Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.117.74.47
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /usr/share/perl5/vendor_perl/Math/BigInt/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/share/perl5/vendor_perl/Math/BigInt/Calc.pm
package Math::BigInt::Calc;

use 5.006001;
use strict;
use warnings;

use Carp;
use Math::BigInt::Lib;

our $VERSION = '1.999811';

our @ISA = ('Math::BigInt::Lib');

# Package to store unsigned big integers in decimal and do math with them

# Internally the numbers are stored in an array with at least 1 element, no
# leading zero parts (except the first) and in base 1eX where X is determined
# automatically at loading time to be the maximum possible value

# todo:
# - fully remove funky $# stuff in div() (maybe - that code scares me...)

# USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used
# instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms
# BS2000, some Crays need USE_DIV instead.
# The BEGIN block is used to determine which of the two variants gives the
# correct result.

# Beware of things like:
# $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE;
# This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what
# reasons. So, use this instead (slower, but correct):
# $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car;

##############################################################################
# global constants, flags and accessory

# announce that we are compatible with MBI v1.83 and up
sub api_version () { 2; }

# constants for easier life
my ($BASE, $BASE_LEN, $RBASE, $MAX_VAL);
my ($AND_BITS, $XOR_BITS, $OR_BITS);
my ($AND_MASK, $XOR_MASK, $OR_MASK);

sub _base_len {
    # Set/get the BASE_LEN and assorted other, related values.
    # Used only by the testsuite, the set variant is used only by the BEGIN
    # block below:

    my ($class, $b, $int) = @_;
    if (defined $b) {
        # avoid redefinitions
        undef &_mul;
        undef &_div;

        if ($] >= 5.008 && $int && $b > 7) {
            $BASE_LEN = $b;
            *_mul = \&_mul_use_div_64;
            *_div = \&_div_use_div_64;
            $BASE = int("1e" . $BASE_LEN);
            $MAX_VAL = $BASE-1;
            return $BASE_LEN unless wantarray;
            return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL);
        }

        # find whether we can use mul or div in mul()/div()
        $BASE_LEN = $b + 1;
        my $caught = 0;
        while (--$BASE_LEN > 5) {
            $BASE = int("1e" . $BASE_LEN);
            $RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL
            $caught = 0;
            $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1
            $caught += 2 if (int($BASE / $BASE) != 1);  # should be 1
            last if $caught != 3;
        }
        $BASE = int("1e" . $BASE_LEN);
        $RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL
        $MAX_VAL = $BASE-1;

        # ($caught & 1) != 0 => cannot use MUL
        # ($caught & 2) != 0 => cannot use DIV
        if ($caught == 2)       # 2
        {
            # must USE_MUL since we cannot use DIV
            *_mul = \&_mul_use_mul;
            *_div = \&_div_use_mul;
        } else                  # 0 or 1
        {
            # can USE_DIV instead
            *_mul = \&_mul_use_div;
            *_div = \&_div_use_div;
        }
    }
    return $BASE_LEN unless wantarray;
    return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL);
}

sub _new {
    # Given a string representing an integer, returns a reference to an array
    # of integers, where each integer represents a chunk of the original input
    # integer.

    my ($class, $str) = @_;
    #unless ($str =~ /^([1-9]\d*|0)\z/) {
    #    require Carp;
    #    Carp::croak("Invalid input string '$str'");
    #}

    my $input_len = length($str) - 1;

    # Shortcut for small numbers.
    return bless [ $str ], $class if $input_len < $BASE_LEN;

    my $format = "a" . (($input_len % $BASE_LEN) + 1);
    $format .= $] < 5.008 ? "a$BASE_LEN" x int($input_len / $BASE_LEN)
                          : "(a$BASE_LEN)*";

    my $self = [ reverse(map { 0 + $_ } unpack($format, $str)) ];
    return bless $self, $class;
}

BEGIN {
    # from Daniel Pfeiffer: determine largest group of digits that is precisely
    # multipliable with itself plus carry
    # Test now changed to expect the proper pattern, not a result off by 1 or 2
    my ($e, $num) = 3;          # lowest value we will use is 3+1-1 = 3
    do {
        $num = '9' x ++$e;
        $num *= $num + 1;
    } while $num =~ /9{$e}0{$e}/; # must be a certain pattern
    $e--;                         # last test failed, so retract one step
    # the limits below brush the problems with the test above under the rug:
    # the test should be able to find the proper $e automatically
    $e = 5 if $^O =~ /^uts/;    # UTS get's some special treatment
    $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work
                                # there, but we play safe)

    my $int = 0;
    if ($e > 7) {
        use integer;
        my $e1 = 7;
        $num = 7;
        do {
            $num = ('9' x ++$e1) + 0;
            $num *= $num + 1;
        } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern
        $e1--;                  # last test failed, so retract one step
        if ($e1 > 7) {
            $int = 1;
            $e = $e1;
        }
    }

    __PACKAGE__ -> _base_len($e, $int);        # set and store

    use integer;
    # find out how many bits _and, _or and _xor can take (old default = 16)
    # I don't think anybody has yet 128 bit scalars, so let's play safe.
    local $^W = 0;              # don't warn about 'nonportable number'
    $AND_BITS = 15;
    $XOR_BITS = 15;
    $OR_BITS  = 15;

    # find max bits, we will not go higher than numberofbits that fit into $BASE
    # to make _and etc simpler (and faster for smaller, slower for large numbers)
    my $max = 16;
    while (2 ** $max < $BASE) {
        $max++;
    }
    {
        no integer;
        $max = 16 if $] < 5.006; # older Perls might not take >16 too well
    }
    my ($x, $y, $z);

    do {
        $AND_BITS++;
        $x = CORE::oct('0b' . '1' x $AND_BITS);
        $y = $x & $x;
        $z = (2 ** $AND_BITS) - 1;
    } while ($AND_BITS < $max && $x == $z && $y == $x);
    $AND_BITS --;               # retreat one step

    do {
        $XOR_BITS++;
        $x = CORE::oct('0b' . '1' x $XOR_BITS);
        $y = $x ^ 0;
        $z = (2 ** $XOR_BITS) - 1;
    } while ($XOR_BITS < $max && $x == $z && $y == $x);
    $XOR_BITS --;               # retreat one step

    do {
        $OR_BITS++;
        $x = CORE::oct('0b' . '1' x $OR_BITS);
        $y = $x | $x;
        $z = (2 ** $OR_BITS) -  1;
    } while ($OR_BITS < $max && $x == $z && $y == $x);
    $OR_BITS--;                # retreat one step

    $AND_MASK = __PACKAGE__->_new(( 2 ** $AND_BITS ));
    $XOR_MASK = __PACKAGE__->_new(( 2 ** $XOR_BITS ));
    $OR_MASK  = __PACKAGE__->_new(( 2 ** $OR_BITS  ));

    # We can compute the approximate length no faster than the real length:
    *_alen = \&_len;
}

###############################################################################

sub _zero {
    # create a zero
    my $class = shift;
    return bless [ 0 ], $class;
}

sub _one {
    # create a one
    my $class = shift;
    return bless [ 1 ], $class;
}

sub _two {
    # create a two
    my $class = shift;
    return bless [ 2 ], $class;
}

sub _ten {
    # create a 10
    my $class = shift;
    bless [ 10 ], $class;
}

sub _1ex {
    # create a 1Ex
    my $class = shift;

    my $rem   = $_[0] % $BASE_LEN;      # remainder
    my $parts = $_[0] / $BASE_LEN;      # parts

    # 000000, 000000, 100
    bless [ (0) x $parts, '1' . ('0' x $rem) ], $class;
}

sub _copy {
    # make a true copy
    my $class = shift;
    return bless [ @{ $_[0] } ], $class;
}

# catch and throw away
sub import { }

##############################################################################
# convert back to string and number

sub _str {
    # Convert number from internal base 1eN format to string format. Internal
    # format is always normalized, i.e., no leading zeros.

    my $ary = $_[1];
    my $idx = $#$ary;           # index of last element

    if ($idx < 0) {             # should not happen
        require Carp;
        Carp::croak("$_[1] has no elements");
    }

    # Handle first one differently, since it should not have any leading zeros.
    my $ret = int($ary->[$idx]);
    if ($idx > 0) {
        # Interestingly, the pre-padd method uses more time.
        # The old grep variant takes longer (14 vs. 10 sec).
        my $z = '0' x ($BASE_LEN - 1);
        while (--$idx >= 0) {
            $ret .= substr($z . $ary->[$idx], -$BASE_LEN);
        }
    }
    $ret;
}

sub _num {
    # Make a Perl scalar number (int/float) from a BigInt object.
    my $x = $_[1];

    return $x->[0] if @$x == 1;         # below $BASE

    # Start with the most significant element and work towards the least
    # significant element. Avoid multiplying "inf" (which happens if the number
    # overflows) with "0" (if there are zero elements in $x) since this gives
    # "nan" which propagates to the output.

    my $num = 0;
    for (my $i = $#$x ; $i >= 0 ; --$i) {
        $num *= $BASE;
        $num += $x -> [$i];
    }
    return $num;
}

##############################################################################
# actual math code

sub _add {
    # (ref to int_num_array, ref to int_num_array)
    #
    # Routine to add two base 1eX numbers stolen from Knuth Vol 2 Algorithm A
    # pg 231. There are separate routines to add and sub as per Knuth pg 233.
    # This routine modifies array x, but not y.

    my ($c, $x, $y) = @_;

    # $x + 0 => $x

    return $x if @$y == 1 && $y->[0] == 0;

    # 0 + $y => $y->copy

    if (@$x == 1 && $x->[0] == 0) {
        @$x = @$y;
        return $x;
    }

    # For each in Y, add Y to X and carry. If after that, something is left in
    # X, foreach in X add carry to X and then return X, carry. Trades one
    # "$j++" for having to shift arrays.
    my $i;
    my $car = 0;
    my $j = 0;
    for $i (@$y) {
        $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0;
        $j++;
    }
    while ($car != 0) {
        $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0;
        $j++;
    }
    $x;
}

sub _inc {
    # (ref to int_num_array, ref to int_num_array)
    # Add 1 to $x, modify $x in place
    my ($c, $x) = @_;

    for my $i (@$x) {
        return $x if ($i += 1) < $BASE; # early out
        $i = 0;                         # overflow, next
    }
    push @$x, 1 if $x->[-1] == 0;       # last overflowed, so extend
    $x;
}

sub _dec {
    # (ref to int_num_array, ref to int_num_array)
    # Sub 1 from $x, modify $x in place
    my ($c, $x) = @_;

    my $MAX = $BASE - 1;                # since MAX_VAL based on BASE
    for my $i (@$x) {
        last if ($i -= 1) >= 0;         # early out
        $i = $MAX;                      # underflow, next
    }
    pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0)
    $x;
}

sub _sub {
    # (ref to int_num_array, ref to int_num_array, swap)
    #
    # Subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
    # subtract Y from X by modifying x in place
    my ($c, $sx, $sy, $s) = @_;

    my $car = 0;
    my $i;
    my $j = 0;
    if (!$s) {
        for $i (@$sx) {
            last unless defined $sy->[$j] || $car;
            $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0);
            $j++;
        }
        # might leave leading zeros, so fix that
        return __strip_zeros($sx);
    }
    for $i (@$sx) {
        # We can't do an early out if $x < $y, since we need to copy the high
        # chunks from $y. Found by Bob Mathews.
        #last unless defined $sy->[$j] || $car;
        $sy->[$j] += $BASE
          if $car = ($sy->[$j] = $i - ($sy->[$j] || 0) - $car) < 0;
        $j++;
    }
    # might leave leading zeros, so fix that
    __strip_zeros($sy);
}

sub _mul_use_mul {
    # (ref to int_num_array, ref to int_num_array)
    # multiply two numbers in internal representation
    # modifies first arg, second need not be different from first
    my ($c, $xv, $yv) = @_;

    if (@$yv == 1) {
        # shortcut for two very short numbers (improved by Nathan Zook)
        # works also if xv and yv are the same reference, and handles also $x == 0
        if (@$xv == 1) {
            if (($xv->[0] *= $yv->[0]) >= $BASE) {
                $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE;
            }
            ;
            return $xv;
        }
        # $x * 0 => 0
        if ($yv->[0] == 0) {
            @$xv = (0);
            return $xv;
        }
        # multiply a large number a by a single element one, so speed up
        my $y = $yv->[0];
        my $car = 0;
        foreach my $i (@$xv) {
            $i = $i * $y + $car;
            $car = int($i * $RBASE);
            $i -= $car * $BASE;
        }
        push @$xv, $car if $car != 0;
        return $xv;
    }
    # shortcut for result $x == 0 => result = 0
    return $xv if @$xv == 1 && $xv->[0] == 0;

    # since multiplying $x with $x fails, make copy in this case
    $yv = [ @$xv ] if $xv == $yv; # same references?

    my @prod = ();
    my ($prod, $car, $cty, $xi, $yi);

    for $xi (@$xv) {
        $car = 0;
        $cty = 0;

        # slow variant
        #    for $yi (@$yv)
        #      {
        #      $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
        #      $prod[$cty++] =
        #       $prod - ($car = int($prod * RBASE)) * $BASE;  # see USE_MUL
        #      }
        #    $prod[$cty] += $car if $car; # need really to check for 0?
        #    $xi = shift @prod;

        # faster variant
        # looping through this if $xi == 0 is silly - so optimize it away!
        $xi = (shift @prod || 0), next if $xi == 0;
        for $yi (@$yv) {
            $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
            ##     this is actually a tad slower
            ##        $prod = $prod[$cty]; $prod += ($car + $xi * $yi);     # no ||0 here
            $prod[$cty++] =
              $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL
        }
        $prod[$cty] += $car if $car; # need really to check for 0?
        $xi = shift @prod || 0;      # || 0 makes v5.005_3 happy
    }
    push @$xv, @prod;
    # can't have leading zeros
    #  __strip_zeros($xv);
    $xv;
}

sub _mul_use_div_64 {
    # (ref to int_num_array, ref to int_num_array)
    # multiply two numbers in internal representation
    # modifies first arg, second need not be different from first
    # works for 64 bit integer with "use integer"
    my ($c, $xv, $yv) = @_;

    use integer;
    if (@$yv == 1) {
        # shortcut for two small numbers, also handles $x == 0
        if (@$xv == 1) {
            # shortcut for two very short numbers (improved by Nathan Zook)
            # works also if xv and yv are the same reference, and handles also $x == 0
            if (($xv->[0] *= $yv->[0]) >= $BASE) {
                $xv->[0] =
                  $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE;
            }
            return $xv;
        }
        # $x * 0 => 0
        if ($yv->[0] == 0) {
            @$xv = (0);
            return $xv;
        }
        # multiply a large number a by a single element one, so speed up
        my $y = $yv->[0];
        my $car = 0;
        foreach my $i (@$xv) {
            #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE;
            $i = $i * $y + $car;
            $i -= ($car = $i / $BASE) * $BASE;
        }
        push @$xv, $car if $car != 0;
        return $xv;
    }
    # shortcut for result $x == 0 => result = 0
    return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );

    # since multiplying $x with $x fails, make copy in this case
    $yv = $c->_copy($xv) if $xv == $yv; # same references?

    my @prod = ();
    my ($prod, $car, $cty, $xi, $yi);
    for $xi (@$xv) {
        $car = 0;
        $cty = 0;
        # looping through this if $xi == 0 is silly - so optimize it away!
        $xi = (shift @prod || 0), next if $xi == 0;
        for $yi (@$yv) {
            $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
            $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE;
        }
        $prod[$cty] += $car if $car; # need really to check for 0?
        $xi = shift @prod || 0;      # || 0 makes v5.005_3 happy
    }
    push @$xv, @prod;
    $xv;
}

sub _mul_use_div {
    # (ref to int_num_array, ref to int_num_array)
    # multiply two numbers in internal representation
    # modifies first arg, second need not be different from first
    my ($c, $xv, $yv) = @_;

    if (@$yv == 1) {
        # shortcut for two small numbers, also handles $x == 0
        if (@$xv == 1) {
            # shortcut for two very short numbers (improved by Nathan Zook)
            # works also if xv and yv are the same reference, and handles also $x == 0
            if (($xv->[0] *= $yv->[0]) >= $BASE) {
                $xv->[0] =
                  $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE;
            }
            ;
            return $xv;
        }
        # $x * 0 => 0
        if ($yv->[0] == 0) {
            @$xv = (0);
            return $xv;
        }
        # multiply a large number a by a single element one, so speed up
        my $y = $yv->[0];
        my $car = 0;
        foreach my $i (@$xv) {
            $i = $i * $y + $car;
            $car = int($i / $BASE);
            $i -= $car * $BASE;
            # This (together with use integer;) does not work on 32-bit Perls
            #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE;
        }
        push @$xv, $car if $car != 0;
        return $xv;
    }
    # shortcut for result $x == 0 => result = 0
    return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );

    # since multiplying $x with $x fails, make copy in this case
    $yv = $c->_copy($xv) if $xv == $yv; # same references?

    my @prod = ();
    my ($prod, $car, $cty, $xi, $yi);
    for $xi (@$xv) {
        $car = 0;
        $cty = 0;
        # looping through this if $xi == 0 is silly - so optimize it away!
        $xi = (shift @prod || 0), next if $xi == 0;
        for $yi (@$yv) {
            $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
            $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE;
        }
        $prod[$cty] += $car if $car; # need really to check for 0?
        $xi = shift @prod || 0;      # || 0 makes v5.005_3 happy
    }
    push @$xv, @prod;
    # can't have leading zeros
    #  __strip_zeros($xv);
    $xv;
}

sub _div_use_mul {
    # ref to array, ref to array, modify first array and return remainder if
    # in list context

    # see comments in _div_use_div() for more explanations

    my ($c, $x, $yorg) = @_;

    # the general div algorithm here is about O(N*N) and thus quite slow, so
    # we first check for some special cases and use shortcuts to handle them.

    # This works, because we store the numbers in a chunked format where each
    # element contains 5..7 digits (depending on system).

    # if both numbers have only one element:
    if (@$x == 1 && @$yorg == 1) {
        # shortcut, $yorg and $x are two small numbers
        if (wantarray) {
            my $rem = [ $x->[0] % $yorg->[0] ];
            bless $rem, $c;
            $x->[0] = int($x->[0] / $yorg->[0]);
            return ($x, $rem);
        } else {
            $x->[0] = int($x->[0] / $yorg->[0]);
            return $x;
        }
    }

    # if x has more than one, but y has only one element:
    if (@$yorg == 1) {
        my $rem;
        $rem = $c->_mod($c->_copy($x), $yorg) if wantarray;

        # shortcut, $y is < $BASE
        my $j = @$x;
        my $r = 0;
        my $y = $yorg->[0];
        my $b;
        while ($j-- > 0) {
            $b = $r * $BASE + $x->[$j];
            $x->[$j] = int($b/$y);
            $r = $b % $y;
        }
        pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
        return ($x, $rem) if wantarray;
        return $x;
    }

    # now x and y have more than one element

    # check whether y has more elements than x, if yet, the result will be 0
    if (@$yorg > @$x) {
        my $rem;
        $rem = $c->_copy($x) if wantarray;    # make copy
        @$x = 0;                        # set to 0
        return ($x, $rem) if wantarray; # including remainder?
        return $x;                      # only x, which is [0] now
    }
    # check whether the numbers have the same number of elements, in that case
    # the result will fit into one element and can be computed efficiently
    if (@$yorg == @$x) {

        # if $yorg has more digits than $x (it's leading element is longer than
        # the one from $x), the result will also be 0:
        if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
            my $rem = $c->_copy($x) if wantarray;        # make copy
            @$x = 0;                            # set to 0
            return ($x, $rem) if wantarray;     # including remainder?
            return $x;
        }
        # now calculate $x / $yorg
        if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
            # same length, so make full compare

            my $a = 0;
            my $j = @$x - 1;
            # manual way (abort if unequal, good for early ne)
            while ($j >= 0) {
                last if ($a = $x->[$j] - $yorg->[$j]);
                $j--;
            }
            # $a contains the result of the compare between X and Y
            # a < 0: x < y, a == 0: x == y, a > 0: x > y
            if ($a <= 0) {
                # a = 0 => x == y => rem 0
                # a < 0 => x < y => rem = x
                my $rem = $a == 0 ? $c->_zero() : $c->_copy($x);
                @$x = 0;             # if $a < 0
                $x->[0] = 1 if $a == 0;  # $x == $y
                return ($x, $rem) if wantarray;
                return $x;
            }
            # $x >= $y, so proceed normally
        }
    }

    # all other cases:

    my $y = $c->_copy($yorg);         # always make copy to preserve

    my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);

    $car = $bar = $prd = 0;
    if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
        for $xi (@$x) {
            $xi = $xi * $dd + $car;
            $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL
        }
        push(@$x, $car);
        $car = 0;
        for $yi (@$y) {
            $yi = $yi * $dd + $car;
            $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL
        }
    } else {
        push(@$x, 0);
    }
    @q = ();
    ($v2, $v1) = @$y[-2, -1];
    $v2 = 0 unless $v2;
    while ($#$x > $#$y) {
        ($u2, $u1, $u0) = @$x[-3 .. -1];
        $u2 = 0 unless $u2;
        #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
        # if $v1 == 0;
        $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
        --$q while ($v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2);
        if ($q) {
            ($car, $bar) = (0, 0);
            for ($yi = 0, $xi = $#$x - $#$y-1; $yi <= $#$y; ++$yi, ++$xi) {
                $prd = $q * $y->[$yi] + $car;
                $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL
                $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
            }
            if ($x->[-1] < $car + $bar) {
                $car = 0;
                --$q;
                for ($yi = 0, $xi = $#$x - $#$y-1; $yi <= $#$y; ++$yi, ++$xi) {
                    $x->[$xi] -= $BASE
                      if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
                }
            }
        }
        pop(@$x);
        unshift(@q, $q);
    }
    if (wantarray) {
        my $d = bless [], $c;
        if ($dd != 1) {
            $car = 0;
            for $xi (reverse @$x) {
                $prd = $car * $BASE + $xi;
                $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL
                unshift(@$d, $tmp);
            }
        } else {
            @$d = @$x;
        }
        @$x = @q;
        __strip_zeros($x);
        __strip_zeros($d);
        return ($x, $d);
    }
    @$x = @q;
    __strip_zeros($x);
    $x;
}

sub _div_use_div_64 {
    # ref to array, ref to array, modify first array and return remainder if
    # in list context
    # This version works on 64 bit integers
    my ($c, $x, $yorg) = @_;

    use integer;
    # the general div algorithm here is about O(N*N) and thus quite slow, so
    # we first check for some special cases and use shortcuts to handle them.

    # This works, because we store the numbers in a chunked format where each
    # element contains 5..7 digits (depending on system).

    # if both numbers have only one element:
    if (@$x == 1 && @$yorg == 1) {
        # shortcut, $yorg and $x are two small numbers
        if (wantarray) {
            my $rem = [ $x->[0] % $yorg->[0] ];
            bless $rem, $c;
            $x->[0] = int($x->[0] / $yorg->[0]);
            return ($x, $rem);
        } else {
            $x->[0] = int($x->[0] / $yorg->[0]);
            return $x;
        }
    }
    # if x has more than one, but y has only one element:
    if (@$yorg == 1) {
        my $rem;
        $rem = $c->_mod($c->_copy($x), $yorg) if wantarray;

        # shortcut, $y is < $BASE
        my $j = @$x;
        my $r = 0;
        my $y = $yorg->[0];
        my $b;
        while ($j-- > 0) {
            $b = $r * $BASE + $x->[$j];
            $x->[$j] = int($b/$y);
            $r = $b % $y;
        }
        pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
        return ($x, $rem) if wantarray;
        return $x;
    }
    # now x and y have more than one element

    # check whether y has more elements than x, if yet, the result will be 0
    if (@$yorg > @$x) {
        my $rem;
        $rem = $c->_copy($x) if wantarray;    # make copy
        @$x = 0;                        # set to 0
        return ($x, $rem) if wantarray; # including remainder?
        return $x;                      # only x, which is [0] now
    }
    # check whether the numbers have the same number of elements, in that case
    # the result will fit into one element and can be computed efficiently
    if (@$yorg == @$x) {
        my $rem;
        # if $yorg has more digits than $x (it's leading element is longer than
        # the one from $x), the result will also be 0:
        if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
            $rem = $c->_copy($x) if wantarray;     # make copy
            @$x = 0;                          # set to 0
            return ($x, $rem) if wantarray; # including remainder?
            return $x;
        }
        # now calculate $x / $yorg

        if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
            # same length, so make full compare

            my $a = 0;
            my $j = @$x - 1;
            # manual way (abort if unequal, good for early ne)
            while ($j >= 0) {
                last if ($a = $x->[$j] - $yorg->[$j]);
                $j--;
            }
            # $a contains the result of the compare between X and Y
            # a < 0: x < y, a == 0: x == y, a > 0: x > y
            if ($a <= 0) {
                $rem = $c->_zero();                  # a = 0 => x == y => rem 0
                $rem = $c->_copy($x) if $a != 0;       # a < 0 => x < y => rem = x
                @$x = 0;                       # if $a < 0
                $x->[0] = 1 if $a == 0;        # $x == $y
                return ($x, $rem) if wantarray; # including remainder?
                return $x;
            }
            # $x >= $y, so proceed normally
        }
    }

    # all other cases:

    my $y = $c->_copy($yorg);         # always make copy to preserve

    my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);

    $car = $bar = $prd = 0;
    if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
        for $xi (@$x) {
            $xi = $xi * $dd + $car;
            $xi -= ($car = int($xi / $BASE)) * $BASE;
        }
        push(@$x, $car);
        $car = 0;
        for $yi (@$y) {
            $yi = $yi * $dd + $car;
            $yi -= ($car = int($yi / $BASE)) * $BASE;
        }
    } else {
        push(@$x, 0);
    }

    # @q will accumulate the final result, $q contains the current computed
    # part of the final result

    @q = ();
    ($v2, $v1) = @$y[-2, -1];
    $v2 = 0 unless $v2;
    while ($#$x > $#$y) {
        ($u2, $u1, $u0) = @$x[-3..-1];
        $u2 = 0 unless $u2;
        #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
        # if $v1 == 0;
        $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
        --$q while ($v2 * $q > ($u0 * $BASE +$ u1- $q*$v1) * $BASE + $u2);
        if ($q) {
            ($car, $bar) = (0, 0);
            for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                $prd = $q * $y->[$yi] + $car;
                $prd -= ($car = int($prd / $BASE)) * $BASE;
                $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
            }
            if ($x->[-1] < $car + $bar) {
                $car = 0;
                --$q;
                for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                    $x->[$xi] -= $BASE
                      if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
                }
            }
        }
        pop(@$x);
        unshift(@q, $q);
    }
    if (wantarray) {
        my $d = bless [], $c;
        if ($dd != 1) {
            $car = 0;
            for $xi (reverse @$x) {
                $prd = $car * $BASE + $xi;
                $car = $prd - ($tmp = int($prd / $dd)) * $dd;
                unshift(@$d, $tmp);
            }
        } else {
            @$d = @$x;
        }
        @$x = @q;
        __strip_zeros($x);
        __strip_zeros($d);
        return ($x, $d);
    }
    @$x = @q;
    __strip_zeros($x);
    $x;
}

sub _div_use_div {
    # ref to array, ref to array, modify first array and return remainder if
    # in list context
    my ($c, $x, $yorg) = @_;

    # the general div algorithm here is about O(N*N) and thus quite slow, so
    # we first check for some special cases and use shortcuts to handle them.

    # This works, because we store the numbers in a chunked format where each
    # element contains 5..7 digits (depending on system).

    # if both numbers have only one element:
    if (@$x == 1 && @$yorg == 1) {
        # shortcut, $yorg and $x are two small numbers
        if (wantarray) {
            my $rem = [ $x->[0] % $yorg->[0] ];
            bless $rem, $c;
            $x->[0] = int($x->[0] / $yorg->[0]);
            return ($x, $rem);
        } else {
            $x->[0] = int($x->[0] / $yorg->[0]);
            return $x;
        }
    }
    # if x has more than one, but y has only one element:
    if (@$yorg == 1) {
        my $rem;
        $rem = $c->_mod($c->_copy($x), $yorg) if wantarray;

        # shortcut, $y is < $BASE
        my $j = @$x;
        my $r = 0;
        my $y = $yorg->[0];
        my $b;
        while ($j-- > 0) {
            $b = $r * $BASE + $x->[$j];
            $x->[$j] = int($b/$y);
            $r = $b % $y;
        }
        pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
        return ($x, $rem) if wantarray;
        return $x;
    }
    # now x and y have more than one element

    # check whether y has more elements than x, if yet, the result will be 0
    if (@$yorg > @$x) {
        my $rem;
        $rem = $c->_copy($x) if wantarray;    # make copy
        @$x = 0;                        # set to 0
        return ($x, $rem) if wantarray; # including remainder?
        return $x;                      # only x, which is [0] now
    }
    # check whether the numbers have the same number of elements, in that case
    # the result will fit into one element and can be computed efficiently
    if (@$yorg == @$x) {
        my $rem;
        # if $yorg has more digits than $x (it's leading element is longer than
        # the one from $x), the result will also be 0:
        if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
            $rem = $c->_copy($x) if wantarray;        # make copy
            @$x = 0;                            # set to 0
            return ($x, $rem) if wantarray;     # including remainder?
            return $x;
        }
        # now calculate $x / $yorg

        if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
            # same length, so make full compare

            my $a = 0;
            my $j = @$x - 1;
            # manual way (abort if unequal, good for early ne)
            while ($j >= 0) {
                last if ($a = $x->[$j] - $yorg->[$j]);
                $j--;
            }
            # $a contains the result of the compare between X and Y
            # a < 0: x < y, a == 0: x == y, a > 0: x > y
            if ($a <= 0) {
                $rem = $c->_zero();                   # a = 0 => x == y => rem 0
                $rem = $c->_copy($x) if $a != 0;      # a < 0 => x < y => rem = x
                @$x = 0;
                $x->[0] = 0;                    # if $a < 0
                $x->[0] = 1 if $a == 0;         # $x == $y
                return ($x, $rem) if wantarray; # including remainder?
                return $x;
            }
            # $x >= $y, so proceed normally

        }
    }

    # all other cases:

    my $y = $c->_copy($yorg);         # always make copy to preserve

    my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);

    $car = $bar = $prd = 0;
    if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
        for $xi (@$x) {
            $xi = $xi * $dd + $car;
            $xi -= ($car = int($xi / $BASE)) * $BASE;
        }
        push(@$x, $car);
        $car = 0;
        for $yi (@$y) {
            $yi = $yi * $dd + $car;
            $yi -= ($car = int($yi / $BASE)) * $BASE;
        }
    } else {
        push(@$x, 0);
    }

    # @q will accumulate the final result, $q contains the current computed
    # part of the final result

    @q = ();
    ($v2, $v1) = @$y[-2, -1];
    $v2 = 0 unless $v2;
    while ($#$x > $#$y) {
        ($u2, $u1, $u0) = @$x[-3..-1];
        $u2 = 0 unless $u2;
        #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
        # if $v1 == 0;
        $q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
        --$q while ($v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2);
        if ($q) {
            ($car, $bar) = (0, 0);
            for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                $prd = $q * $y->[$yi] + $car;
                $prd -= ($car = int($prd / $BASE)) * $BASE;
                $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
            }
            if ($x->[-1] < $car + $bar) {
                $car = 0;
                --$q;
                for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
                    $x->[$xi] -= $BASE
                      if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
                }
            }
        }
        pop(@$x);
        unshift(@q, $q);
    }
    if (wantarray) {
        my $d = bless [], $c;
        if ($dd != 1) {
            $car = 0;
            for $xi (reverse @$x) {
                $prd = $car * $BASE + $xi;
                $car = $prd - ($tmp = int($prd / $dd)) * $dd;
                unshift(@$d, $tmp);
            }
        } else {
            @$d = @$x;
        }
        @$x = @q;
        __strip_zeros($x);
        __strip_zeros($d);
        return ($x, $d);
    }
    @$x = @q;
    __strip_zeros($x);
    $x;
}

##############################################################################
# testing

sub _acmp {
    # Internal absolute post-normalized compare (ignore signs)
    # ref to array, ref to array, return <0, 0, >0
    # Arrays must have at least one entry; this is not checked for.
    my ($c, $cx, $cy) = @_;

    # shortcut for short numbers
    return (($cx->[0] <=> $cy->[0]) <=> 0)
      if @$cx == 1 && @$cy == 1;

    # fast comp based on number of array elements (aka pseudo-length)
    my $lxy = (@$cx - @$cy)
      # or length of first element if same number of elements (aka difference 0)
      ||
        # need int() here because sometimes the last element is '00018' vs '18'
        (length(int($cx->[-1])) - length(int($cy->[-1])));

    return -1 if $lxy < 0;      # already differs, ret
    return  1 if $lxy > 0;      # ditto

    # manual way (abort if unequal, good for early ne)
    my $a;
    my $j = @$cx;
    while (--$j >= 0) {
        last if $a = $cx->[$j] - $cy->[$j];
    }
    $a <=> 0;
}

sub _len {
    # compute number of digits in base 10

    # int() because add/sub sometimes leaves strings (like '00005') instead of
    # '5' in this place, thus causing length() to report wrong length
    my $cx = $_[1];

    (@$cx - 1) * $BASE_LEN + length(int($cx->[-1]));
}

sub _digit {
    # Return the nth digit. Zero is rightmost, so _digit(123, 0) gives 3.
    # Negative values count from the left, so _digit(123, -1) gives 1.
    my ($c, $x, $n) = @_;

    my $len = _len('', $x);

    $n += $len if $n < 0;               # -1 last, -2 second-to-last

    # Math::BigInt::Calc returns 0 if N is out of range, but this is not done
    # by the other backend libraries.

    return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range

    my $elem = int($n / $BASE_LEN);     # index of array element
    my $digit = $n % $BASE_LEN;         # index of digit within the element
    substr("0" x $BASE_LEN . "$x->[$elem]", -1 - $digit, 1);
}

sub _zeros {
    # Return number of trailing zeros in decimal.
    # Check each array element for having 0 at end as long as elem == 0
    # Upon finding a elem != 0, stop.

    my $x = $_[1];

    return 0 if @$x == 1 && $x->[0] == 0;

    my $zeros = 0;
    foreach my $elem (@$x) {
        if ($elem != 0) {
            $elem =~ /[^0](0*)\z/;
            $zeros += length($1);       # count trailing zeros
            last;                       # early out
        }
        $zeros += $BASE_LEN;
    }
    $zeros;
}

##############################################################################
# _is_* routines

sub _is_zero {
    # return true if arg is zero
    @{$_[1]} == 1 && $_[1]->[0] == 0 ? 1 : 0;
}

sub _is_even {
    # return true if arg is even
    $_[1]->[0] & 1 ? 0 : 1;
}

sub _is_odd {
    # return true if arg is odd
    $_[1]->[0] & 1 ? 1 : 0;
}

sub _is_one {
    # return true if arg is one
    @{$_[1]} == 1 && $_[1]->[0] == 1 ? 1 : 0;
}

sub _is_two {
    # return true if arg is two
    @{$_[1]} == 1 && $_[1]->[0] == 2 ? 1 : 0;
}

sub _is_ten {
    # return true if arg is ten
    @{$_[1]} == 1 && $_[1]->[0] == 10 ? 1 : 0;
}

sub __strip_zeros {
    # Internal normalization function that strips leading zeros from the array.
    # Args: ref to array
    my $x = shift;

    push @$x, 0 if @$x == 0;    # div might return empty results, so fix it
    return $x if @$x == 1;      # early out

    #print "strip: cnt $cnt i $i\n";
    # '0', '3', '4', '0', '0',
    #  0    1    2    3    4
    # cnt = 5, i = 4
    # i = 4
    # i = 3
    # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos)
    # >= 1: skip first part (this can be zero)

    my $i = $#$x;
    while ($i > 0) {
        last if $x->[$i] != 0;
        $i--;
    }
    $i++;
    splice(@$x, $i) if $i < @$x;
    $x;
}

###############################################################################
# check routine to test internal state for corruptions

sub _check {
    # used by the test suite
    my ($class, $x) = @_;

    my $msg = $class -> SUPER::_check($x);
    return $msg if $msg;

    my $n;
    eval { $n = @$x };
    return "Not an array reference" unless $@ eq '';

    return "Reference to an empty array" unless $n > 0;

    # The following fails with Math::BigInt::FastCalc because a
    # Math::BigInt::FastCalc "object" is an unblessed array ref.
    #
    #return 0 unless ref($x) eq $class;

    for (my $i = 0 ; $i <= $#$x ; ++ $i) {
        my $e = $x -> [$i];

        return "Element at index $i is undefined"
          unless defined $e;

        return "Element at index $i is a '" . ref($e) .
          "', which is not a scalar"
          unless ref($e) eq "";

        # It would be better to use the regex /^([1-9]\d*|0)\z/, but that fails
        # in Math::BigInt::FastCalc, because it sometimes creates array
        # elements like "000000".
        return "Element at index $i is '$e', which does not look like an" .
          " normal integer" unless $e =~ /^\d+\z/;

        return "Element at index $i is '$e', which is not smaller than" .
          " the base '$BASE'" if $e >= $BASE;

        return "Element at index $i (last element) is zero"
          if $#$x > 0 && $i == $#$x && $e == 0;
    }

    return 0;
}

###############################################################################

sub _mod {
    # if possible, use mod shortcut
    my ($c, $x, $yo) = @_;

    # slow way since $y too big
    if (@$yo > 1) {
        my ($xo, $rem) = $c->_div($x, $yo);
        @$x = @$rem;
        return $x;
    }

    my $y = $yo->[0];

    # if both are single element arrays
    if (@$x == 1) {
        $x->[0] %= $y;
        return $x;
    }

    # if @$x has more than one element, but @$y is a single element
    my $b = $BASE % $y;
    if ($b == 0) {
        # when BASE % Y == 0 then (B * BASE) % Y == 0
        # (B * BASE) % $y + A % Y => A % Y
        # so need to consider only last element: O(1)
        $x->[0] %= $y;
    } elsif ($b == 1) {
        # else need to go through all elements in @$x: O(N), but loop is a bit
        # simplified
        my $r = 0;
        foreach (@$x) {
            $r = ($r + $_) % $y; # not much faster, but heh...
            #$r += $_ % $y; $r %= $y;
        }
        $r = 0 if $r == $y;
        $x->[0] = $r;
    } else {
        # else need to go through all elements in @$x: O(N)
        my $r = 0;
        my $bm = 1;
        foreach (@$x) {
            $r = ($_ * $bm + $r) % $y;
            $bm = ($bm * $b) % $y;

            #$r += ($_ % $y) * $bm;
            #$bm *= $b;
            #$bm %= $y;
            #$r %= $y;
        }
        $r = 0 if $r == $y;
        $x->[0] = $r;
    }
    @$x = $x->[0];              # keep one element of @$x
    return $x;
}

##############################################################################
# shifts

sub _rsft {
    my ($c, $x, $y, $n) = @_;

    if ($n != 10) {
        $n = $c->_new($n);
        return scalar $c->_div($x, $c->_pow($n, $y));
    }

    # shortcut (faster) for shifting by 10)
    # multiples of $BASE_LEN
    my $dst = 0;                # destination
    my $src = $c->_num($y);     # as normal int
    my $xlen = (@$x - 1) * $BASE_LEN + length(int($x->[-1]));
    if ($src >= $xlen or ($src == $xlen and !defined $x->[1])) {
        # 12345 67890 shifted right by more than 10 digits => 0
        splice(@$x, 1);         # leave only one element
        $x->[0] = 0;            # set to zero
        return $x;
    }
    my $rem = $src % $BASE_LEN;   # remainder to shift
    $src = int($src / $BASE_LEN); # source
    if ($rem == 0) {
        splice(@$x, 0, $src);   # even faster, 38.4 => 39.3
    } else {
        my $len = @$x - $src;   # elems to go
        my $vd;
        my $z = '0' x $BASE_LEN;
        $x->[ @$x ] = 0;          # avoid || 0 test inside loop
        while ($dst < $len) {
            $vd = $z . $x->[$src];
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN - $rem);
            $src++;
            $vd = substr($z . $x->[$src], -$rem, $rem) . $vd;
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
            $x->[$dst] = int($vd);
            $dst++;
        }
        splice(@$x, $dst) if $dst > 0;       # kill left-over array elems
        pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0
    }                                        # else rem == 0
    $x;
}

sub _lsft {
    my ($c, $x, $n, $b) = @_;

    return $x if $c->_is_zero($x);

    # Handle the special case when the base is a power of 10. Don't check
    # whether log($b)/log(10) is an integer, because log(1000)/log(10) is not
    # exactly 3.

    my $log10 = sprintf "%.0f", log($b) / log(10);
    if ($b == 10 ** $log10) {
        $b = 10;
        $n = $c->_mul($n, $c->_new($log10));

        # shortcut (faster) for shifting by 10) since we are in base 10eX
        # multiples of $BASE_LEN:
        my $src = @$x;                      # source
        my $len = $c->_num($n);             # shift-len as normal int
        my $rem = $len % $BASE_LEN;         # remainder to shift
        my $dst = $src + int($len / $BASE_LEN); # destination
        my $vd;                                 # further speedup
        $x->[$src] = 0;                         # avoid first ||0 for speed
        my $z = '0' x $BASE_LEN;
        while ($src >= 0) {
            $vd = $x->[$src];
            $vd = $z . $vd;
            $vd = substr($vd, -$BASE_LEN + $rem, $BASE_LEN - $rem);
            $vd .= $src > 0 ? substr($z . $x->[$src - 1], -$BASE_LEN, $rem)
              : '0' x $rem;
            $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN;
            $x->[$dst] = int($vd);
            $dst--;
            $src--;
        }
        # set lowest parts to 0
        while ($dst >= 0) {
            $x->[$dst--] = 0;
        }
        # fix spurious last zero element
        splice @$x, -1 if $x->[-1] == 0;
        return $x;
    } else {
        $b = $c->_new($b);
        #print $c->_str($b);
        return $c->_mul($x, $c->_pow($b, $n));
    }
}

sub _pow {
    # power of $x to $y
    # ref to array, ref to array, return ref to array
    my ($c, $cx, $cy) = @_;

    if (@$cy == 1 && $cy->[0] == 0) {
        splice(@$cx, 1);
        $cx->[0] = 1;           # y == 0 => x => 1
        return $cx;
    }

    if ((@$cx == 1 && $cx->[0] == 1) || #    x == 1
        (@$cy == 1 && $cy->[0] == 1))   # or y == 1
    {
        return $cx;
    }

    if (@$cx == 1 && $cx->[0] == 0) {
        splice (@$cx, 1);
        $cx->[0] = 0;           # 0 ** y => 0 (if not y <= 0)
        return $cx;
    }

    my $pow2 = $c->_one();

    my $y_bin = $c->_as_bin($cy);
    $y_bin =~ s/^0b//;
    my $len = length($y_bin);
    while (--$len > 0) {
        $c->_mul($pow2, $cx) if substr($y_bin, $len, 1) eq '1'; # is odd?
        $c->_mul($cx, $cx);
    }

    $c->_mul($cx, $pow2);
    $cx;
}

sub _nok {
    # Return binomial coefficient (n over k).
    # Given refs to arrays, return ref to array.
    # First input argument is modified.

    my ($c, $n, $k) = @_;

    # If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as
    # nok(n, n-k), to minimize the number if iterations in the loop.

    {
        my $twok = $c->_mul($c->_two(), $c->_copy($k)); # 2 * k
        if ($c->_acmp($twok, $n) > 0) {               # if 2*k > n
            $k = $c->_sub($c->_copy($n), $k);         # k = n - k
        }
    }

    # Example:
    #
    # / 7 \       7!       1*2*3*4 * 5*6*7   5 * 6 * 7       6   7
    # |   | = --------- =  --------------- = --------- = 5 * - * -
    # \ 3 /   (7-3)! 3!    1*2*3*4 * 1*2*3   1 * 2 * 3       2   3

    if ($c->_is_zero($k)) {
        @$n = 1;
    } else {

        # Make a copy of the original n, since we'll be modifying n in-place.

        my $n_orig = $c->_copy($n);

        # n = 5, f = 6, d = 2 (cf. example above)

        $c->_sub($n, $k);
        $c->_inc($n);

        my $f = $c->_copy($n);
        $c->_inc($f);

        my $d = $c->_two();

        # while f <= n (the original n, that is) ...

        while ($c->_acmp($f, $n_orig) <= 0) {

            # n = (n * f / d) == 5 * 6 / 2 (cf. example above)

            $c->_mul($n, $f);
            $c->_div($n, $d);

            # f = 7, d = 3 (cf. example above)

            $c->_inc($f);
            $c->_inc($d);
        }

    }

    return $n;
}

my @factorials = (
                  1,
                  1,
                  2,
                  2*3,
                  2*3*4,
                  2*3*4*5,
                  2*3*4*5*6,
                  2*3*4*5*6*7,
                 );

sub _fac {
    # factorial of $x
    # ref to array, return ref to array
    my ($c, $cx) = @_;

    if ((@$cx == 1) && ($cx->[0] <= 7)) {
        $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc.
        return $cx;
    }

    if ((@$cx == 1) &&          # we do this only if $x >= 12 and $x <= 7000
        ($cx->[0] >= 12 && $cx->[0] < 7000)) {

        # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j)
        # See http://blogten.blogspot.com/2007/01/calculating-n.html
        # The above series can be expressed as factors:
        #   k * k - (j - i) * 2
        # We cache k*k, and calculate (j * j) as the sum of the first j odd integers

        # This will not work when N exceeds the storage of a Perl scalar, however,
        # in this case the algorithm would be way too slow to terminate, anyway.

        # As soon as the last element of $cx is 0, we split it up and remember
        # how many zeors we got so far. The reason is that n! will accumulate
        # zeros at the end rather fast.
        my $zero_elements = 0;

        # If n is even, set n = n -1
        my $k = $c->_num($cx);
        my $even = 1;
        if (($k & 1) == 0) {
            $even = $k;
            $k --;
        }
        # set k to the center point
        $k = ($k + 1) / 2;
        #  print "k $k even: $even\n";
        # now calculate k * k
        my $k2 = $k * $k;
        my $odd = 1;
        my $sum = 1;
        my $i = $k - 1;
        # keep reference to x
        my $new_x = $c->_new($k * $even);
        @$cx = @$new_x;
        if ($cx->[0] == 0) {
            $zero_elements ++;
            shift @$cx;
        }
        #  print STDERR "x = ", $c->_str($cx), "\n";
        my $BASE2 = int(sqrt($BASE))-1;
        my $j = 1;
        while ($j <= $i) {
            my $m = ($k2 - $sum);
            $odd += 2;
            $sum += $odd;
            $j++;
            while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) {
                $m *= ($k2 - $sum);
                $odd += 2;
                $sum += $odd;
                $j++;
                #      print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1);
            }
            if ($m < $BASE) {
                $c->_mul($cx, [$m]);
            } else {
                $c->_mul($cx, $c->_new($m));
            }
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            #    print STDERR "Calculate $k2 - $sum = $m (x = ", $c->_str($cx), ")\n";
        }
        # multiply in the zeros again
        unshift @$cx, (0) x $zero_elements;
        return $cx;
    }

    # go forward until $base is exceeded limit is either $x steps (steps == 100
    # means a result always too high) or $base.
    my $steps = 100;
    $steps = $cx->[0] if @$cx == 1;
    my $r = 2;
    my $cf = 3;
    my $step = 2;
    my $last = $r;
    while ($r * $cf < $BASE && $step < $steps) {
        $last = $r;
        $r *= $cf++;
        $step++;
    }
    if ((@$cx == 1) && $step == $cx->[0]) {
        # completely done, so keep reference to $x and return
        $cx->[0] = $r;
        return $cx;
    }

    # now we must do the left over steps
    my $n;                      # steps still to do
    if (@$cx == 1) {
        $n = $cx->[0];
    } else {
        $n = $c->_copy($cx);
    }

    # Set $cx to the last result below $BASE (but keep ref to $x)
    $cx->[0] = $last;
    splice (@$cx, 1);
    # As soon as the last element of $cx is 0, we split it up and remember
    # how many zeors we got so far. The reason is that n! will accumulate
    # zeros at the end rather fast.
    my $zero_elements = 0;

    # do left-over steps fit into a scalar?
    if (ref $n eq 'ARRAY') {
        # No, so use slower inc() & cmp()
        # ($n is at least $BASE here)
        my $base_2 = int(sqrt($BASE)) - 1;
        #print STDERR "base_2: $base_2\n";
        while ($step < $base_2) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            my $b = $step * ($step + 1);
            $step += 2;
            $c->_mul($cx, [$b]);
        }
        $step = [$step];
        while ($c->_acmp($step, $n) <= 0) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            $c->_mul($cx, $step);
            $c->_inc($step);
        }
    } else {
        # Yes, so we can speed it up slightly

        #    print "# left over steps $n\n";

        my $base_4 = int(sqrt(sqrt($BASE))) - 2;
        #print STDERR "base_4: $base_4\n";
        my $n4 = $n - 4;
        while ($step < $n4 && $step < $base_4) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            my $b = $step * ($step + 1);
            $step += 2;
            $b *= $step * ($step + 1);
            $step += 2;
            $c->_mul($cx, [$b]);
        }
        my $base_2 = int(sqrt($BASE)) - 1;
        my $n2 = $n - 2;
        #print STDERR "base_2: $base_2\n";
        while ($step < $n2 && $step < $base_2) {
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
            my $b = $step * ($step + 1);
            $step += 2;
            $c->_mul($cx, [$b]);
        }
        # do what's left over
        while ($step <= $n) {
            $c->_mul($cx, [$step]);
            $step++;
            if ($cx->[0] == 0) {
                $zero_elements ++;
                shift @$cx;
            }
        }
    }
    # multiply in the zeros again
    unshift @$cx, (0) x $zero_elements;
    $cx;                        # return result
}

sub _log_int {
    # calculate integer log of $x to base $base
    # ref to array, ref to array - return ref to array
    my ($c, $x, $base) = @_;

    # X == 0 => NaN
    return if @$x == 1 && $x->[0] == 0;

    # BASE 0 or 1 => NaN
    return if @$base == 1 && $base->[0] < 2;

    # X == 1 => 0 (is exact)
    if (@$x == 1 && $x->[0] == 1) {
        @$x = 0;
        return $x, 1;
    }

    my $cmp = $c->_acmp($x, $base);

    # X == BASE => 1 (is exact)
    if ($cmp == 0) {
        @$x = 1;
        return $x, 1;
    }

    # 1 < X < BASE => 0 (is truncated)
    if ($cmp < 0) {
        @$x = 0;
        return $x, 0;
    }

    my $x_org = $c->_copy($x);  # preserve x

    # Compute a guess for the result based on:
    # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) )
    my $len = $c->_len($x_org);
    my $log = log($base->[-1]) / log(10);

    # for each additional element in $base, we add $BASE_LEN to the result,
    # based on the observation that log($BASE, 10) is BASE_LEN and
    # log(x*y) == log(x) + log(y):
    $log += (@$base - 1) * $BASE_LEN;

    # calculate now a guess based on the values obtained above:
    my $res = int($len / $log);

    @$x = $res;
    my $trial = $c->_pow($c->_copy($base), $x);
    my $acmp = $c->_acmp($trial, $x_org);

    # Did we get the exact result?

    return $x, 1 if $acmp == 0;

    # Too small?

    while ($acmp < 0) {
        $c->_mul($trial, $base);
        $c->_inc($x);
        $acmp = $c->_acmp($trial, $x_org);
    }

    # Too big?

    while ($acmp > 0) {
        $c->_div($trial, $base);
        $c->_dec($x);
        $acmp = $c->_acmp($trial, $x_org);
    }

    return $x, 1 if $acmp == 0;         # result is exact
    return $x, 0;                       # result is too small
}

# for debugging:
use constant DEBUG => 0;
my $steps = 0;
sub steps { $steps };

sub _sqrt {
    # square-root of $x in place
    # Compute a guess of the result (by rule of thumb), then improve it via
    # Newton's method.
    my ($c, $x) = @_;

    if (@$x == 1) {
        # fits into one Perl scalar, so result can be computed directly
        $x->[0] = int(sqrt($x->[0]));
        return $x;
    }
    my $y = $c->_copy($x);
    # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess
    # since our guess will "grow"
    my $l = int(($c->_len($x)-1) / 2);

    my $lastelem = $x->[-1];    # for guess
    my $elems = @$x - 1;
    # not enough digits, but could have more?
    if ((length($lastelem) <= 3) && ($elems > 1)) {
        # right-align with zero pad
        my $len = length($lastelem) & 1;
        print "$lastelem => " if DEBUG;
        $lastelem .= substr($x->[-2] . '0' x $BASE_LEN, 0, $BASE_LEN);
        # former odd => make odd again, or former even to even again
        $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len;
        print "$lastelem\n" if DEBUG;
    }

    # construct $x (instead of $c->_lsft($x, $l, 10)
    my $r = $l % $BASE_LEN;     # 10000 00000 00000 00000 ($BASE_LEN=5)
    $l = int($l / $BASE_LEN);
    print "l =  $l " if DEBUG;

    splice @$x, $l;              # keep ref($x), but modify it

    # we make the first part of the guess not '1000...0' but int(sqrt($lastelem))
    # that gives us:
    # 14400 00000 => sqrt(14400) => guess first digits to be 120
    # 144000 000000 => sqrt(144000) => guess 379

    print "$lastelem (elems $elems) => " if DEBUG;
    $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even?
    my $g = sqrt($lastelem);
    $g =~ s/\.//;               # 2.345 => 2345
    $r -= 1 if $elems & 1 == 0; # 70 => 7

    # padd with zeros if result is too short
    $x->[$l--] = int(substr($g . '0' x $r, 0, $r+1));
    print "now ", $x->[-1] if DEBUG;
    print " would have been ", int('1' . '0' x $r), "\n" if DEBUG;

    # If @$x > 1, we could compute the second elem of the guess, too, to create
    # an even better guess. Not implemented yet. Does it improve performance?
    $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero

    print "start x= ", $c->_str($x), "\n" if DEBUG;
    my $two = $c->_two();
    my $last = $c->_zero();
    my $lastlast = $c->_zero();
    $steps = 0 if DEBUG;
    while ($c->_acmp($last, $x) != 0 && $c->_acmp($lastlast, $x) != 0) {
        $steps++ if DEBUG;
        $lastlast = $c->_copy($last);
        $last = $c->_copy($x);
        $c->_add($x, $c->_div($c->_copy($y), $x));
        $c->_div($x, $two );
        print " x= ", $c->_str($x), "\n" if DEBUG;
    }
    print "\nsteps in sqrt: $steps, " if DEBUG;
    $c->_dec($x) if $c->_acmp($y, $c->_mul($c->_copy($x), $x)) < 0; # overshot?
    print " final ", $x->[-1], "\n" if DEBUG;
    $x;
}

sub _root {
    # Take n'th root of $x in place.

    my ($c, $x, $n) = @_;

    # Small numbers.

    if (@$x == 1 && @$n == 1) {
        # Result can be computed directly. Adjust initial result for numerical
        # errors, e.g., int(1000**(1/3)) is 2, not 3.
        my $y = int($x->[0] ** (1 / $n->[0]));
        my $yp1 = $y + 1;
        $y = $yp1 if $yp1 ** $n->[0] == $x->[0];
        $x->[0] = $y;
        return $x;
    }

    # If x <= n, the result is always (truncated to) 1.

    if ((@$x > 1 || $x -> [0] > 0) &&           # if x is non-zero ...
        $c -> _acmp($x, $n) <= 0)               # ... and x <= n
    {
        my $one = $x -> _one();
        @$x = @$one;
        return $x;
    }

    # If $n is a power of two, take sqrt($x) repeatedly, e.g., root($x, 4) =
    # sqrt(sqrt($x)), root($x, 8) = sqrt(sqrt(sqrt($x))).

    my $b = $c -> _as_bin($n);
    if ($b =~ /0b1(0+)$/) {
        my $count = length($1);       # 0b100 => len('00') => 2
        my $cnt = $count;             # counter for loop
        unshift @$x, 0;               # add one element, together with one
                                      #   more below in the loop this makes 2
        while ($cnt-- > 0) {
            # 'Inflate' $x by adding one element, basically computing
            # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for
            # result since len(sqrt($X)) approx == len($x) / 2.
            unshift @$x, 0;
            # Calculate sqrt($x), $x is now one element to big, again. In the
            # next round we make that two, again.
            $c -> _sqrt($x);
        }

        # $x is now one element too big, so truncate result by removing it.
        shift @$x;

        return $x;
    }

    my $DEBUG = 0;

    # Now the general case. This works by finding an initial guess. If this
    # guess is incorrect, a relatively small delta is chosen. This delta is
    # used to find a lower and upper limit for the correct value. The delta is
    # doubled in each iteration. When a lower and upper limit is found,
    # bisection is applied to narrow down the region until we have the correct
    # value.

    # Split x into mantissa and exponent in base 10, so that
    #
    #   x = xm * 10^xe, where 0 < xm < 1 and xe is an integer

    my $x_str = $c -> _str($x);
    my $xm    = "." . $x_str;
    my $xe    = length($x_str);

    # From this we compute the base 10 logarithm of x
    #
    #   log_10(x) = log_10(xm) + log_10(xe^10)
    #             = log(xm)/log(10) + xe
    #
    # and then the base 10 logarithm of y, where y = x^(1/n)
    #
    #   log_10(y) = log_10(x)/n

    my $log10x = log($xm) / log(10) + $xe;
    my $log10y = $log10x / $c -> _num($n);

    # And from this we compute ym and ye, the mantissa and exponent (in
    # base 10) of y, where 1 < ym <= 10 and ye is an integer.

    my $ye = int $log10y;
    my $ym = 10 ** ($log10y - $ye);

    # Finally, we scale the mantissa and exponent to incraese the integer
    # part of ym, before building the string representing our guess of y.

    if ($DEBUG) {
        print "\n";
        print "xm     = $xm\n";
        print "xe     = $xe\n";
        print "log10x = $log10x\n";
        print "log10y = $log10y\n";
        print "ym     = $ym\n";
        print "ye     = $ye\n";
        print "\n";
    }

    my $d = $ye < 15 ? $ye : 15;
    $ym *= 10 ** $d;
    $ye -= $d;

    my $y_str = sprintf('%.0f', $ym) . "0" x $ye;
    my $y = $c -> _new($y_str);

    if ($DEBUG) {
        print "ym     = $ym\n";
        print "ye     = $ye\n";
        print "\n";
        print "y_str  = $y_str (initial guess)\n";
        print "\n";
    }

    # See if our guess y is correct.

    my $trial = $c -> _pow($c -> _copy($y), $n);
    my $acmp  = $c -> _acmp($trial, $x);

    if ($acmp == 0) {
        @$x = @$y;
        return $x;
    }

    # Find a lower and upper limit for the correct value of y. Start off with a
    # delta value that is approximately the size of the accuracy of the guess.

    my $lower;
    my $upper;

    my $delta = $c -> _new("1" . ("0" x $ye));
    my $two   = $c -> _two();

    if ($acmp < 0) {
        $lower = $y;
        while ($acmp < 0) {
            $upper = $c -> _add($c -> _copy($lower), $delta);

            if ($DEBUG) {
                print "lower  = $lower\n";
                print "upper  = $upper\n";
                print "delta  = $delta\n";
                print "\n";
            }
            $acmp  = $c -> _acmp($c -> _pow($c -> _copy($upper), $n), $x);
            if ($acmp == 0) {
                @$x = @$upper;
                return $x;
            }
            $delta = $c -> _mul($delta, $two);
        }
    }

    elsif ($acmp > 0) {
        $upper = $y;
        my $zero = $c -> _zero();
        while ($acmp > 0) {
            if ($c -> _acmp($upper, $delta) <= 0) {
                $lower = $c -> _zero();
                last;
            }
            $lower = $c -> _sub($c -> _copy($upper), $delta);

            if ($DEBUG) {
                print "lower  = $lower\n";
                print "upper  = $upper\n";
                print "delta  = $delta\n";
                print "\n";
            }
            $acmp  = $c -> _acmp($c -> _pow($c -> _copy($lower), $n), $x);
            if ($acmp == 0) {
                @$x = @$lower;
                return $x;
            }
            $delta = $c -> _mul($delta, $two);
        }
    }

    # Use bisection to narrow down the interval.

    my $one = $c -> _one();
    {

        $delta = $c -> _sub($c -> _copy($upper), $lower);
        if ($c -> _acmp($delta, $one) <= 0) {
            @$x = @$lower;
            return $x;
        }

        if ($DEBUG) {
            print "lower  = $lower\n";
            print "upper  = $upper\n";
            print "delta   = $delta\n";
            print "\n";
        }

        $delta = $c -> _div($delta, $two);
        my $middle = $c -> _add($c -> _copy($lower), $delta);

        $acmp  = $c -> _acmp($c -> _pow($c -> _copy($middle), $n), $x);
        if ($acmp < 0) {
            $lower = $middle;
        } elsif ($acmp > 0) {
            $upper = $middle;
        } else {
            @$x = @$middle;
            return $x;
        }

        redo;
    }

    $x;
}

##############################################################################
# binary stuff

sub _and {
    my ($c, $x, $y) = @_;

    # the shortcut makes equal, large numbers _really_ fast, and makes only a
    # very small performance drop for small numbers (e.g. something with less
    # than 32 bit) Since we optimize for large numbers, this is enabled.
    return $x if $c->_acmp($x, $y) == 0; # shortcut

    my $m = $c->_one();
    my ($xr, $yr);
    my $mask = $AND_MASK;

    my $x1 = $c->_copy($x);
    my $y1 = $c->_copy($y);
    my $z  = $c->_zero();

    use integer;
    until ($c->_is_zero($x1) || $c->_is_zero($y1)) {
        ($x1, $xr) = $c->_div($x1, $mask);
        ($y1, $yr) = $c->_div($y1, $mask);

        $c->_add($z, $c->_mul([ 0 + $xr->[0] & 0 + $yr->[0] ], $m));
        $c->_mul($m, $mask);
    }

    @$x = @$z;
    return $x;
}

sub _xor {
    my ($c, $x, $y) = @_;

    return $c->_zero() if $c->_acmp($x, $y) == 0; # shortcut (see -and)

    my $m = $c->_one();
    my ($xr, $yr);
    my $mask = $XOR_MASK;

    my $x1 = $c->_copy($x);
    my $y1 = $c->_copy($y);      # make copy
    my $z  = $c->_zero();

    use integer;
    until ($c->_is_zero($x1) || $c->_is_zero($y1)) {
        ($x1, $xr) = $c->_div($x1, $mask);
        ($y1, $yr) = $c->_div($y1, $mask);
        # make ints() from $xr, $yr (see _and())
        #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
        #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
        #$c->_add($x, $c->_mul($c->_new($xrr ^ $yrr)), $m) );

        $c->_add($z, $c->_mul([ 0 + $xr->[0] ^ 0 + $yr->[0] ], $m));
        $c->_mul($m, $mask);
    }
    # the loop stops when the shorter of the two numbers is exhausted
    # the remainder of the longer one will survive bit-by-bit, so we simple
    # multiply-add it in
    $c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1);
    $c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1);

    @$x = @$z;
    return $x;
}

sub _or {
    my ($c, $x, $y) = @_;

    return $x if $c->_acmp($x, $y) == 0; # shortcut (see _and)

    my $m = $c->_one();
    my ($xr, $yr);
    my $mask = $OR_MASK;

    my $x1 = $c->_copy($x);
    my $y1 = $c->_copy($y);      # make copy
    my $z  = $c->_zero();

    use integer;
    until ($c->_is_zero($x1) || $c->_is_zero($y1)) {
        ($x1, $xr) = $c->_div($x1, $mask);
        ($y1, $yr) = $c->_div($y1, $mask);
        # make ints() from $xr, $yr (see _and())
        #    $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
        #    $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
        #    $c->_add($x, $c->_mul(_new( $c, ($xrr | $yrr) ), $m) );

        $c->_add($z, $c->_mul([ 0 + $xr->[0] | 0 + $yr->[0] ], $m));
        $c->_mul($m, $mask);
    }
    # the loop stops when the shorter of the two numbers is exhausted
    # the remainder of the longer one will survive bit-by-bit, so we simple
    # multiply-add it in
    $c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1);
    $c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1);

    @$x = @$z;
    return $x;
}

sub _as_hex {
    # convert a decimal number to hex (ref to array, return ref to string)
    my ($c, $x) = @_;

    # fits into one element (handle also 0x0 case)
    return sprintf("0x%x", $x->[0]) if @$x == 1;

    my $x1 = $c->_copy($x);

    my $es = '';
    my ($xr, $h, $x10000);
    if ($] >= 5.006) {
        $x10000 = [ 0x10000 ];
        $h = 'h4';
    } else {
        $x10000 = [ 0x1000 ];
        $h = 'h3';
    }
    while (@$x1 != 1 || $x1->[0] != 0) # _is_zero()
    {
        ($x1, $xr) = $c->_div($x1, $x10000);
        $es .= unpack($h, pack('V', $xr->[0]));
    }
    $es = reverse $es;
    $es =~ s/^[0]+//;           # strip leading zeros
    '0x' . $es;                 # return result prepended with 0x
}

sub _as_bin {
    # convert a decimal number to bin (ref to array, return ref to string)
    my ($c, $x) = @_;

    # fits into one element (and Perl recent enough), handle also 0b0 case
    # handle zero case for older Perls
    if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) {
        my $t = '0b0';
        return $t;
    }
    if (@$x == 1 && $] >= 5.006) {
        my $t = sprintf("0b%b", $x->[0]);
        return $t;
    }
    my $x1 = $c->_copy($x);

    my $es = '';
    my ($xr, $b, $x10000);
    if ($] >= 5.006) {
        $x10000 = [ 0x10000 ];
        $b = 'b16';
    } else {
        $x10000 = [ 0x1000 ];
        $b = 'b12';
    }
    while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero()
    {
        ($x1, $xr) = $c->_div($x1, $x10000);
        $es .= unpack($b, pack('v', $xr->[0]));
    }
    $es = reverse $es;
    $es =~ s/^[0]+//;           # strip leading zeros
    '0b' . $es;                 # return result prepended with 0b
}

sub _as_oct {
    # convert a decimal number to octal (ref to array, return ref to string)
    my ($c, $x) = @_;

    # fits into one element (handle also 0 case)
    return sprintf("0%o", $x->[0]) if @$x == 1;

    my $x1 = $c->_copy($x);

    my $es = '';
    my $xr;
    my $x1000 = [ 0100000 ];
    while (@$x1 != 1 || $x1->[0] != 0) # _is_zero()
    {
        ($x1, $xr) = $c->_div($x1, $x1000);
        $es .= reverse sprintf("%05o", $xr->[0]);
    }
    $es = reverse $es;
    $es =~ s/^0+//;             # strip leading zeros
    '0' . $es;                  # return result prepended with 0
}

sub _from_oct {
    # convert a octal number to decimal (string, return ref to array)
    my ($c, $os) = @_;

    # for older Perls, play safe
    my $m = [ 0100000 ];
    my $d = 5;                  # 5 digits at a time

    my $mul = $c->_one();
    my $x = $c->_zero();

    my $len = int((length($os) - 1) / $d);      # $d digit parts, w/o the '0'
    my $val;
    my $i = -$d;
    while ($len >= 0) {
        $val = substr($os, $i, $d);             # get oct digits
        $val = CORE::oct($val);
        $i -= $d;
        $len --;
        my $adder = [ $val ];
        $c->_add($x, $c->_mul($adder, $mul)) if $val != 0;
        $c->_mul($mul, $m) if $len >= 0;        # skip last mul
    }
    $x;
}

sub _from_hex {
    # convert a hex number to decimal (string, return ref to array)
    my ($c, $hs) = @_;

    my $m = $c->_new(0x10000000); # 28 bit at a time (<32 bit!)
    my $d = 7;                    # 7 digits at a time
    my $mul = $c->_one();
    my $x = $c->_zero();

    my $len = int((length($hs) - 2) / $d); # $d digit parts, w/o the '0x'
    my $val;
    my $i = -$d;
    while ($len >= 0) {
        $val = substr($hs, $i, $d);     # get hex digits
        $val =~ s/^0x// if $len == 0; # for last part only because
        $val = CORE::hex($val);       # hex does not like wrong chars
        $i -= $d;
        $len --;
        my $adder = [ $val ];
        # if the resulting number was to big to fit into one element, create a
        # two-element version (bug found by Mark Lakata - Thanx!)
        if (CORE::length($val) > $BASE_LEN) {
            $adder = $c->_new($val);
        }
        $c->_add($x, $c->_mul($adder, $mul)) if $val != 0;
        $c->_mul($mul, $m) if $len >= 0; # skip last mul
    }
    $x;
}

sub _from_bin {
    # convert a hex number to decimal (string, return ref to array)
    my ($c, $bs) = @_;

    # instead of converting X (8) bit at a time, it is faster to "convert" the
    # number to hex, and then call _from_hex.

    my $hs = $bs;
    $hs =~ s/^[+-]?0b//;                                # remove sign and 0b
    my $l = length($hs);                                # bits
    $hs = '0' x (8 - ($l % 8)) . $hs if ($l % 8) != 0;  # padd left side w/ 0
    my $h = '0x' . unpack('H*', pack ('B*', $hs));      # repack as hex

    $c->_from_hex($h);
}

##############################################################################
# special modulus functions

sub _modinv {
    # modular multiplicative inverse
    my ($c, $x, $y) = @_;

    # modulo zero
    if ($c->_is_zero($y)) {
        return undef, undef;
    }

    # modulo one
    if ($c->_is_one($y)) {
        return $c->_zero(), '+';
    }

    my $u = $c->_zero();
    my $v = $c->_one();
    my $a = $c->_copy($y);
    my $b = $c->_copy($x);

    # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result
    # ($u) at the same time. See comments in BigInt for why this works.
    my $q;
    my $sign = 1;
    {
        ($a, $q, $b) = ($b, $c->_div($a, $b));          # step 1
        last if $c->_is_zero($b);

        my $t = $c->_add(                               # step 2:
                         $c->_mul($c->_copy($v), $q),   #  t =   v * q
                         $u);                           #      + u
        $u = $v;                                        #  u = v
        $v = $t;                                        #  v = t
        $sign = -$sign;
        redo;
    }

    # if the gcd is not 1, then return NaN
    return (undef, undef) unless $c->_is_one($a);

    ($v, $sign == 1 ? '+' : '-');
}

sub _modpow {
    # modulus of power ($x ** $y) % $z
    my ($c, $num, $exp, $mod) = @_;

    # a^b (mod 1) = 0 for all a and b
    if ($c->_is_one($mod)) {
        @$num = 0;
        return $num;
    }

    # 0^a (mod m) = 0 if m != 0, a != 0
    # 0^0 (mod m) = 1 if m != 0
    if ($c->_is_zero($num)) {
        if ($c->_is_zero($exp)) {
            @$num = 1;
        } else {
            @$num = 0;
        }
        return $num;
    }

    #  $num = $c->_mod($num, $mod);   # this does not make it faster

    my $acc = $c->_copy($num);
    my $t = $c->_one();

    my $expbin = $c->_as_bin($exp);
    $expbin =~ s/^0b//;
    my $len = length($expbin);
    while (--$len >= 0) {
        if (substr($expbin, $len, 1) eq '1') { # is_odd
            $t = $c->_mul($t, $acc);
            $t = $c->_mod($t, $mod);
        }
        $acc = $c->_mul($acc, $acc);
        $acc = $c->_mod($acc, $mod);
    }
    @$num = @$t;
    $num;
}

sub _gcd {
    # Greatest common divisor.

    my ($c, $x, $y) = @_;

    # gcd(0, 0) = 0
    # gcd(0, a) = a, if a != 0

    if (@$x == 1 && $x->[0] == 0) {
        if (@$y == 1 && $y->[0] == 0) {
            @$x = 0;
        } else {
            @$x = @$y;
        }
        return $x;
    }

    # Until $y is zero ...

    until (@$y == 1 && $y->[0] == 0) {

        # Compute remainder.

        $c->_mod($x, $y);

        # Swap $x and $y.

        my $tmp = $c->_copy($x);
        @$x = @$y;
        $y = $tmp;              # no deref here; that would modify input $y
    }

    return $x;
}

1;

=pod

=head1 NAME

Math::BigInt::Calc - Pure Perl module to support Math::BigInt

=head1 SYNOPSIS

    # to use it with Math::BigInt
    use Math::BigInt lib => 'Calc';

    # to use it with Math::BigFloat
    use Math::BigFloat lib => 'Calc';

    # to use it with Math::BigRat
    use Math::BigRat lib => 'Calc';

=head1 DESCRIPTION

Math::BigInt::Calc inherits from Math::BigInt::Lib.

In this library, the numbers are represented in base B = 10**N, where N is the
largest possible value that does not cause overflow in the intermediate
computations. The base B elements are stored in an array, with the least
significant element stored in array element zero. There are no leading zero
elements, except a single zero element when the number is zero.

For instance, if B = 10000, the number 1234567890 is represented internally
as [7890, 3456, 12].

=head1 SEE ALSO

L<Math::BigInt::Lib> for a description of the API.

Alternative libraries L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and
L<Math::BigInt::Pari>.

Some of the modules that use these libraries L<Math::BigInt>,
L<Math::BigFloat>, and L<Math::BigRat>.

=cut

Youez - 2016 - github.com/yon3zu
LinuXploit