Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.116.49.143
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/alt-nodejs8/root/lib/node_modules/npm/node_modules.bundled/jsbn/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/alt-nodejs8/root/lib/node_modules/npm/node_modules.bundled/jsbn/index.js
(function(){

    // Copyright (c) 2005  Tom Wu
    // All Rights Reserved.
    // See "LICENSE" for details.

    // Basic JavaScript BN library - subset useful for RSA encryption.

    // Bits per digit
    var dbits;

    // JavaScript engine analysis
    var canary = 0xdeadbeefcafe;
    var j_lm = ((canary&0xffffff)==0xefcafe);

    // (public) Constructor
    function BigInteger(a,b,c) {
      if(a != null)
        if("number" == typeof a) this.fromNumber(a,b,c);
        else if(b == null && "string" != typeof a) this.fromString(a,256);
        else this.fromString(a,b);
    }

    // return new, unset BigInteger
    function nbi() { return new BigInteger(null); }

    // am: Compute w_j += (x*this_i), propagate carries,
    // c is initial carry, returns final carry.
    // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
    // We need to select the fastest one that works in this environment.

    // am1: use a single mult and divide to get the high bits,
    // max digit bits should be 26 because
    // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
    function am1(i,x,w,j,c,n) {
      while(--n >= 0) {
        var v = x*this[i++]+w[j]+c;
        c = Math.floor(v/0x4000000);
        w[j++] = v&0x3ffffff;
      }
      return c;
    }
    // am2 avoids a big mult-and-extract completely.
    // Max digit bits should be <= 30 because we do bitwise ops
    // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
    function am2(i,x,w,j,c,n) {
      var xl = x&0x7fff, xh = x>>15;
      while(--n >= 0) {
        var l = this[i]&0x7fff;
        var h = this[i++]>>15;
        var m = xh*l+h*xl;
        l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
        c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
        w[j++] = l&0x3fffffff;
      }
      return c;
    }
    // Alternately, set max digit bits to 28 since some
    // browsers slow down when dealing with 32-bit numbers.
    function am3(i,x,w,j,c,n) {
      var xl = x&0x3fff, xh = x>>14;
      while(--n >= 0) {
        var l = this[i]&0x3fff;
        var h = this[i++]>>14;
        var m = xh*l+h*xl;
        l = xl*l+((m&0x3fff)<<14)+w[j]+c;
        c = (l>>28)+(m>>14)+xh*h;
        w[j++] = l&0xfffffff;
      }
      return c;
    }
    var inBrowser = typeof navigator !== "undefined";
    if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
      BigInteger.prototype.am = am2;
      dbits = 30;
    }
    else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
      BigInteger.prototype.am = am1;
      dbits = 26;
    }
    else { // Mozilla/Netscape seems to prefer am3
      BigInteger.prototype.am = am3;
      dbits = 28;
    }

    BigInteger.prototype.DB = dbits;
    BigInteger.prototype.DM = ((1<<dbits)-1);
    BigInteger.prototype.DV = (1<<dbits);

    var BI_FP = 52;
    BigInteger.prototype.FV = Math.pow(2,BI_FP);
    BigInteger.prototype.F1 = BI_FP-dbits;
    BigInteger.prototype.F2 = 2*dbits-BI_FP;

    // Digit conversions
    var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
    var BI_RC = new Array();
    var rr,vv;
    rr = "0".charCodeAt(0);
    for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
    rr = "a".charCodeAt(0);
    for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
    rr = "A".charCodeAt(0);
    for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

    function int2char(n) { return BI_RM.charAt(n); }
    function intAt(s,i) {
      var c = BI_RC[s.charCodeAt(i)];
      return (c==null)?-1:c;
    }

    // (protected) copy this to r
    function bnpCopyTo(r) {
      for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
      r.t = this.t;
      r.s = this.s;
    }

    // (protected) set from integer value x, -DV <= x < DV
    function bnpFromInt(x) {
      this.t = 1;
      this.s = (x<0)?-1:0;
      if(x > 0) this[0] = x;
      else if(x < -1) this[0] = x+this.DV;
      else this.t = 0;
    }

    // return bigint initialized to value
    function nbv(i) { var r = nbi(); r.fromInt(i); return r; }

    // (protected) set from string and radix
    function bnpFromString(s,b) {
      var k;
      if(b == 16) k = 4;
      else if(b == 8) k = 3;
      else if(b == 256) k = 8; // byte array
      else if(b == 2) k = 1;
      else if(b == 32) k = 5;
      else if(b == 4) k = 2;
      else { this.fromRadix(s,b); return; }
      this.t = 0;
      this.s = 0;
      var i = s.length, mi = false, sh = 0;
      while(--i >= 0) {
        var x = (k==8)?s[i]&0xff:intAt(s,i);
        if(x < 0) {
          if(s.charAt(i) == "-") mi = true;
          continue;
        }
        mi = false;
        if(sh == 0)
          this[this.t++] = x;
        else if(sh+k > this.DB) {
          this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
          this[this.t++] = (x>>(this.DB-sh));
        }
        else
          this[this.t-1] |= x<<sh;
        sh += k;
        if(sh >= this.DB) sh -= this.DB;
      }
      if(k == 8 && (s[0]&0x80) != 0) {
        this.s = -1;
        if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
      }
      this.clamp();
      if(mi) BigInteger.ZERO.subTo(this,this);
    }

    // (protected) clamp off excess high words
    function bnpClamp() {
      var c = this.s&this.DM;
      while(this.t > 0 && this[this.t-1] == c) --this.t;
    }

    // (public) return string representation in given radix
    function bnToString(b) {
      if(this.s < 0) return "-"+this.negate().toString(b);
      var k;
      if(b == 16) k = 4;
      else if(b == 8) k = 3;
      else if(b == 2) k = 1;
      else if(b == 32) k = 5;
      else if(b == 4) k = 2;
      else return this.toRadix(b);
      var km = (1<<k)-1, d, m = false, r = "", i = this.t;
      var p = this.DB-(i*this.DB)%k;
      if(i-- > 0) {
        if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
        while(i >= 0) {
          if(p < k) {
            d = (this[i]&((1<<p)-1))<<(k-p);
            d |= this[--i]>>(p+=this.DB-k);
          }
          else {
            d = (this[i]>>(p-=k))&km;
            if(p <= 0) { p += this.DB; --i; }
          }
          if(d > 0) m = true;
          if(m) r += int2char(d);
        }
      }
      return m?r:"0";
    }

    // (public) -this
    function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }

    // (public) |this|
    function bnAbs() { return (this.s<0)?this.negate():this; }

    // (public) return + if this > a, - if this < a, 0 if equal
    function bnCompareTo(a) {
      var r = this.s-a.s;
      if(r != 0) return r;
      var i = this.t;
      r = i-a.t;
      if(r != 0) return (this.s<0)?-r:r;
      while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
      return 0;
    }

    // returns bit length of the integer x
    function nbits(x) {
      var r = 1, t;
      if((t=x>>>16) != 0) { x = t; r += 16; }
      if((t=x>>8) != 0) { x = t; r += 8; }
      if((t=x>>4) != 0) { x = t; r += 4; }
      if((t=x>>2) != 0) { x = t; r += 2; }
      if((t=x>>1) != 0) { x = t; r += 1; }
      return r;
    }

    // (public) return the number of bits in "this"
    function bnBitLength() {
      if(this.t <= 0) return 0;
      return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
    }

    // (protected) r = this << n*DB
    function bnpDLShiftTo(n,r) {
      var i;
      for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
      for(i = n-1; i >= 0; --i) r[i] = 0;
      r.t = this.t+n;
      r.s = this.s;
    }

    // (protected) r = this >> n*DB
    function bnpDRShiftTo(n,r) {
      for(var i = n; i < this.t; ++i) r[i-n] = this[i];
      r.t = Math.max(this.t-n,0);
      r.s = this.s;
    }

    // (protected) r = this << n
    function bnpLShiftTo(n,r) {
      var bs = n%this.DB;
      var cbs = this.DB-bs;
      var bm = (1<<cbs)-1;
      var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
      for(i = this.t-1; i >= 0; --i) {
        r[i+ds+1] = (this[i]>>cbs)|c;
        c = (this[i]&bm)<<bs;
      }
      for(i = ds-1; i >= 0; --i) r[i] = 0;
      r[ds] = c;
      r.t = this.t+ds+1;
      r.s = this.s;
      r.clamp();
    }

    // (protected) r = this >> n
    function bnpRShiftTo(n,r) {
      r.s = this.s;
      var ds = Math.floor(n/this.DB);
      if(ds >= this.t) { r.t = 0; return; }
      var bs = n%this.DB;
      var cbs = this.DB-bs;
      var bm = (1<<bs)-1;
      r[0] = this[ds]>>bs;
      for(var i = ds+1; i < this.t; ++i) {
        r[i-ds-1] |= (this[i]&bm)<<cbs;
        r[i-ds] = this[i]>>bs;
      }
      if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
      r.t = this.t-ds;
      r.clamp();
    }

    // (protected) r = this - a
    function bnpSubTo(a,r) {
      var i = 0, c = 0, m = Math.min(a.t,this.t);
      while(i < m) {
        c += this[i]-a[i];
        r[i++] = c&this.DM;
        c >>= this.DB;
      }
      if(a.t < this.t) {
        c -= a.s;
        while(i < this.t) {
          c += this[i];
          r[i++] = c&this.DM;
          c >>= this.DB;
        }
        c += this.s;
      }
      else {
        c += this.s;
        while(i < a.t) {
          c -= a[i];
          r[i++] = c&this.DM;
          c >>= this.DB;
        }
        c -= a.s;
      }
      r.s = (c<0)?-1:0;
      if(c < -1) r[i++] = this.DV+c;
      else if(c > 0) r[i++] = c;
      r.t = i;
      r.clamp();
    }

    // (protected) r = this * a, r != this,a (HAC 14.12)
    // "this" should be the larger one if appropriate.
    function bnpMultiplyTo(a,r) {
      var x = this.abs(), y = a.abs();
      var i = x.t;
      r.t = i+y.t;
      while(--i >= 0) r[i] = 0;
      for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
      r.s = 0;
      r.clamp();
      if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
    }

    // (protected) r = this^2, r != this (HAC 14.16)
    function bnpSquareTo(r) {
      var x = this.abs();
      var i = r.t = 2*x.t;
      while(--i >= 0) r[i] = 0;
      for(i = 0; i < x.t-1; ++i) {
        var c = x.am(i,x[i],r,2*i,0,1);
        if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
          r[i+x.t] -= x.DV;
          r[i+x.t+1] = 1;
        }
      }
      if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
      r.s = 0;
      r.clamp();
    }

    // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
    // r != q, this != m.  q or r may be null.
    function bnpDivRemTo(m,q,r) {
      var pm = m.abs();
      if(pm.t <= 0) return;
      var pt = this.abs();
      if(pt.t < pm.t) {
        if(q != null) q.fromInt(0);
        if(r != null) this.copyTo(r);
        return;
      }
      if(r == null) r = nbi();
      var y = nbi(), ts = this.s, ms = m.s;
      var nsh = this.DB-nbits(pm[pm.t-1]);   // normalize modulus
      if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
      else { pm.copyTo(y); pt.copyTo(r); }
      var ys = y.t;
      var y0 = y[ys-1];
      if(y0 == 0) return;
      var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
      var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
      var i = r.t, j = i-ys, t = (q==null)?nbi():q;
      y.dlShiftTo(j,t);
      if(r.compareTo(t) >= 0) {
        r[r.t++] = 1;
        r.subTo(t,r);
      }
      BigInteger.ONE.dlShiftTo(ys,t);
      t.subTo(y,y);  // "negative" y so we can replace sub with am later
      while(y.t < ys) y[y.t++] = 0;
      while(--j >= 0) {
        // Estimate quotient digit
        var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
        if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {   // Try it out
          y.dlShiftTo(j,t);
          r.subTo(t,r);
          while(r[i] < --qd) r.subTo(t,r);
        }
      }
      if(q != null) {
        r.drShiftTo(ys,q);
        if(ts != ms) BigInteger.ZERO.subTo(q,q);
      }
      r.t = ys;
      r.clamp();
      if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
      if(ts < 0) BigInteger.ZERO.subTo(r,r);
    }

    // (public) this mod a
    function bnMod(a) {
      var r = nbi();
      this.abs().divRemTo(a,null,r);
      if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
      return r;
    }

    // Modular reduction using "classic" algorithm
    function Classic(m) { this.m = m; }
    function cConvert(x) {
      if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
      else return x;
    }
    function cRevert(x) { return x; }
    function cReduce(x) { x.divRemTo(this.m,null,x); }
    function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
    function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

    Classic.prototype.convert = cConvert;
    Classic.prototype.revert = cRevert;
    Classic.prototype.reduce = cReduce;
    Classic.prototype.mulTo = cMulTo;
    Classic.prototype.sqrTo = cSqrTo;

    // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
    // justification:
    //         xy == 1 (mod m)
    //         xy =  1+km
    //   xy(2-xy) = (1+km)(1-km)
    // x[y(2-xy)] = 1-k^2m^2
    // x[y(2-xy)] == 1 (mod m^2)
    // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
    // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
    // JS multiply "overflows" differently from C/C++, so care is needed here.
    function bnpInvDigit() {
      if(this.t < 1) return 0;
      var x = this[0];
      if((x&1) == 0) return 0;
      var y = x&3;       // y == 1/x mod 2^2
      y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
      y = (y*(2-(x&0xff)*y))&0xff;   // y == 1/x mod 2^8
      y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
      // last step - calculate inverse mod DV directly;
      // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
      y = (y*(2-x*y%this.DV))%this.DV;       // y == 1/x mod 2^dbits
      // we really want the negative inverse, and -DV < y < DV
      return (y>0)?this.DV-y:-y;
    }

    // Montgomery reduction
    function Montgomery(m) {
      this.m = m;
      this.mp = m.invDigit();
      this.mpl = this.mp&0x7fff;
      this.mph = this.mp>>15;
      this.um = (1<<(m.DB-15))-1;
      this.mt2 = 2*m.t;
    }

    // xR mod m
    function montConvert(x) {
      var r = nbi();
      x.abs().dlShiftTo(this.m.t,r);
      r.divRemTo(this.m,null,r);
      if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
      return r;
    }

    // x/R mod m
    function montRevert(x) {
      var r = nbi();
      x.copyTo(r);
      this.reduce(r);
      return r;
    }

    // x = x/R mod m (HAC 14.32)
    function montReduce(x) {
      while(x.t <= this.mt2) // pad x so am has enough room later
        x[x.t++] = 0;
      for(var i = 0; i < this.m.t; ++i) {
        // faster way of calculating u0 = x[i]*mp mod DV
        var j = x[i]&0x7fff;
        var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
        // use am to combine the multiply-shift-add into one call
        j = i+this.m.t;
        x[j] += this.m.am(0,u0,x,i,0,this.m.t);
        // propagate carry
        while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
      }
      x.clamp();
      x.drShiftTo(this.m.t,x);
      if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
    }

    // r = "x^2/R mod m"; x != r
    function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

    // r = "xy/R mod m"; x,y != r
    function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

    Montgomery.prototype.convert = montConvert;
    Montgomery.prototype.revert = montRevert;
    Montgomery.prototype.reduce = montReduce;
    Montgomery.prototype.mulTo = montMulTo;
    Montgomery.prototype.sqrTo = montSqrTo;

    // (protected) true iff this is even
    function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }

    // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
    function bnpExp(e,z) {
      if(e > 0xffffffff || e < 1) return BigInteger.ONE;
      var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
      g.copyTo(r);
      while(--i >= 0) {
        z.sqrTo(r,r2);
        if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
        else { var t = r; r = r2; r2 = t; }
      }
      return z.revert(r);
    }

    // (public) this^e % m, 0 <= e < 2^32
    function bnModPowInt(e,m) {
      var z;
      if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
      return this.exp(e,z);
    }

    // protected
    BigInteger.prototype.copyTo = bnpCopyTo;
    BigInteger.prototype.fromInt = bnpFromInt;
    BigInteger.prototype.fromString = bnpFromString;
    BigInteger.prototype.clamp = bnpClamp;
    BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
    BigInteger.prototype.drShiftTo = bnpDRShiftTo;
    BigInteger.prototype.lShiftTo = bnpLShiftTo;
    BigInteger.prototype.rShiftTo = bnpRShiftTo;
    BigInteger.prototype.subTo = bnpSubTo;
    BigInteger.prototype.multiplyTo = bnpMultiplyTo;
    BigInteger.prototype.squareTo = bnpSquareTo;
    BigInteger.prototype.divRemTo = bnpDivRemTo;
    BigInteger.prototype.invDigit = bnpInvDigit;
    BigInteger.prototype.isEven = bnpIsEven;
    BigInteger.prototype.exp = bnpExp;

    // public
    BigInteger.prototype.toString = bnToString;
    BigInteger.prototype.negate = bnNegate;
    BigInteger.prototype.abs = bnAbs;
    BigInteger.prototype.compareTo = bnCompareTo;
    BigInteger.prototype.bitLength = bnBitLength;
    BigInteger.prototype.mod = bnMod;
    BigInteger.prototype.modPowInt = bnModPowInt;

    // "constants"
    BigInteger.ZERO = nbv(0);
    BigInteger.ONE = nbv(1);

    // Copyright (c) 2005-2009  Tom Wu
    // All Rights Reserved.
    // See "LICENSE" for details.

    // Extended JavaScript BN functions, required for RSA private ops.

    // Version 1.1: new BigInteger("0", 10) returns "proper" zero
    // Version 1.2: square() API, isProbablePrime fix

    // (public)
    function bnClone() { var r = nbi(); this.copyTo(r); return r; }

    // (public) return value as integer
    function bnIntValue() {
      if(this.s < 0) {
        if(this.t == 1) return this[0]-this.DV;
        else if(this.t == 0) return -1;
      }
      else if(this.t == 1) return this[0];
      else if(this.t == 0) return 0;
      // assumes 16 < DB < 32
      return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
    }

    // (public) return value as byte
    function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }

    // (public) return value as short (assumes DB>=16)
    function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }

    // (protected) return x s.t. r^x < DV
    function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }

    // (public) 0 if this == 0, 1 if this > 0
    function bnSigNum() {
      if(this.s < 0) return -1;
      else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
      else return 1;
    }

    // (protected) convert to radix string
    function bnpToRadix(b) {
      if(b == null) b = 10;
      if(this.signum() == 0 || b < 2 || b > 36) return "0";
      var cs = this.chunkSize(b);
      var a = Math.pow(b,cs);
      var d = nbv(a), y = nbi(), z = nbi(), r = "";
      this.divRemTo(d,y,z);
      while(y.signum() > 0) {
        r = (a+z.intValue()).toString(b).substr(1) + r;
        y.divRemTo(d,y,z);
      }
      return z.intValue().toString(b) + r;
    }

    // (protected) convert from radix string
    function bnpFromRadix(s,b) {
      this.fromInt(0);
      if(b == null) b = 10;
      var cs = this.chunkSize(b);
      var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
      for(var i = 0; i < s.length; ++i) {
        var x = intAt(s,i);
        if(x < 0) {
          if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
          continue;
        }
        w = b*w+x;
        if(++j >= cs) {
          this.dMultiply(d);
          this.dAddOffset(w,0);
          j = 0;
          w = 0;
        }
      }
      if(j > 0) {
        this.dMultiply(Math.pow(b,j));
        this.dAddOffset(w,0);
      }
      if(mi) BigInteger.ZERO.subTo(this,this);
    }

    // (protected) alternate constructor
    function bnpFromNumber(a,b,c) {
      if("number" == typeof b) {
        // new BigInteger(int,int,RNG)
        if(a < 2) this.fromInt(1);
        else {
          this.fromNumber(a,c);
          if(!this.testBit(a-1))	// force MSB set
            this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
          if(this.isEven()) this.dAddOffset(1,0); // force odd
          while(!this.isProbablePrime(b)) {
            this.dAddOffset(2,0);
            if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
          }
        }
      }
      else {
        // new BigInteger(int,RNG)
        var x = new Array(), t = a&7;
        x.length = (a>>3)+1;
        b.nextBytes(x);
        if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
        this.fromString(x,256);
      }
    }

    // (public) convert to bigendian byte array
    function bnToByteArray() {
      var i = this.t, r = new Array();
      r[0] = this.s;
      var p = this.DB-(i*this.DB)%8, d, k = 0;
      if(i-- > 0) {
        if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
          r[k++] = d|(this.s<<(this.DB-p));
        while(i >= 0) {
          if(p < 8) {
            d = (this[i]&((1<<p)-1))<<(8-p);
            d |= this[--i]>>(p+=this.DB-8);
          }
          else {
            d = (this[i]>>(p-=8))&0xff;
            if(p <= 0) { p += this.DB; --i; }
          }
          if((d&0x80) != 0) d |= -256;
          if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
          if(k > 0 || d != this.s) r[k++] = d;
        }
      }
      return r;
    }

    function bnEquals(a) { return(this.compareTo(a)==0); }
    function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
    function bnMax(a) { return(this.compareTo(a)>0)?this:a; }

    // (protected) r = this op a (bitwise)
    function bnpBitwiseTo(a,op,r) {
      var i, f, m = Math.min(a.t,this.t);
      for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
      if(a.t < this.t) {
        f = a.s&this.DM;
        for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
        r.t = this.t;
      }
      else {
        f = this.s&this.DM;
        for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
        r.t = a.t;
      }
      r.s = op(this.s,a.s);
      r.clamp();
    }

    // (public) this & a
    function op_and(x,y) { return x&y; }
    function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }

    // (public) this | a
    function op_or(x,y) { return x|y; }
    function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }

    // (public) this ^ a
    function op_xor(x,y) { return x^y; }
    function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }

    // (public) this & ~a
    function op_andnot(x,y) { return x&~y; }
    function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }

    // (public) ~this
    function bnNot() {
      var r = nbi();
      for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
      r.t = this.t;
      r.s = ~this.s;
      return r;
    }

    // (public) this << n
    function bnShiftLeft(n) {
      var r = nbi();
      if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
      return r;
    }

    // (public) this >> n
    function bnShiftRight(n) {
      var r = nbi();
      if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
      return r;
    }

    // return index of lowest 1-bit in x, x < 2^31
    function lbit(x) {
      if(x == 0) return -1;
      var r = 0;
      if((x&0xffff) == 0) { x >>= 16; r += 16; }
      if((x&0xff) == 0) { x >>= 8; r += 8; }
      if((x&0xf) == 0) { x >>= 4; r += 4; }
      if((x&3) == 0) { x >>= 2; r += 2; }
      if((x&1) == 0) ++r;
      return r;
    }

    // (public) returns index of lowest 1-bit (or -1 if none)
    function bnGetLowestSetBit() {
      for(var i = 0; i < this.t; ++i)
        if(this[i] != 0) return i*this.DB+lbit(this[i]);
      if(this.s < 0) return this.t*this.DB;
      return -1;
    }

    // return number of 1 bits in x
    function cbit(x) {
      var r = 0;
      while(x != 0) { x &= x-1; ++r; }
      return r;
    }

    // (public) return number of set bits
    function bnBitCount() {
      var r = 0, x = this.s&this.DM;
      for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
      return r;
    }

    // (public) true iff nth bit is set
    function bnTestBit(n) {
      var j = Math.floor(n/this.DB);
      if(j >= this.t) return(this.s!=0);
      return((this[j]&(1<<(n%this.DB)))!=0);
    }

    // (protected) this op (1<<n)
    function bnpChangeBit(n,op) {
      var r = BigInteger.ONE.shiftLeft(n);
      this.bitwiseTo(r,op,r);
      return r;
    }

    // (public) this | (1<<n)
    function bnSetBit(n) { return this.changeBit(n,op_or); }

    // (public) this & ~(1<<n)
    function bnClearBit(n) { return this.changeBit(n,op_andnot); }

    // (public) this ^ (1<<n)
    function bnFlipBit(n) { return this.changeBit(n,op_xor); }

    // (protected) r = this + a
    function bnpAddTo(a,r) {
      var i = 0, c = 0, m = Math.min(a.t,this.t);
      while(i < m) {
        c += this[i]+a[i];
        r[i++] = c&this.DM;
        c >>= this.DB;
      }
      if(a.t < this.t) {
        c += a.s;
        while(i < this.t) {
          c += this[i];
          r[i++] = c&this.DM;
          c >>= this.DB;
        }
        c += this.s;
      }
      else {
        c += this.s;
        while(i < a.t) {
          c += a[i];
          r[i++] = c&this.DM;
          c >>= this.DB;
        }
        c += a.s;
      }
      r.s = (c<0)?-1:0;
      if(c > 0) r[i++] = c;
      else if(c < -1) r[i++] = this.DV+c;
      r.t = i;
      r.clamp();
    }

    // (public) this + a
    function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }

    // (public) this - a
    function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }

    // (public) this * a
    function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }

    // (public) this^2
    function bnSquare() { var r = nbi(); this.squareTo(r); return r; }

    // (public) this / a
    function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }

    // (public) this % a
    function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }

    // (public) [this/a,this%a]
    function bnDivideAndRemainder(a) {
      var q = nbi(), r = nbi();
      this.divRemTo(a,q,r);
      return new Array(q,r);
    }

    // (protected) this *= n, this >= 0, 1 < n < DV
    function bnpDMultiply(n) {
      this[this.t] = this.am(0,n-1,this,0,0,this.t);
      ++this.t;
      this.clamp();
    }

    // (protected) this += n << w words, this >= 0
    function bnpDAddOffset(n,w) {
      if(n == 0) return;
      while(this.t <= w) this[this.t++] = 0;
      this[w] += n;
      while(this[w] >= this.DV) {
        this[w] -= this.DV;
        if(++w >= this.t) this[this.t++] = 0;
        ++this[w];
      }
    }

    // A "null" reducer
    function NullExp() {}
    function nNop(x) { return x; }
    function nMulTo(x,y,r) { x.multiplyTo(y,r); }
    function nSqrTo(x,r) { x.squareTo(r); }

    NullExp.prototype.convert = nNop;
    NullExp.prototype.revert = nNop;
    NullExp.prototype.mulTo = nMulTo;
    NullExp.prototype.sqrTo = nSqrTo;

    // (public) this^e
    function bnPow(e) { return this.exp(e,new NullExp()); }

    // (protected) r = lower n words of "this * a", a.t <= n
    // "this" should be the larger one if appropriate.
    function bnpMultiplyLowerTo(a,n,r) {
      var i = Math.min(this.t+a.t,n);
      r.s = 0; // assumes a,this >= 0
      r.t = i;
      while(i > 0) r[--i] = 0;
      var j;
      for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
      for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
      r.clamp();
    }

    // (protected) r = "this * a" without lower n words, n > 0
    // "this" should be the larger one if appropriate.
    function bnpMultiplyUpperTo(a,n,r) {
      --n;
      var i = r.t = this.t+a.t-n;
      r.s = 0; // assumes a,this >= 0
      while(--i >= 0) r[i] = 0;
      for(i = Math.max(n-this.t,0); i < a.t; ++i)
        r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
      r.clamp();
      r.drShiftTo(1,r);
    }

    // Barrett modular reduction
    function Barrett(m) {
      // setup Barrett
      this.r2 = nbi();
      this.q3 = nbi();
      BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
      this.mu = this.r2.divide(m);
      this.m = m;
    }

    function barrettConvert(x) {
      if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
      else if(x.compareTo(this.m) < 0) return x;
      else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
    }

    function barrettRevert(x) { return x; }

    // x = x mod m (HAC 14.42)
    function barrettReduce(x) {
      x.drShiftTo(this.m.t-1,this.r2);
      if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
      this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
      this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
      while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
      x.subTo(this.r2,x);
      while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
    }

    // r = x^2 mod m; x != r
    function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

    // r = x*y mod m; x,y != r
    function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

    Barrett.prototype.convert = barrettConvert;
    Barrett.prototype.revert = barrettRevert;
    Barrett.prototype.reduce = barrettReduce;
    Barrett.prototype.mulTo = barrettMulTo;
    Barrett.prototype.sqrTo = barrettSqrTo;

    // (public) this^e % m (HAC 14.85)
    function bnModPow(e,m) {
      var i = e.bitLength(), k, r = nbv(1), z;
      if(i <= 0) return r;
      else if(i < 18) k = 1;
      else if(i < 48) k = 3;
      else if(i < 144) k = 4;
      else if(i < 768) k = 5;
      else k = 6;
      if(i < 8)
        z = new Classic(m);
      else if(m.isEven())
        z = new Barrett(m);
      else
        z = new Montgomery(m);

      // precomputation
      var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
      g[1] = z.convert(this);
      if(k > 1) {
        var g2 = nbi();
        z.sqrTo(g[1],g2);
        while(n <= km) {
          g[n] = nbi();
          z.mulTo(g2,g[n-2],g[n]);
          n += 2;
        }
      }

      var j = e.t-1, w, is1 = true, r2 = nbi(), t;
      i = nbits(e[j])-1;
      while(j >= 0) {
        if(i >= k1) w = (e[j]>>(i-k1))&km;
        else {
          w = (e[j]&((1<<(i+1))-1))<<(k1-i);
          if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
        }

        n = k;
        while((w&1) == 0) { w >>= 1; --n; }
        if((i -= n) < 0) { i += this.DB; --j; }
        if(is1) {	// ret == 1, don't bother squaring or multiplying it
          g[w].copyTo(r);
          is1 = false;
        }
        else {
          while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
          if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
          z.mulTo(r2,g[w],r);
        }

        while(j >= 0 && (e[j]&(1<<i)) == 0) {
          z.sqrTo(r,r2); t = r; r = r2; r2 = t;
          if(--i < 0) { i = this.DB-1; --j; }
        }
      }
      return z.revert(r);
    }

    // (public) gcd(this,a) (HAC 14.54)
    function bnGCD(a) {
      var x = (this.s<0)?this.negate():this.clone();
      var y = (a.s<0)?a.negate():a.clone();
      if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
      var i = x.getLowestSetBit(), g = y.getLowestSetBit();
      if(g < 0) return x;
      if(i < g) g = i;
      if(g > 0) {
        x.rShiftTo(g,x);
        y.rShiftTo(g,y);
      }
      while(x.signum() > 0) {
        if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
        if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
        if(x.compareTo(y) >= 0) {
          x.subTo(y,x);
          x.rShiftTo(1,x);
        }
        else {
          y.subTo(x,y);
          y.rShiftTo(1,y);
        }
      }
      if(g > 0) y.lShiftTo(g,y);
      return y;
    }

    // (protected) this % n, n < 2^26
    function bnpModInt(n) {
      if(n <= 0) return 0;
      var d = this.DV%n, r = (this.s<0)?n-1:0;
      if(this.t > 0)
        if(d == 0) r = this[0]%n;
        else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
      return r;
    }

    // (public) 1/this % m (HAC 14.61)
    function bnModInverse(m) {
      var ac = m.isEven();
      if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
      var u = m.clone(), v = this.clone();
      var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
      while(u.signum() != 0) {
        while(u.isEven()) {
          u.rShiftTo(1,u);
          if(ac) {
            if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
            a.rShiftTo(1,a);
          }
          else if(!b.isEven()) b.subTo(m,b);
          b.rShiftTo(1,b);
        }
        while(v.isEven()) {
          v.rShiftTo(1,v);
          if(ac) {
            if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
            c.rShiftTo(1,c);
          }
          else if(!d.isEven()) d.subTo(m,d);
          d.rShiftTo(1,d);
        }
        if(u.compareTo(v) >= 0) {
          u.subTo(v,u);
          if(ac) a.subTo(c,a);
          b.subTo(d,b);
        }
        else {
          v.subTo(u,v);
          if(ac) c.subTo(a,c);
          d.subTo(b,d);
        }
      }
      if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
      if(d.compareTo(m) >= 0) return d.subtract(m);
      if(d.signum() < 0) d.addTo(m,d); else return d;
      if(d.signum() < 0) return d.add(m); else return d;
    }

    var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
    var lplim = (1<<26)/lowprimes[lowprimes.length-1];

    // (public) test primality with certainty >= 1-.5^t
    function bnIsProbablePrime(t) {
      var i, x = this.abs();
      if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
        for(i = 0; i < lowprimes.length; ++i)
          if(x[0] == lowprimes[i]) return true;
        return false;
      }
      if(x.isEven()) return false;
      i = 1;
      while(i < lowprimes.length) {
        var m = lowprimes[i], j = i+1;
        while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
        m = x.modInt(m);
        while(i < j) if(m%lowprimes[i++] == 0) return false;
      }
      return x.millerRabin(t);
    }

    // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
    function bnpMillerRabin(t) {
      var n1 = this.subtract(BigInteger.ONE);
      var k = n1.getLowestSetBit();
      if(k <= 0) return false;
      var r = n1.shiftRight(k);
      t = (t+1)>>1;
      if(t > lowprimes.length) t = lowprimes.length;
      var a = nbi();
      for(var i = 0; i < t; ++i) {
        //Pick bases at random, instead of starting at 2
        a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
        var y = a.modPow(r,this);
        if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
          var j = 1;
          while(j++ < k && y.compareTo(n1) != 0) {
            y = y.modPowInt(2,this);
            if(y.compareTo(BigInteger.ONE) == 0) return false;
          }
          if(y.compareTo(n1) != 0) return false;
        }
      }
      return true;
    }

    // protected
    BigInteger.prototype.chunkSize = bnpChunkSize;
    BigInteger.prototype.toRadix = bnpToRadix;
    BigInteger.prototype.fromRadix = bnpFromRadix;
    BigInteger.prototype.fromNumber = bnpFromNumber;
    BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
    BigInteger.prototype.changeBit = bnpChangeBit;
    BigInteger.prototype.addTo = bnpAddTo;
    BigInteger.prototype.dMultiply = bnpDMultiply;
    BigInteger.prototype.dAddOffset = bnpDAddOffset;
    BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
    BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
    BigInteger.prototype.modInt = bnpModInt;
    BigInteger.prototype.millerRabin = bnpMillerRabin;

    // public
    BigInteger.prototype.clone = bnClone;
    BigInteger.prototype.intValue = bnIntValue;
    BigInteger.prototype.byteValue = bnByteValue;
    BigInteger.prototype.shortValue = bnShortValue;
    BigInteger.prototype.signum = bnSigNum;
    BigInteger.prototype.toByteArray = bnToByteArray;
    BigInteger.prototype.equals = bnEquals;
    BigInteger.prototype.min = bnMin;
    BigInteger.prototype.max = bnMax;
    BigInteger.prototype.and = bnAnd;
    BigInteger.prototype.or = bnOr;
    BigInteger.prototype.xor = bnXor;
    BigInteger.prototype.andNot = bnAndNot;
    BigInteger.prototype.not = bnNot;
    BigInteger.prototype.shiftLeft = bnShiftLeft;
    BigInteger.prototype.shiftRight = bnShiftRight;
    BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
    BigInteger.prototype.bitCount = bnBitCount;
    BigInteger.prototype.testBit = bnTestBit;
    BigInteger.prototype.setBit = bnSetBit;
    BigInteger.prototype.clearBit = bnClearBit;
    BigInteger.prototype.flipBit = bnFlipBit;
    BigInteger.prototype.add = bnAdd;
    BigInteger.prototype.subtract = bnSubtract;
    BigInteger.prototype.multiply = bnMultiply;
    BigInteger.prototype.divide = bnDivide;
    BigInteger.prototype.remainder = bnRemainder;
    BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
    BigInteger.prototype.modPow = bnModPow;
    BigInteger.prototype.modInverse = bnModInverse;
    BigInteger.prototype.pow = bnPow;
    BigInteger.prototype.gcd = bnGCD;
    BigInteger.prototype.isProbablePrime = bnIsProbablePrime;

    // JSBN-specific extension
    BigInteger.prototype.square = bnSquare;

    // Expose the Barrett function
    BigInteger.prototype.Barrett = Barrett

    // BigInteger interfaces not implemented in jsbn:

    // BigInteger(int signum, byte[] magnitude)
    // double doubleValue()
    // float floatValue()
    // int hashCode()
    // long longValue()
    // static BigInteger valueOf(long val)

	// Random number generator - requires a PRNG backend, e.g. prng4.js

	// For best results, put code like
	// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
	// in your main HTML document.

	var rng_state;
	var rng_pool;
	var rng_pptr;

	// Mix in a 32-bit integer into the pool
	function rng_seed_int(x) {
	  rng_pool[rng_pptr++] ^= x & 255;
	  rng_pool[rng_pptr++] ^= (x >> 8) & 255;
	  rng_pool[rng_pptr++] ^= (x >> 16) & 255;
	  rng_pool[rng_pptr++] ^= (x >> 24) & 255;
	  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
	}

	// Mix in the current time (w/milliseconds) into the pool
	function rng_seed_time() {
	  rng_seed_int(new Date().getTime());
	}

	// Initialize the pool with junk if needed.
	if(rng_pool == null) {
	  rng_pool = new Array();
	  rng_pptr = 0;
	  var t;
	  if(typeof window !== "undefined" && window.crypto) {
		if (window.crypto.getRandomValues) {
		  // Use webcrypto if available
		  var ua = new Uint8Array(32);
		  window.crypto.getRandomValues(ua);
		  for(t = 0; t < 32; ++t)
			rng_pool[rng_pptr++] = ua[t];
		}
		else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
		  // Extract entropy (256 bits) from NS4 RNG if available
		  var z = window.crypto.random(32);
		  for(t = 0; t < z.length; ++t)
			rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
		}
	  }
	  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
		t = Math.floor(65536 * Math.random());
		rng_pool[rng_pptr++] = t >>> 8;
		rng_pool[rng_pptr++] = t & 255;
	  }
	  rng_pptr = 0;
	  rng_seed_time();
	  //rng_seed_int(window.screenX);
	  //rng_seed_int(window.screenY);
	}

	function rng_get_byte() {
	  if(rng_state == null) {
		rng_seed_time();
		rng_state = prng_newstate();
		rng_state.init(rng_pool);
		for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
		  rng_pool[rng_pptr] = 0;
		rng_pptr = 0;
		//rng_pool = null;
	  }
	  // TODO: allow reseeding after first request
	  return rng_state.next();
	}

	function rng_get_bytes(ba) {
	  var i;
	  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
	}

	function SecureRandom() {}

	SecureRandom.prototype.nextBytes = rng_get_bytes;

	// prng4.js - uses Arcfour as a PRNG

	function Arcfour() {
	  this.i = 0;
	  this.j = 0;
	  this.S = new Array();
	}

	// Initialize arcfour context from key, an array of ints, each from [0..255]
	function ARC4init(key) {
	  var i, j, t;
	  for(i = 0; i < 256; ++i)
		this.S[i] = i;
	  j = 0;
	  for(i = 0; i < 256; ++i) {
		j = (j + this.S[i] + key[i % key.length]) & 255;
		t = this.S[i];
		this.S[i] = this.S[j];
		this.S[j] = t;
	  }
	  this.i = 0;
	  this.j = 0;
	}

	function ARC4next() {
	  var t;
	  this.i = (this.i + 1) & 255;
	  this.j = (this.j + this.S[this.i]) & 255;
	  t = this.S[this.i];
	  this.S[this.i] = this.S[this.j];
	  this.S[this.j] = t;
	  return this.S[(t + this.S[this.i]) & 255];
	}

	Arcfour.prototype.init = ARC4init;
	Arcfour.prototype.next = ARC4next;

	// Plug in your RNG constructor here
	function prng_newstate() {
	  return new Arcfour();
	}

	// Pool size must be a multiple of 4 and greater than 32.
	// An array of bytes the size of the pool will be passed to init()
	var rng_psize = 256;

  BigInteger.SecureRandom = SecureRandom;
  BigInteger.BigInteger = BigInteger;
  if (typeof exports !== 'undefined') {
    exports = module.exports = BigInteger;
  } else {
    this.BigInteger = BigInteger;
    this.SecureRandom = SecureRandom;
  }

}).call(this);

Youez - 2016 - github.com/yon3zu
LinuXploit