Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.135.193.166
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby22/lib64/ruby/2.2.0/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby22/lib64/ruby/2.2.0/prime.rb
#
# = prime.rb
#
# Prime numbers and factorization library.
#
# Copyright::
#   Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
#   Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
#
# Documentation::
#   Yuki Sonoda
#

require "singleton"
require "forwardable"

class Integer
  # Re-composes a prime factorization and returns the product.
  #
  # See Prime#int_from_prime_division for more details.
  def Integer.from_prime_division(pd)
    Prime.int_from_prime_division(pd)
  end

  # Returns the factorization of +self+.
  #
  # See Prime#prime_division for more details.
  def prime_division(generator = Prime::Generator23.new)
    Prime.prime_division(self, generator)
  end

  # Returns true if +self+ is a prime number, else returns false.
  def prime?
    Prime.prime?(self)
  end

  # Iterates the given block over all prime numbers.
  #
  # See +Prime+#each for more details.
  def Integer.each_prime(ubound, &block) # :yields: prime
    Prime.each(ubound, &block)
  end
end

#
# The set of all prime numbers.
#
# == Example
#
#   Prime.each(100) do |prime|
#     p prime  #=> 2, 3, 5, 7, 11, ...., 97
#   end
#
# Prime is Enumerable:
#
#   Prime.first 5 # => [2, 3, 5, 7, 11]
#
# == Retrieving the instance
#
# +Prime+.new is obsolete. Now +Prime+ has the default instance and you can
# access it as +Prime+.instance.
#
# For convenience, each instance method of +Prime+.instance can be accessed
# as a class method of +Prime+.
#
# e.g.
#   Prime.instance.prime?(2)  #=> true
#   Prime.prime?(2)           #=> true
#
# == Generators
#
# A "generator" provides an implementation of enumerating pseudo-prime
# numbers and it remembers the position of enumeration and upper bound.
# Furthermore, it is an external iterator of prime enumeration which is
# compatible with an Enumerator.
#
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
# There are few implementations of generator.
#
# [+Prime+::+EratosthenesGenerator+]
#   Uses eratosthenes' sieve.
# [+Prime+::+TrialDivisionGenerator+]
#   Uses the trial division method.
# [+Prime+::+Generator23+]
#   Generates all positive integers which are not divisible by either 2 or 3.
#   This sequence is very bad as a pseudo-prime sequence. But this
#   is faster and uses much less memory than the other generators. So,
#   it is suitable for factorizing an integer which is not large but
#   has many prime factors. e.g. for Prime#prime? .

class Prime
  include Enumerable
  @the_instance = Prime.new

  # obsolete. Use +Prime+::+instance+ or class methods of +Prime+.
  def initialize
    @generator = EratosthenesGenerator.new
    extend OldCompatibility
    warn "Prime::new is obsolete. use Prime::instance or class methods of Prime."
  end

  class << self
    extend Forwardable
    include Enumerable
    # Returns the default instance of Prime.
    def instance; @the_instance end

    def method_added(method) # :nodoc:
      (class<< self;self;end).def_delegator :instance, method
    end
  end

  # Iterates the given block over all prime numbers.
  #
  # == Parameters
  #
  # +ubound+::
  #   Optional. An arbitrary positive number.
  #   The upper bound of enumeration. The method enumerates
  #   prime numbers infinitely if +ubound+ is nil.
  # +generator+::
  #   Optional. An implementation of pseudo-prime generator.
  #
  # == Return value
  #
  # An evaluated value of the given block at the last time.
  # Or an enumerator which is compatible to an +Enumerator+
  # if no block given.
  #
  # == Description
  #
  # Calls +block+ once for each prime number, passing the prime as
  # a parameter.
  #
  # +ubound+::
  #   Upper bound of prime numbers. The iterator stops after it
  #   yields all prime numbers p <= +ubound+.
  #
  # == Note
  #
  # +Prime+.+new+ returns an object extended by +Prime+::+OldCompatibility+
  # in order to be compatible with Ruby 1.8, and +Prime+#each is overwritten
  # by +Prime+::+OldCompatibility+#+each+.
  #
  # +Prime+.+new+ is now obsolete. Use +Prime+.+instance+.+each+ or simply
  # +Prime+.+each+.
  def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
    generator.upper_bound = ubound
    generator.each(&block)
  end


  # Returns true if +value+ is a prime number, else returns false.
  #
  # == Parameters
  #
  # +value+:: an arbitrary integer to be checked.
  # +generator+:: optional. A pseudo-prime generator.
  def prime?(value, generator = Prime::Generator23.new)
    return false if value < 2
    for num in generator
      q,r = value.divmod num
      return true if q < num
      return false if r == 0
    end
  end

  # Re-composes a prime factorization and returns the product.
  #
  # == Parameters
  # +pd+:: Array of pairs of integers. The each internal
  #        pair consists of a prime number -- a prime factor --
  #        and a natural number -- an exponent.
  #
  # == Example
  # For <tt>[[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]]</tt>, it returns:
  #
  #   p_1**e_1 * p_2**e_2 * .... * p_n**e_n.
  #
  #   Prime.int_from_prime_division([[2,2], [3,1]])  #=> 12
  def int_from_prime_division(pd)
    pd.inject(1){|value, (prime, index)|
      value * prime**index
    }
  end

  # Returns the factorization of +value+.
  #
  # == Parameters
  # +value+:: An arbitrary integer.
  # +generator+:: Optional. A pseudo-prime generator.
  #               +generator+.succ must return the next
  #               pseudo-prime number in the ascending
  #               order. It must generate all prime numbers,
  #               but may also generate non prime numbers too.
  #
  # === Exceptions
  # +ZeroDivisionError+:: when +value+ is zero.
  #
  # == Example
  # For an arbitrary integer:
  #
  #   n = p_1**e_1 * p_2**e_2 * .... * p_n**e_n,
  #
  # prime_division(n) returns:
  #
  #   [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]].
  #
  #   Prime.prime_division(12) #=> [[2,2], [3,1]]
  #
  def prime_division(value, generator = Prime::Generator23.new)
    raise ZeroDivisionError if value == 0
    if value < 0
      value = -value
      pv = [[-1, 1]]
    else
      pv = []
    end
    for prime in generator
      count = 0
      while (value1, mod = value.divmod(prime)
             mod) == 0
        value = value1
        count += 1
      end
      if count != 0
        pv.push [prime, count]
      end
      break if value1 <= prime
    end
    if value > 1
      pv.push [value, 1]
    end
    return pv
  end

  # An abstract class for enumerating pseudo-prime numbers.
  #
  # Concrete subclasses should override succ, next, rewind.
  class PseudoPrimeGenerator
    include Enumerable

    def initialize(ubound = nil)
      @ubound = ubound
    end

    def upper_bound=(ubound)
      @ubound = ubound
    end
    def upper_bound
      @ubound
    end

    # returns the next pseudo-prime number, and move the internal
    # position forward.
    #
    # +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
    def succ
      raise NotImplementedError, "need to define `succ'"
    end

    # alias of +succ+.
    def next
      raise NotImplementedError, "need to define `next'"
    end

    # Rewinds the internal position for enumeration.
    #
    # See +Enumerator+#rewind.
    def rewind
      raise NotImplementedError, "need to define `rewind'"
    end

    # Iterates the given block for each prime number.
    def each
      return self.dup unless block_given?
      if @ubound
        last_value = nil
        loop do
          prime = succ
          break last_value if prime > @ubound
          last_value = yield prime
        end
      else
        loop do
          yield succ
        end
      end
    end

    # see +Enumerator+#with_index.
    alias with_index each_with_index

    # see +Enumerator+#with_object.
    def with_object(obj)
      return enum_for(:with_object) unless block_given?
      each do |prime|
        yield prime, obj
      end
    end
  end

  # An implementation of +PseudoPrimeGenerator+.
  #
  # Uses +EratosthenesSieve+.
  class EratosthenesGenerator < PseudoPrimeGenerator
    def initialize
      @last_prime_index = -1
      super
    end

    def succ
      @last_prime_index += 1
      EratosthenesSieve.instance.get_nth_prime(@last_prime_index)
    end
    def rewind
      initialize
    end
    alias next succ
  end

  # An implementation of +PseudoPrimeGenerator+ which uses
  # a prime table generated by trial division.
  class TrialDivisionGenerator<PseudoPrimeGenerator
    def initialize
      @index = -1
      super
    end

    def succ
      TrialDivision.instance[@index += 1]
    end
    def rewind
      initialize
    end
    alias next succ
  end

  # Generates all integers which are greater than 2 and
  # are not divisible by either 2 or 3.
  #
  # This is a pseudo-prime generator, suitable on
  # checking primality of an integer by brute force
  # method.
  class Generator23<PseudoPrimeGenerator
    def initialize
      @prime = 1
      @step = nil
      super
    end

    def succ
      if (@step)
        @prime += @step
        @step = 6 - @step
      else
        case @prime
        when 1; @prime = 2
        when 2; @prime = 3
        when 3; @prime = 5; @step = 2
        end
      end
      return @prime
    end
    alias next succ
    def rewind
      initialize
    end
  end

  # Internal use. An implementation of prime table by trial division method.
  class TrialDivision
    include Singleton

    def initialize # :nodoc:
      # These are included as class variables to cache them for later uses.  If memory
      #   usage is a problem, they can be put in Prime#initialize as instance variables.

      # There must be no primes between @primes[-1] and @next_to_check.
      @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
      # @next_to_check % 6 must be 1.
      @next_to_check = 103            # @primes[-1] - @primes[-1] % 6 + 7
      @ulticheck_index = 3            # @primes.index(@primes.reverse.find {|n|
      #   n < Math.sqrt(@@next_to_check) })
      @ulticheck_next_squared = 121   # @primes[@ulticheck_index + 1] ** 2
    end

    # Returns the cached prime numbers.
    def cache
      return @primes
    end
    alias primes cache
    alias primes_so_far cache

    # Returns the +index+th prime number.
    #
    # +index+ is a 0-based index.
    def [](index)
      while index >= @primes.length
        # Only check for prime factors up to the square root of the potential primes,
        #   but without the performance hit of an actual square root calculation.
        if @next_to_check + 4 > @ulticheck_next_squared
          @ulticheck_index += 1
          @ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
        end
        # Only check numbers congruent to one and five, modulo six. All others

        #   are divisible by two or three.  This also allows us to skip checking against
        #   two and three.
        @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
        @next_to_check += 4
        @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
        @next_to_check += 2
      end
      return @primes[index]
    end
  end

  # Internal use. An implementation of eratosthenes' sieve
  class EratosthenesSieve
    include Singleton

    def initialize
      @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
      # @max_checked must be an even number
      @max_checked = @primes.last + 1
    end

    def get_nth_prime(n)
      compute_primes while @primes.size <= n
      @primes[n]
    end

    private
    def compute_primes
      # max_segment_size must be an even number
      max_segment_size = 1e6.to_i
      max_cached_prime = @primes.last
      # do not double count primes if #compute_primes is interrupted
      # by Timeout.timeout
      @max_checked = max_cached_prime + 1 if max_cached_prime > @max_checked

      segment_min = @max_checked
      segment_max = [segment_min + max_segment_size, max_cached_prime * 2].min
      root = Integer(Math.sqrt(segment_max).floor)

      sieving_primes = @primes[1 .. -1].take_while { |prime| prime <= root }
      offsets = Array.new(sieving_primes.size) do |i|
        (-(segment_min + 1 + sieving_primes[i]) / 2) % sieving_primes[i]
      end

      segment = ((segment_min + 1) .. segment_max).step(2).to_a
      sieving_primes.each_with_index do |prime, index|
        composite_index = offsets[index]
        while composite_index < segment.size do
          segment[composite_index] = nil
          composite_index += prime
        end
      end

      segment.each do |prime|
        @primes.push prime unless prime.nil?
      end
      @max_checked = segment_max
    end
  end

  # Provides a +Prime+ object with compatibility to Ruby 1.8 when instantiated via +Prime+.+new+.
  module OldCompatibility
    # Returns the next prime number and forwards internal pointer.
    def succ
      @generator.succ
    end
    alias next succ

    # Overwrites Prime#each.
    #
    # Iterates the given block over all prime numbers. Note that enumeration
    # starts from the current position of internal pointer, not rewound.
    def each
      return @generator.dup unless block_given?
      loop do
        yield succ
      end
    end
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit