base in sym.node.mro):
                return self._pydantic_model_class_maker_callback
        return None

    def get_metaclass_hook(self, fullname: str) -> Callable[[ClassDefContext], None] | None:
        """Update Pydantic `ModelMetaclass` definition."""
        if fullname == MODEL_METACLASS_FULLNAME:
            return self._pydantic_model_metaclass_marker_callback
        return None

    def get_function_hook(self, fullname: str) -> Callable[[FunctionContext], Type] | None:
        """Adjust the return type of the `Field` function."""
        sym = self.lookup_fully_qualified(fullname)
        if sym and sym.fullname == FIELD_FULLNAME:
            return self._pydantic_field_callback
        return None

    def get_method_hook(self, fullname: str) -> Callable[[MethodContext], Type] | None:
        """Adjust return type of `from_orm` method call."""
        if fullname.endswith('.from_orm'):
            return from_attributes_callback
        return None

    def get_class_decorator_hook(self, fullname: str) -> Callable[[ClassDefContext], None] | None:
        """Mark pydantic.dataclasses as dataclass.

        Mypy version 1.1.1 added support for `@dataclass_transform` decorator.
        """
        if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1):
            return dataclasses.dataclass_class_maker_callback  # type: ignore[return-value]
        return None

    def report_config_data(self, ctx: ReportConfigContext) -> dict[str, Any]:
        """Return all plugin config data.

        Used by mypy to determine if cache needs to be discarded.
        """
        return self._plugin_data

    def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> bool:
        transformer = PydanticModelTransformer(ctx.cls, ctx.reason, ctx.api, self.plugin_config)
        return transformer.transform()

    def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None:
        """Reset dataclass_transform_spec attribute of ModelMetaclass.

        Let the plugin handle it. This behavior can be disabled
        if 'debug_dataclass_transform' is set to True', for testing purposes.
        """
        if self.plugin_config.debug_dataclass_transform:
            return
        info_metaclass = ctx.cls.info.declared_metaclass
        assert info_metaclass, "callback not passed from 'get_metaclass_hook'"
        if getattr(info_metaclass.type, 'dataclass_transform_spec', None):
            info_metaclass.type.dataclass_transform_spec = None

    def _pydantic_field_callback(self, ctx: FunctionContext) -> Type:
        """Extract the type of the `default` argument from the Field function, and use it as the return type.

        In particular:
        * Check whether the default and default_factory argument is specified.
        * Output an error if both are specified.
        * Retrieve the type of the argument which is specified, and use it as return type for the function.
        """
        default_any_type = ctx.default_return_type

        assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()'
        assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()'
        default_args = ctx.args[0]
        default_factory_args = ctx.args[1]

        if default_args and default_factory_args:
            error_default_and_default_factory_specified(ctx.api, ctx.context)
            return default_any_type

        if default_args:
            default_type = ctx.arg_types[0][0]
            default_arg = default_args[0]

            # Fallback to default Any type if the field is required
            if not isinstance(default_arg, EllipsisExpr):
                return default_type

        elif default_factory_args:
            default_factory_type = ctx.arg_types[1][0]

            # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter
            # Pydantic calls the default factory without any argument, so we retrieve the first item
            if isinstance(default_factory_type, Overloaded):
                default_factory_type = default_factory_type.items[0]

            if isinstance(default_factory_type, CallableType):
                ret_type = default_factory_type.ret_type
                # mypy doesn't think `ret_type` has `args`, you'd think mypy should know,
                # add this check in case it varies by version
                args = getattr(ret_type, 'args', None)
                if args:
                    if all(isinstance(arg, TypeVarType) for arg in args):
                        # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any`
                        ret_type.args = tuple(default_any_type for _ in args)  # type: ignore[attr-defined]
                return ret_type

        return default_any_type


class PydanticPluginConfig:
    """A Pydantic mypy plugin config holder.

    Attributes:
        init_forbid_extra: Whether to add a `**kwargs` at the end of the generated `__init__` signature.
        init_typed: Whether to annotate fields in the generated `__init__`.
        warn_required_dynamic_aliases: Whether to raise required dynamic aliases error.
        debug_dataclass_transform: Whether to not reset `dataclass_transform_spec` attribute
            of `ModelMetaclass` for testing purposes.
    """

    __slots__ = (
        'init_forbid_extra',
        'init_typed',
        'warn_required_dynamic_aliases',
        'debug_dataclass_transform',
    )
    init_forbid_extra: bool
    init_typed: bool
    warn_required_dynamic_aliases: bool
    debug_dataclass_transform: bool  # undocumented

    def __init__(self, options: Options) -> None:
        if options.config_file is None:  # pragma: no cover
            return

        toml_config = parse_toml(options.config_file)
        if toml_config is not None:
            config = toml_config.get('tool', {}).get('pydantic-mypy', {})
            for key in self.__slots__:
                setting = config.get(key, False)
                if not isinstance(setting, bool):
                    raise ValueError(f'Configuration value must be a boolean for key: {key}')
                setattr(self, key, setting)
        else:
            plugin_config = ConfigParser()
            plugin_config.read(options.config_file)
            for key in self.__slots__:
                setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False)
                setattr(self, key, setting)

    def to_data(self) -> dict[str, Any]:
        """Returns a dict of config names to their values."""
        return {key: getattr(self, key) for key in self.__slots__}


def from_attributes_callback(ctx: MethodContext) -> Type:
    """Raise an error if from_attributes is not enabled."""
    model_type: Instance
    ctx_type = ctx.type
    if isinstance(ctx_type, TypeType):
        ctx_type = ctx_type.item
    if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance):
        model_type = ctx_type.ret_type  # called on the class
    elif isinstance(ctx_type, Instance):
        model_type = ctx_type  # called on an instance (unusual, but still valid)
    else:  # pragma: no cover
        detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})'
        error_unexpected_behavior(detail, ctx.api, ctx.context)
        return ctx.default_return_type
    pydantic_metadata = model_type.type.metadata.get(METADATA_KEY)
    if pydantic_metadata is None:
        return ctx.default_return_type
    from_attributes = pydantic_metadata.get('config', {}).get('from_attributes')
    if from_attributes is not True:
        error_from_attributes(model_type.type.name, ctx.api, ctx.context)
    return ctx.default_return_type


class PydanticModelField:
    """Based on mypy.plugins.dataclasses.DataclassAttribute."""

    def __init__(
        self,
        name: str,
        alias: str | None,
        has_dynamic_alias: bool,
        has_default: bool,
        line: int,
        column: int,
        type: Type | None,
        info: TypeInfo,
    ):
        self.name = name
        self.alias = alias
        self.has_dynamic_alias = has_dynamic_alias
        self.has_default = has_default
        self.line = line
        self.column = column
        self.type = type
        self.info = info

    def to_argument(
        self,
        current_info: TypeInfo,
        typed: bool,
        force_optional: bool,
        use_alias: bool,
        api: SemanticAnalyzerPluginInterface,
        force_typevars_invariant: bool,
    ) -> Argument:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.to_argument."""
        variable = self.to_var(current_info, api, use_alias, force_typevars_invariant)
        type_annotation = self.expand_type(current_info, api) if typed else AnyType(TypeOfAny.explicit)
        return Argument(
            variable=variable,
            type_annotation=type_annotation,
            initializer=None,
            kind=ARG_NAMED_OPT if force_optional or self.has_default else ARG_NAMED,
        )

    def expand_type(
        self, current_info: TypeInfo, api: SemanticAnalyzerPluginInterface, force_typevars_invariant: bool = False
    ) -> Type | None:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.expand_type."""
        # The getattr in the next line is used to prevent errors in legacy versions of mypy without this attribute
        if force_typevars_invariant:
            # In some cases, mypy will emit an error "Cannot use a covariant type variable as a parameter"
            # To prevent that, we add an option to replace typevars with invariant ones while building certain
            # method signatures (in particular, `__init__`). There may be a better way to do this, if this causes
            # us problems in the future, we should look into why the dataclasses plugin doesn't have this issue.
            if isinstance(self.type, TypeVarType):
                modified_type = self.type.copy_modified()
                modified_type.variance = INVARIANT
                self.type = modified_type

        if self.type is not None and getattr(self.info, 'self_type', None) is not None:
            # In general, it is not safe to call `expand_type()` during semantic analyzis,
            # however this plugin is called very late, so all types should be fully ready.
            # Also, it is tricky to avoid eager expansion of Self types here (e.g. because
            # we serialize attributes).
            with state.strict_optional_set(api.options.strict_optional):
                filled_with_typevars = fill_typevars(current_info)
                if force_typevars_invariant:
                    for arg in filled_with_typevars.args:
                        if isinstance(arg, TypeVarType):
                            arg.variance = INVARIANT
                return expand_type(self.type, {self.info.self_type.id: filled_with_typevars})
        return self.type

    def to_var(
        self,
        current_info: TypeInfo,
        api: SemanticAnalyzerPluginInterface,
        use_alias: bool,
        force_typevars_invariant: bool = False,
    ) -> Var:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.to_var."""
        if use_alias and self.alias is not None:
            name = self.alias
        else:
            name = self.name

        return Var(name, self.expand_type(current_info, api, force_typevars_invariant))

    def serialize(self) -> JsonDict:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.serialize."""
        assert self.type
        return {
            'name': self.name,
            'alias': self.alias,
            'has_dynamic_alias': self.has_dynamic_alias,
            'has_default': self.has_default,
            'line': self.line,
            'column': self.column,
            'type': self.type.serialize(),
        }

    @classmethod
    def deserialize(cls, info: TypeInfo, data: JsonDict, api: SemanticAnalyzerPluginInterface) -> PydanticModelField:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.deserialize."""
        data = data.copy()
        typ = deserialize_and_fixup_type(data.pop('type'), api)
        return cls(type=typ, info=info, **data)

    def expand_typevar_from_subtype(self, sub_type: TypeInfo, api: SemanticAnalyzerPluginInterface) -> None:
        """Expands type vars in the context of a subtype when an attribute is inherited
        from a generic super type.
        """
        if self.type is not None:
            with state.strict_optional_set(api.options.strict_optional):
                self.type = map_type_from_supertype(self.type, sub_type, self.info)


class PydanticModelClassVar:
    """Based on mypy.plugins.dataclasses.DataclassAttribute.

    ClassVars are ignored by subclasses.

    Attributes:
        name: the ClassVar name
    """

    def __init__(self, name):
        self.name = name

    @classmethod
    def deserialize(cls, data: JsonDict) -> PydanticModelClassVar:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.deserialize."""
        data = data.copy()
        return cls(**data)

    def serialize(self) -> JsonDict:
        """Based on mypy.plugins.dataclasses.DataclassAttribute.serialize."""
        return {
            'name': self.name,
        }


class PydanticModelTransformer:
    """Transform the BaseModel subclass according to the plugin settings.

    Attributes:
        tracked_config_fields: A set of field configs that the plugin has to track their value.
    """

    tracked_config_fields: set[str] = {
        'extra',
        'frozen',
        'from_attributes',
        'populate_by_name',
        'alias_generator',
    }

    def __init__(
        self,
        cls: ClassDef,
        reason: Expression | Statement,
        api: SemanticAnalyzerPluginInterface,
        plugin_config: PydanticPluginConfig,
    ) -> None:
        self._cls = cls
        self._reason = reason
        self._api = api

        self.plugin_config = plugin_config

    def transform(self) -> bool:
        """Configures the BaseModel subclass according to the plugin settings.

        In particular:

        * determines the model config and fields,
        * adds a fields-aware signature for the initializer and construct methods
        * freezes the class if frozen = True
        * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses
        """
        info = self._cls.info
        is_root_model = any(ROOT_MODEL_FULLNAME in base.fullname for base in info.mro[:-1])
        config = self.collect_config()
        fields, class_vars = self.collect_fields_and_class_vars(config, is_root_model)
        if fields is None or class_vars is None:
            # Some definitions are not ready. We need another pass.
            return False
        for field in fields:
            if field.type is None:
                return False

        is_settings = any(base.fullname == BASESETTINGS_FULLNAME for base in info.mro[:-1])
        self.add_initializer(fields, config, is_settings, is_root_model)
        if not is_root_model:
            self.add_model_construct_method(fields, config, is_settings)
        self.set_frozen(fields, self._api, frozen=config.frozen is True)

        self.adjust_decorator_signatures()

        info.metadata[METADATA_KEY] = {
            'fields': {field.name: field.serialize() for field in fields},
            'class_vars': {class_var.name: class_var.serialize() for class_var in class_vars},
            'config': config.get_values_dict(),
        }

        return True

    def adjust_decorator_signatures(self) -> None:
        """When we decorate a function `f` with `pydantic.validator(...)`, `pydantic.field_validator`
        or `pydantic.serializer(...)`, mypy sees `f` as a regular method taking a `self` instance,
        even though pydantic internally wraps `f` with `classmethod` if necessary.

        Teach mypy this by marking any function whose outermost decorator is a `validator()`,
        `field_validator()` or `serializer()` call as a `classmethod`.
        """
        for name, sym in self._cls.info.names.items():
            if isinstance(sym.node, Decorator):
                first_dec = sym.node.original_decorators[0]
                if (
                    isinstance(first_dec, CallExpr)
                    and isinstance(first_dec.callee, NameExpr)
                    and first_dec.callee.fullname in DECORATOR_FULLNAMES
                    # @model_validator(mode="after") is an exception, it expects a regular method
                    and not (
                        first_dec.callee.fullname == MODEL_VALIDATOR_FULLNAME
                        and any(
                            first_dec.arg_names[i] == 'mode' and isinstance(arg, StrExpr) and arg.value == 'after'
                            for i, arg in enumerate(first_dec.args)
                        )
                    )
                ):
                    # TODO: Only do this if the first argument of the decorated function is `cls`
                    sym.node.func.is_class = True

    def collect_config(self) -> ModelConfigData:  # noqa: C901 (ignore complexity)
        """Collects the values of the config attributes that are used by the plugin, accounting for parent classes."""
        cls = self._cls
        config = ModelConfigData()

        has_config_kwargs = False
        has_config_from_namespace = False

        # Handle `class MyModel(BaseModel, <name>=<expr>, ...):`
        for name, expr in cls.keywords.items():
            config_data = self.get_config_update(name, expr)
            if config_data:
                has_config_kwargs = True
                config.update(config_data)

        # Handle `model_config`
        stmt: Statement | None = None
        for stmt in cls.defs.body:
            if not isinstance(stmt, (AssignmentStmt, ClassDef)):
                continue

            if isinstance(stmt, AssignmentStmt):
                lhs = stmt.lvalues[0]
                if not isinstance(lhs, NameExpr) or lhs.name != 'model_config':
                    continue

                if isinstance(stmt.rvalue, CallExpr):  # calls to `dict` or `ConfigDict`
                    for arg_name, arg in zip(stmt.rvalue.arg_names, stmt.rvalue.args):
                        if arg_name is None:
                            continue
                        config.update(self.get_config_update(arg_name, arg, lax_extra=True))
                elif isinstance(stmt.rvalue, DictExpr):  # dict literals
                    for key_expr, value_expr in stmt.rvalue.items:
                        if not isinstance(key_expr, StrExpr):
                            continue
                        config.update(self.get_config_update(key_expr.value, value_expr))

            elif isinstance(stmt, ClassDef):
                if stmt.name != 'Config':  # 'deprecated' Config-class
                    continue
                for substmt in stmt.defs.body:
                    if not isinstance(substmt, AssignmentStmt):
                        continue
                    lhs = substmt.lvalues[0]
                    if not isinstance(lhs, NameExpr):
                        continue
                    config.update(self.get_config_update(lhs.name, substmt.rvalue))

            if has_config_kwargs:
                self._api.fail(
                    'Specifying config in two places is ambiguous, use either Config attribute or class kwargs',
                    cls,
                )
                break

            has_config_from_namespace = True

        if has_config_kwargs or has_config_from_namespace:
            if (
                stmt
                and config.has_alias_generator
                and not config.populate_by_name
                and self.plugin_config.warn_required_dynamic_aliases
            ):
                error_required_dynamic_aliases(self._api, stmt)

        for info in cls.info.mro[1:]:  # 0 is the current class
            if METADATA_KEY not in info.metadata:
                continue

            # Each class depends on the set of fields in its ancestors
            self._api.add_plugin_dependency(make_wildcard_trigger(info.fullname))
            for name, value in info.metadata[METADATA_KEY]['config'].items():
                config.setdefault(name, value)
        return config

    def collect_fields_and_class_vars(
        self, model_config: ModelConfigData, is_root_model: bool
    ) -> tuple[list[PydanticModelField] | None, list[PydanticModelClassVar] | None]:
        """Collects the fields for the model, accounting for parent classes."""
        cls = self._cls

        # First, collect fields and ClassVars belonging to any class in the MRO, ignoring duplicates.
        #
        # We iterate through the MRO in reverse because attrs defined in the parent must appear
        # earlier in the attributes list than attrs defined in the child. See:
        # https://docs.python.org/3/library/dataclasses.html#inheritance
        #
        # However, we also want fields defined in the subtype to override ones defined
        # in the parent. We can implement this via a dict without disrupting the attr order
        # because dicts preserve insertion order in Python 3.7+.
        found_fields: dict[str, PydanticModelField] = {}
        found_class_vars: dict[str, PydanticModelClassVar] = {}
        for info in reversed(cls.info.mro[1:-1]):  # 0 is the current class, -2 is BaseModel, -1 is object
            # if BASEMODEL_METADATA_TAG_KEY in info.metadata and BASEMODEL_METADATA_KEY not in info.metadata:
            #     # We haven't processed the base class yet. Need another pass.
            #     return None, None
            if METADATA_KEY not in info.metadata:
                continue

            # Each class depends on the set of attributes in its dataclass ancestors.
            self._api.add_plugin_dependency(make_wildcard_trigger(info.fullname))

            for name, data in info.metadata[METADATA_KEY]['fields'].items():
                field = PydanticModelField.deserialize(info, data, self._api)
                # (The following comment comes directly from the dataclasses plugin)
                # TODO: We shouldn't be performing type operations during the main
                #       semantic analysis pass, since some TypeInfo attributes might
                #       still be in flux. This should be performed in a later phase.
                field.expand_typevar_from_subtype(cls.info, self._api)
                found_fields[name] = field

                sym_node = cls.info.names.get(name)
                if sym_node and sym_node.node and not isinstance(sym_node.node, Var):
                    self._api.fail(
                        'BaseModel field may only be overridden by another field',
                        sym_node.node,
                    )
            # Collect ClassVars
            for name, data in info.metadata[METADATA_KEY]['class_vars'].items():
                found_class_vars[name] = PydanticModelClassVar.deserialize(data)

        # Second, collect fields and ClassVars belonging to the current class.
        current_field_names: set[str] = set()
        current_class_vars_names: set[str] = set()
        for stmt in self._get_assignment_statements_from_block(cls.defs):
            maybe_field = self.collect_field_or_class_var_from_stmt(stmt, model_config, found_class_vars)
            if isinstance(maybe_field, PydanticModelField):
                lhs = stmt.lvalues[0]
                if is_root_model and lhs.name != 'root':
                    error_extra_fields_on_root_model(self._api, stmt)
                else:
                    current_field_names.add(lhs.name)
                    found_fields[lhs.name] = maybe_field
            elif isinstance(maybe_field, PydanticModelClassVar):
                lhs = stmt.lvalues[0]
                current_class_vars_names.add(lhs.name)
                found_class_vars[lhs.name] = maybe_field

        return list(found_fields.values()), list(found_class_vars.values())

    def _get_assignment_statements_from_if_statement(self, stmt: IfStmt) -> Iterator[AssignmentStmt]:
        for body in stmt.body:
            if not body.is_unreachable:
                yield from self._get_assignment_statements_from_block(body)
        if stmt.else_body is not None and not stmt.else_body.is_unreachable:
            yield from self._get_assignment_statements_from_block(stmt.else_body)

    def _get_assignment_statements_from_block(self, block: Block) -> Iterator[AssignmentStmt]:
        for stmt in block.body:
            if isinstance(stmt, AssignmentStmt):
                yield stmt
            elif isinstance(stmt, IfStmt):
                yield from self._get_assignment_statements_from_if_statement(stmt)

    def collect_field_or_class_var_from_stmt(  # noqa C901
        self, stmt: AssignmentStmt, model_config: ModelConfigData, class_vars: dict[str, PydanticModelClassVar]
    ) -> PydanticModelField | PydanticModelClassVar | None:
        """Get pydantic model field from statement.

        Args:
            stmt: The statement.
            model_config: Configuration settings for the model.
            class_vars: ClassVars already known to be defined on the model.

        Returns:
            A pydantic model field if it could find the field in statement. Otherwise, `None`.
        """
        cls = self._cls

        lhs = stmt.lvalues[0]
        if not isinstance(lhs, NameExpr) or not _fields.is_valid_field_name(lhs.name) or lhs.name == 'model_config':
            return None

        if not stmt.new_syntax:
            if (
                isinstance(stmt.rvalue, CallExpr)
                and isinstance(stmt.rvalue.callee, CallExpr)
                and isinstance(stmt.rvalue.callee.callee, NameExpr)
                and stmt.rvalue.callee.callee.fullname in DECORATOR_FULLNAMES
            ):
                # This is a (possibly-reused) validator or serializer, not a field
                # In particular, it looks something like: my_validator = validator('my_field')(f)
                # Eventually, we may want to attempt to respect model_config['ignored_types']
                return None

            if lhs.name in class_vars:
                # Class vars are not fields and are not required to be annotated
                return None

            # The assignment does not have an annotation, and it's not anything else we recognize
            error_untyped_fields(self._api, stmt)
            return None

        lhs = stmt.lvalues[0]
        if not isinstance(lhs, NameExpr):
            return None

        if not _fields.is_valid_field_name(lhs.name) or lhs.name == 'model_config':
            return None

        sym = cls.info.names.get(lhs.name)
        if sym is None:  # pragma: no cover
            # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation)
            # This is the same logic used in the dataclasses plugin
            return None

        node = sym.node
        if isinstance(node, PlaceholderNode):  # pragma: no cover
            # See the PlaceholderNode docstring for more detail about how this can occur
            # Basically, it is an edge case when dealing with complex import logic

            # The dataclasses plugin now asserts this cannot happen, but I'd rather not error if it does..
            return None

        if isinstance(node, TypeAlias):
            self._api.fail(
                'Type aliases inside BaseModel definitions are not supported at runtime',
                node,
            )
            # Skip processing this node. This doesn't match the runtime behaviour,
            # but the only alternative would be to modify the SymbolTable,
            # and it's a little hairy to do that in a plugin.
            return None

        if not isinstance(node, Var):  # pragma: no cover
            # Don't know if this edge case still happens with the `is_valid_field` check above
            # but better safe than sorry

            # The dataclasses plugin now asserts this cannot happen, but I'd rather not error if it does..
            return None

        # x: ClassVar[int] is not a field
        if node.is_classvar:
            return PydanticModelClassVar(lhs.name)

        # x: InitVar[int] is not supported in BaseModel
        node_type = get_proper_type(node.type)
        if isinstance(node_type, Instance) and node_type.type.fullname == 'dataclasses.InitVar':
            self._api.fail(
                'InitVar is not supported in BaseModel',
                node,
            )

        has_default = self.get_has_default(stmt)

        if sym.type is None and node.is_final and node.is_inferred:
            # This follows the logic from the dataclasses plugin. The following comment is taken verbatim:
            #
            # This is a special case, assignment like x: Final = 42 is classified
            # annotated above, but mypy strips the `Final` turning it into x = 42.
            # We do not support inferred types in dataclasses, so we can try inferring
            # type for simple literals, and otherwise require an explicit type
            # argument for Final[...].
            typ = self._api.analyze_simple_literal_type(stmt.rvalue, is_final=True)
            if typ:
                node.type = typ
            else:
                self._api.fail(
                    'Need type argument for Final[...] with non-literal default in BaseModel',
                    stmt,
                )
                node.type = AnyType(TypeOfAny.from_error)

        alias, has_dynamic_alias = self.get_alias_info(stmt)
        if has_dynamic_alias and not model_config.populate_by_name and self.plugin_config.warn_required_dynamic_aliases:
            error_required_dynamic_aliases(self._api, stmt)

        init_type = self._infer_dataclass_attr_init_type(sym, lhs.name, stmt)
        return PydanticModelField(
            name=lhs.name,
            has_dynamic_alias=has_dynamic_alias,
            has_default=has_default,
            alias=alias,
            line=stmt.line,
            column=stmt.column,
            type=init_type,
            info=cls.info,
        )

    def _infer_dataclass_attr_init_type(self, sym: SymbolTableNode, name: str, context: Context) -> Type | None:
        """Infer __init__ argument type for an attribute.

        In particular, possibly use the signature of __set__.
        """
        default = sym.type
        if sym.implicit:
            return default
        t = get_proper_type(sym.type)

        # Perform a simple-minded inference from the signature of __set__, if present.
        # We can't use mypy.checkmember here, since this plugin runs before type checking.
        # We only support some basic scanerios here, which is hopefully sufficient for
        # the vast majority of use cases.
        if not isinstance(t, Instance):
            return default
        setter = t.type.get('__set__')
        if setter:
            if isinstance(setter.node, FuncDef):
                super_info = t.type.get_containing_type_info('__set__')
                assert super_info
                if setter.type:
                    setter_type = get_proper_type(map_type_from_supertype(setter.type, t.type, super_info))
                else:
                    return AnyType(TypeOfAny.unannotated)
                if isinstance(setter_type, CallableType) and setter_type.arg_kinds == [
                    ARG_POS,
                    ARG_POS,
                    ARG_POS,
                ]:
                    return expand_type_by_instance(setter_type.arg_types[2], t)
                else:
                    self._api.fail(f'Unsupported signature for "__set__" in "{t.type.name}"', context)
            else:
                self._api.fail(f'Unsupported "__set__" in "{t.type.name}"', context)

        return default

    def add_initializer(
        self, fields: list[PydanticModelField], config: ModelConfigData, is_settings: bool, is_root_model: bool
    ) -> None:
        """Adds a fields-aware `__init__` method to the class.

        The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings.
        """
        if '__init__' in self._cls.info.names and not self._cls.info.names['__init__'].plugin_generated:
            return  # Don't generate an __init__ if one already exists

        typed = self.plugin_config.init_typed
        use_alias = config.populate_by_name is not True
        requires_dynamic_aliases = bool(config.has_alias_generator and not config.populate_by_name)
        args = self.get_field_arguments(
            fields,
            typed=typed,
            requires_dynamic_aliases=requires_dynamic_aliases,
            use_alias=use_alias,
            is_settings=is_settings,
            force_typevars_invariant=True,
        )

        if is_root_model and MYPY_VERSION_TUPLE <= (1, 0, 1):
            # convert root argument to positional argument
            # This is needed because mypy support for `dataclass_transform` isn't complete on 1.0.1
            args[0].kind = ARG_POS if args[0].kind == ARG_NAMED else ARG_OPT

        if is_settings:
            base_settings_node = self._api.lookup_fully_qualified(BASESETTINGS_FULLNAME).node
            if '__init__' in base_settings_node.names:
                base_settings_init_node = base_settings_node.names['__init__'].node
                if base_settings_init_node is not None and base_settings_init_node.type is not None:
                    func_type = base_settings_init_node.type
                    for arg_idx, arg_name in enumerate(func_type.arg_names):
                        if arg_name.startswith('__') or not arg_name.startswith('_'):
                            continue
                        analyzed_variable_type = self._api.anal_type(func_type.arg_types[arg_idx])
                        variable = Var(arg_name, analyzed_variable_type)
                        args.append(Argument(variable, analyzed_variable_type, None, ARG_OPT))

        if not self.should_init_forbid_extra(fields, config):
            var = Var('kwargs')
            args.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2))

        add_method(self._api, self._cls, '__init__', args=args, return_type=NoneType())

    def add_model_construct_method(
        self, fields: list[PydanticModelField], config: ModelConfigData, is_settings: bool
    ) -> None:
        """Adds a fully typed `model_construct` classmethod to the class.

        Similar to the fields-aware __init__ method, but always uses the field names (not aliases),
        and does not treat settings fields as optional.
        """
        set_str = self._api.named_type(f'{BUILTINS_NAME}.set', [self._api.named_type(f'{BUILTINS_NAME}.str')])
        optional_set_str = UnionType([set_str, NoneType()])
        fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT)
        with state.strict_optional_set(self._api.options.strict_optional):
            args = self.get_field_arguments(
                fields, typed=True, requires_dynamic_aliases=False, use_alias=False, is_settings=is_settings
            )
        if not self.should_init_forbid_extra(fields, config):
            var = Var('kwargs')
            args.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2))

        args = [fields_set_argument] + args

        add_method(
            self._api,
            self._cls,
            'model_construct',
            args=args,
            return_type=fill_typevars(self._cls.info),
            is_classmethod=True,
        )

    def set_frozen(self, fields: list[PydanticModelField], api: SemanticAnalyzerPluginInterface, frozen: bool) -> None:
        """Marks all fields as properties so that attempts to set them trigger mypy errors.

        This is the same approach used by the attrs and dataclasses plugins.
        """
        info = self._cls.info
        for field in fields:
            sym_node = info.names.get(field.name)
            if sym_node is not None:
                var = sym_node.node
                if isinstance(var, Var):
                    var.is_property = frozen
                elif isinstance(var, PlaceholderNode) and not self._api.final_iteration:
                    # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage
                    self._api.defer()
                else:  # pragma: no cover
                    # I don't know whether it's possible to hit this branch, but I've added it for safety
                    try:
                        var_str = str(var)
                    except TypeError:
                        # This happens for PlaceholderNode; perhaps it will happen for other types in the future..
                        var_str = repr(var)
                    detail = f'sym_node.node: {var_str} (of type {var.__class__})'
                    error_unexpected_behavior(detail, self._api, self._cls)
            else:
                var = field.to_var(info, api, use_alias=False)
                var.info = info
                var.is_property = frozen
                var._fullname = info.fullname + '.' + var.name
                info.names[var.name] = SymbolTableNode(MDEF, var)

    def get_config_update(self, name: str, arg: Expression, lax_extra: bool = False) -> ModelConfigData | None:
        """Determines the config update due to a single kwarg in the ConfigDict definition.

        Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int)
        """
        if name not in self.tracked_config_fields:
            return None
        if name == 'extra':
            if isinstance(arg, StrExpr):
                forbid_extra = arg.value == 'forbid'
            elif isinstance(arg, MemberExpr):
                forbid_extra = arg.name == 'forbid'
            else:
                if not lax_extra:
                    # Only emit an error for other types of `arg` (e.g., `NameExpr`, `ConditionalExpr`, etc.) when
                    # reading from a config class, etc. If a ConfigDict is used, then we don't want to emit an error
                    # because you'll get type checking from the ConfigDict itself.
                    #
                    # It would be nice if we could introspect the types better otherwise, but I don't know what the API
                    # is to evaluate an expr into its type and then check if that type is compatible with the expected
                    # type. Note that you can still get proper type checking via: `model_config = ConfigDict(...)`, just
                    # if you don't use an explicit string, the plugin won't be able to infer whether extra is forbidden.
                    error_invalid_config_value(name, self._api, arg)
                return None
            return ModelConfigData(forbid_extra=forbid_extra)
        if name == 'alias_generator':
            has_alias_generator = True
            if isinstance(arg, NameExpr) and arg.fullname == 'builtins.None':
                has_alias_generator = False
            return ModelConfigData(has_alias_generator=has_alias_generator)
        if isinstance(arg, NameExpr) and arg.fullname in ('builtins.True', 'builtins.False'):
            return ModelConfigData(**{name: arg.fullname == 'builtins.True'})
        error_invalid_config_value(name, self._api, arg)
        return None

    @staticmethod
    def get_has_default(stmt: AssignmentStmt) -> bool:
        """Returns a boolean indicating whether the field defined in `stmt` is a required field."""
        expr = stmt.rvalue
        if isinstance(expr, TempNode):
            # TempNode means annotation-only, so has no default
            return False
        if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME:
            # The "default value" is a call to `Field`; at this point, the field has a default if and only if:
            # * there is a positional argument that is not `...`
            # * there is a keyword argument named "default" that is not `...`
            # * there is a "default_factory" that is not `None`
            for arg, name in zip(expr.args, expr.arg_names):
                # If name is None, then this arg is the default because it is the only positional argument.
                if name is None or name == 'default':
                    return arg.__class__ is not EllipsisExpr
                if name == 'default_factory':
                    return not (isinstance(arg, NameExpr) and arg.fullname == 'builtins.None')
            return False
        # Has no default if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`)
        return not isinstance(expr, EllipsisExpr)

    @staticmethod
    def get_alias_info(stmt: AssignmentStmt) -> tuple[str | None, bool]:
        """Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`.

        `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal.
        If `has_dynamic_alias` is True, `alias` will be None.
        """
        expr = stmt.rvalue
        if isinstance(expr, TempNode):
            # TempNode means annotation-only
            return None, False

        if not (
            isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME
        ):
            # Assigned value is not a call to pydantic.fields.Field
            return None, False

        for i, arg_name in enumerate(expr.arg_names):
            if arg_name != 'alias':
                continue
            arg = expr.args[i]
            if isinstance(arg, StrExpr):
                return arg.value, False
            else:
                return None, True
        return None, False

    def get_field_arguments(
        self,
        fields: list[PydanticModelField],
        typed: bool,
        use_alias: bool,
        requires_dynamic_aliases: bool,
        is_settings: bool,
        force_typevars_invariant: bool = False,
    ) -> list[Argument]:
        """Helper function used during the construction of the `__init__` and `model_construct` method signatures.

        Returns a list of mypy Argument instances for use in the generated signatures.
        """
        info = self._cls.info
        arguments = [
            field.to_argument(
                info,
                typed=typed,
                force_optional=requires_dynamic_aliases or is_settings,
                use_alias=use_alias,
                api=self._api,
                force_typevars_invariant=force_typevars_invariant,
            )
            for field in fields
            if not (use_alias and field.has_dynamic_alias)
        ]
        return arguments

    def should_init_forbid_extra(self, fields: list[PydanticModelField], config: ModelConfigData) -> bool:
        """Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature.

        We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to,
        *unless* a required dynamic alias is present (since then we can't determine a valid signature).
        """
        if not config.populate_by_name:
            if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)):
                return False
        if config.forbid_extra:
            return True
        return self.plugin_config.init_forbid_extra

    @staticmethod
    def is_dynamic_alias_present(fields: list[PydanticModelField], has_alias_generator: bool) -> bool:
        """Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be
        determined during static analysis.
        """
        for field in fields:
            if field.has_dynamic_alias:
                return True
        if has_alias_generator:
            for field in fields:
                if field.alias is None:
                    return True
        return False


class ModelConfigData:
    """Pydantic mypy plugin model config class."""

    def __init__(
        self,
        forbid_extra: bool | None = None,
        frozen: bool | None = None,
        from_attributes: bool | None = None,
        populate_by_name: bool | None = None,
        has_alias_generator: bool | None = None,
    ):
        self.forbid_extra = forbid_extra
        self.frozen = frozen
        self.from_attributes = from_attributes
        self.populate_by_name = populate_by_name
        self.has_alias_generator = has_alias_generator

    def get_values_dict(self) -> dict[str, Any]:
        """Returns a dict of Pydantic model config names to their values.

        It includes the config if config value is not `None`.
        """
        return {k: v for k, v in self.__dict__.items() if v is not None}

    def update(self, config: ModelConfigData | None) -> None:
        """Update Pydantic model config values."""
        if config is None:
            return
        for k, v in config.get_values_dict().items():
            setattr(self, k, v)

    def setdefault(self, key: str, value: Any) -> None:
        """Set default value for Pydantic model config if config value is `None`."""
        if getattr(self, key) is None:
            setattr(self, key, value)


ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_attributes call', 'Pydantic')
ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic')
ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic')
ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic')
ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic')
ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic')
ERROR_EXTRA_FIELD_ROOT_MODEL = ErrorCode('pydantic-field', 'Extra field on RootModel subclass', 'Pydantic')


def error_from_attributes(model_name: str, api: CheckerPluginInterface, context: Context) -> None:
    """Emits an error when the model does not have `from_attributes=True`."""
    api.fail(f'"{model_name}" does not have from_attributes=True', context, code=ERROR_ORM)


def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None:
    """Emits an error when the config value is invalid."""
    api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG)


def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
    """Emits required dynamic aliases error.

    This will be called when `warn_required_dynamic_aliases=True`.
    """
    api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS)


def error_unexpected_behavior(
    detail: str, api: CheckerPluginInterface | SemanticAnalyzerPluginInterface, context: Context
) -> None:  # pragma: no cover
    """Emits unexpected behavior error."""
    # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path
    link = 'https://github.com/pydantic/pydantic/issues/new/choose'
    full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n'
    full_message += f'Please consider reporting this bug at {link} so we can try to fix it!'
    api.fail(full_message, context, code=ERROR_UNEXPECTED)


def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
    """Emits an error when there is an untyped field in the model."""
    api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED)


def error_extra_fields_on_root_model(api: CheckerPluginInterface, context: Context) -> None:
    """Emits an error when there is more than just a root field defined for a subclass of RootModel."""
    api.fail('Only `root` is allowed as a field of a `RootModel`', context, code=ERROR_EXTRA_FIELD_ROOT_MODEL)


def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None:
    """Emits an error when `Field` has both `default` and `default_factory` together."""
    api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS)


def add_method(
    api: SemanticAnalyzerPluginInterface | CheckerPluginInterface,
    cls: ClassDef,
    name: str,
    args: list[Argument],
    return_type: Type,
    self_type: Type | None = None,
    tvar_def: TypeVarDef | None = None,
    is_classmethod: bool = False,
) -> None:
    """Very closely related to `mypy.plugins.common.add_method_to_class`, with a few pydantic-specific changes."""
    info = cls.info

    # First remove any previously generated methods with the same name
    # to avoid clashes and problems in the semantic analyzer.
    if name in info.names:
        sym = info.names[name]
        if sym.plugin_generated and isinstance(sym.node, FuncDef):
            cls.defs.body.remove(sym.node)  # pragma: no cover

    if isinstance(api, SemanticAnalyzerPluginInterface):
        function_type = api.named_type('builtins.function')
    else:
        function_type = api.named_generic_type('builtins.function', [])

    if is_classmethod:
        self_type = self_type or TypeType(fill_typevars(info))
        first = [Argument(Var('_cls'), self_type, None, ARG_POS, True)]
    else:
        self_type = self_type or fill_typevars(info)
        # `self` is positional *ONLY* here, but this can't be expressed
        # fully in the mypy internal API. ARG_POS is the closest we can get.
        # Using ARG_POS will, however, give mypy errors if a `self` field
        # is present on a model:
        #
        #     Name "self" already defined (possibly by an import)  [no-redef]
        #
        # As a workaround, we give this argument a name that will
        # never conflict. By its positional nature, this name will not
        # be used or exposed to users.
        first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)]
    args = first + args

    arg_types, arg_names, arg_kinds = [], [], []
    for arg in args:
        assert arg.type_annotation, 'All arguments must be fully typed.'
        arg_types.append(arg.type_annotation)
        arg_names.append(arg.variable.name)
        arg_kinds.append(arg.kind)

    signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type)
    if tvar_def:
        signature.variables = [tvar_def]

    func = FuncDef(name, args, Block([PassStmt()]))
    func.info = info
    func.type = set_callable_name(signature, func)
    func.is_class = is_classmethod
    func._fullname = info.fullname + '.' + name
    func.line = info.line

    # NOTE: we would like the plugin generated node to dominate, but we still
    # need to keep any existing definitions so they get semantically analyzed.
    if name in info.names:
        # Get a nice unique name instead.
        r_name = get_unique_redefinition_name(name, info.names)
        info.names[r_name] = info.names[name]

    # Add decorator for is_classmethod
    # The dataclasses plugin claims this is unnecessary for classmethods, but not including it results in a
    # signature incompatible with the superclass, which causes mypy errors to occur for every subclass of BaseModel.
    if is_classmethod:
        func.is_decorated = True
        v = Var(name, func.type)
        v.info = info
        v._fullname = func._fullname
        v.is_classmethod = True
        dec = Decorator(func, [NameExpr('classmethod')], v)
        dec.line = info.line
        sym = SymbolTableNode(MDEF, dec)
    else:
        sym = SymbolTableNode(MDEF, func)
    sym.plugin_generated = True
    info.names[name] = sym

    info.defn.defs.body.append(func)


def parse_toml(config_file: str) -> dict[str, Any] | None:
    """Returns a dict of config keys to values.

    It reads configs from toml file and returns `None` if the file is not a toml file.
    """
    if not config_file.endswith('.toml'):
        return None

    if sys.version_info >= (3, 11):
        import tomllib as toml_
    else:
        try:
            import tomli as toml_
        except ImportError:  # pragma: no cover
            import warnings

            warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.')
            return None

    with open(config_file, 'rb') as rf:
        return toml_.load(rf)

Youez - 2016 - github.com/yon3zu
LinuXploit