Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.225.56.181
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/imunify360/venv/lib/python3.11/site-packages/Crypto/Signature/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/imunify360/venv/lib/python3.11/site-packages/Crypto/Signature//DSS.py
#
#  Signature/DSS.py : DSS.py
#
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

from Crypto.Util.asn1 import DerSequence
from Crypto.Util.number import long_to_bytes
from Crypto.Math.Numbers import Integer

from Crypto.Hash import HMAC
from Crypto.PublicKey.ECC import EccKey
from Crypto.PublicKey.DSA import DsaKey

__all__ = ['DssSigScheme', 'new']


class DssSigScheme(object):
    """A (EC)DSA signature object.
    Do not instantiate directly.
    Use :func:`Crypto.Signature.DSS.new`.
    """

    def __init__(self, key, encoding, order):
        """Create a new Digital Signature Standard (DSS) object.

        Do not instantiate this object directly,
        use `Crypto.Signature.DSS.new` instead.
        """

        self._key = key
        self._encoding = encoding
        self._order = order

        self._order_bits = self._order.size_in_bits()
        self._order_bytes = (self._order_bits - 1) // 8 + 1

    def can_sign(self):
        """Return ``True`` if this signature object can be used
        for signing messages."""

        return self._key.has_private()

    def _compute_nonce(self, msg_hash):
        raise NotImplementedError("To be provided by subclasses")

    def _valid_hash(self, msg_hash):
        raise NotImplementedError("To be provided by subclasses")

    def sign(self, msg_hash):
        """Compute the DSA/ECDSA signature of a message.

        Args:
          msg_hash (hash object):
            The hash that was carried out over the message.
            The object belongs to the :mod:`Crypto.Hash` package.
            Under mode ``'fips-186-3'``, the hash must be a FIPS
            approved secure hash (SHA-2 or SHA-3).

        :return: The signature as ``bytes``
        :raise ValueError: if the hash algorithm is incompatible to the (EC)DSA key
        :raise TypeError: if the (EC)DSA key has no private half
        """

        if not self._key.has_private():
            raise TypeError("Private key is needed to sign")

        if not self._valid_hash(msg_hash):
            raise ValueError("Hash is not sufficiently strong")

        # Generate the nonce k (critical!)
        nonce = self._compute_nonce(msg_hash)

        # Perform signature using the raw API
        z = Integer.from_bytes(msg_hash.digest()[:self._order_bytes])
        sig_pair = self._key._sign(z, nonce)

        # Encode the signature into a single byte string
        if self._encoding == 'binary':
            output = b"".join([long_to_bytes(x, self._order_bytes)
                               for x in sig_pair])
        else:
            # Dss-sig  ::=  SEQUENCE  {
            #   r   INTEGER,
            #   s   INTEGER
            # }
            # Ecdsa-Sig-Value  ::=  SEQUENCE  {
            #   r   INTEGER,
            #   s   INTEGER
            # }
            output = DerSequence(sig_pair).encode()

        return output

    def verify(self, msg_hash, signature):
        """Check if a certain (EC)DSA signature is authentic.

        Args:
          msg_hash (hash object):
            The hash that was carried out over the message.
            This is an object belonging to the :mod:`Crypto.Hash` module.
            Under mode ``'fips-186-3'``, the hash must be a FIPS
            approved secure hash (SHA-2 or SHA-3).

          signature (``bytes``):
            The signature that needs to be validated.

        :raise ValueError: if the signature is not authentic
        """

        if not self._valid_hash(msg_hash):
            raise ValueError("Hash is not sufficiently strong")

        if self._encoding == 'binary':
            if len(signature) != (2 * self._order_bytes):
                raise ValueError("The signature is not authentic (length)")
            r_prime, s_prime = [Integer.from_bytes(x)
                                for x in (signature[:self._order_bytes],
                                          signature[self._order_bytes:])]
        else:
            try:
                der_seq = DerSequence().decode(signature, strict=True)
            except (ValueError, IndexError):
                raise ValueError("The signature is not authentic (DER)")
            if len(der_seq) != 2 or not der_seq.hasOnlyInts():
                raise ValueError("The signature is not authentic (DER content)")
            r_prime, s_prime = Integer(der_seq[0]), Integer(der_seq[1])

        if not (0 < r_prime < self._order) or not (0 < s_prime < self._order):
            raise ValueError("The signature is not authentic (d)")

        z = Integer.from_bytes(msg_hash.digest()[:self._order_bytes])
        result = self._key._verify(z, (r_prime, s_prime))
        if not result:
            raise ValueError("The signature is not authentic")
        # Make PyCrypto code to fail
        return False


class DeterministicDsaSigScheme(DssSigScheme):
    # Also applicable to ECDSA

    def __init__(self, key, encoding, order, private_key):
        super(DeterministicDsaSigScheme, self).__init__(key, encoding, order)
        self._private_key = private_key

    def _bits2int(self, bstr):
        """See 2.3.2 in RFC6979"""

        result = Integer.from_bytes(bstr)
        q_len = self._order.size_in_bits()
        b_len = len(bstr) * 8
        if b_len > q_len:
            # Only keep leftmost q_len bits
            result >>= (b_len - q_len)
        return result

    def _int2octets(self, int_mod_q):
        """See 2.3.3 in RFC6979"""

        assert 0 < int_mod_q < self._order
        return long_to_bytes(int_mod_q, self._order_bytes)

    def _bits2octets(self, bstr):
        """See 2.3.4 in RFC6979"""

        z1 = self._bits2int(bstr)
        if z1 < self._order:
            z2 = z1
        else:
            z2 = z1 - self._order
        return self._int2octets(z2)

    def _compute_nonce(self, mhash):
        """Generate k in a deterministic way"""

        # See section 3.2 in RFC6979.txt
        # Step a
        h1 = mhash.digest()
        # Step b
        mask_v = b'\x01' * mhash.digest_size
        # Step c
        nonce_k = b'\x00' * mhash.digest_size

        for int_oct in (b'\x00', b'\x01'):
            # Step d/f
            nonce_k = HMAC.new(nonce_k,
                               mask_v + int_oct +
                               self._int2octets(self._private_key) +
                               self._bits2octets(h1), mhash).digest()
            # Step e/g
            mask_v = HMAC.new(nonce_k, mask_v, mhash).digest()

        nonce = -1
        while not (0 < nonce < self._order):
            # Step h.C (second part)
            if nonce != -1:
                nonce_k = HMAC.new(nonce_k, mask_v + b'\x00',
                                   mhash).digest()
                mask_v = HMAC.new(nonce_k, mask_v, mhash).digest()

            # Step h.A
            mask_t = b""

            # Step h.B
            while len(mask_t) < self._order_bytes:
                mask_v = HMAC.new(nonce_k, mask_v, mhash).digest()
                mask_t += mask_v

            # Step h.C (first part)
            nonce = self._bits2int(mask_t)
        return nonce

    def _valid_hash(self, msg_hash):
        return True


class FipsDsaSigScheme(DssSigScheme):

    #: List of L (bit length of p) and N (bit length of q) combinations
    #: that are allowed by FIPS 186-3. The security level is provided in
    #: Table 2 of FIPS 800-57 (rev3).
    _fips_186_3_L_N = (
                        (1024, 160),    # 80 bits  (SHA-1 or stronger)
                        (2048, 224),    # 112 bits (SHA-224 or stronger)
                        (2048, 256),    # 128 bits (SHA-256 or stronger)
                        (3072, 256)     # 256 bits (SHA-512)
                      )

    def __init__(self, key, encoding, order, randfunc):
        super(FipsDsaSigScheme, self).__init__(key, encoding, order)
        self._randfunc = randfunc

        L = Integer(key.p).size_in_bits()
        if (L, self._order_bits) not in self._fips_186_3_L_N:
            error = ("L/N (%d, %d) is not compliant to FIPS 186-3"
                     % (L, self._order_bits))
            raise ValueError(error)

    def _compute_nonce(self, msg_hash):
        # hash is not used
        return Integer.random_range(min_inclusive=1,
                                    max_exclusive=self._order,
                                    randfunc=self._randfunc)

    def _valid_hash(self, msg_hash):
        """Verify that SHA-1, SHA-2 or SHA-3 are used"""
        return (msg_hash.oid == "1.3.14.3.2.26" or
                msg_hash.oid.startswith("2.16.840.1.101.3.4.2."))


class FipsEcDsaSigScheme(DssSigScheme):

    def __init__(self, key, encoding, order, randfunc):
        super(FipsEcDsaSigScheme, self).__init__(key, encoding, order)
        self._randfunc = randfunc

    def _compute_nonce(self, msg_hash):
        return Integer.random_range(min_inclusive=1,
                                    max_exclusive=self._key._curve.order,
                                    randfunc=self._randfunc)

    def _valid_hash(self, msg_hash):
        """Verify that the strength of the hash matches or exceeds
        the strength of the EC. We fail if the hash is too weak."""

        modulus_bits = self._key.pointQ.size_in_bits()

        # SHS: SHA-2, SHA-3, truncated SHA-512
        sha224 = ("2.16.840.1.101.3.4.2.4", "2.16.840.1.101.3.4.2.7", "2.16.840.1.101.3.4.2.5")
        sha256 = ("2.16.840.1.101.3.4.2.1", "2.16.840.1.101.3.4.2.8", "2.16.840.1.101.3.4.2.6")
        sha384 = ("2.16.840.1.101.3.4.2.2", "2.16.840.1.101.3.4.2.9")
        sha512 = ("2.16.840.1.101.3.4.2.3", "2.16.840.1.101.3.4.2.10")
        shs = sha224 + sha256 + sha384 + sha512

        try:
            result = msg_hash.oid in shs
        except AttributeError:
            result = False
        return result


def new(key, mode, encoding='binary', randfunc=None):
    """Create a signature object :class:`DssSigScheme` that
    can perform (EC)DSA signature or verification.

    .. note::
        Refer to `NIST SP 800 Part 1 Rev 4`_ (or newer release) for an
        overview of the recommended key lengths.

    Args:
        key (:class:`Crypto.PublicKey.DSA` or :class:`Crypto.PublicKey.ECC`):
            The key to use for computing the signature (*private* keys only)
            or for verifying one.
            For DSA keys, let ``L`` and ``N`` be the bit lengths of the modulus ``p``
            and of ``q``: the pair ``(L,N)`` must appear in the following list,
            in compliance to section 4.2 of `FIPS 186-4`_:

            - (1024, 160) *legacy only; do not create new signatures with this*
            - (2048, 224) *deprecated; do not create new signatures with this*
            - (2048, 256)
            - (3072, 256)

            For ECC, only keys over P-224, P-256, P-384, and P-521 are accepted.

        mode (string):
            The parameter can take these values:

            - ``'fips-186-3'``. The signature generation is randomized and carried out
              according to `FIPS 186-3`_: the nonce ``k`` is taken from the RNG.
            - ``'deterministic-rfc6979'``. The signature generation is not
              randomized. See RFC6979_.

        encoding (string):
            How the signature is encoded. This value determines the output of
            :meth:`sign` and the input to :meth:`verify`.

            The following values are accepted:

            - ``'binary'`` (default), the signature is the raw concatenation
              of ``r`` and ``s``. It is defined in the IEEE P.1363 standard.
              For DSA, the size in bytes of the signature is ``N/4`` bytes
              (e.g. 64 for ``N=256``).
              For ECDSA, the signature is always twice the length of a point
              coordinate (e.g. 64 bytes for P-256).

            - ``'der'``, the signature is a ASN.1 DER SEQUENCE
              with two INTEGERs (``r`` and ``s``). It is defined in RFC3279_.
              The size of the signature is variable.

        randfunc (callable):
            A function that returns random ``bytes``, of a given length.
            If omitted, the internal RNG is used.
            Only applicable for the *'fips-186-3'* mode.

    .. _FIPS 186-3: http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
    .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
    .. _NIST SP 800 Part 1 Rev 4: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
    .. _RFC6979: http://tools.ietf.org/html/rfc6979
    .. _RFC3279: https://tools.ietf.org/html/rfc3279#section-2.2.2
    """

    # The goal of the 'mode' parameter is to avoid to
    # have the current version of the standard as default.
    #
    # Over time, such version will be superseded by (for instance)
    # FIPS 186-4 and it will be odd to have -3 as default.

    if encoding not in ('binary', 'der'):
        raise ValueError("Unknown encoding '%s'" % encoding)

    if isinstance(key, EccKey):
        order = key._curve.order
        private_key_attr = 'd'
        if key._curve.name == "ed25519":
            raise ValueError("ECC key is not on a NIST P curve")
    elif isinstance(key, DsaKey):
        order = Integer(key.q)
        private_key_attr = 'x'
    else:
        raise ValueError("Unsupported key type " + str(type(key)))

    if key.has_private():
        private_key = getattr(key, private_key_attr)
    else:
        private_key = None

    if mode == 'deterministic-rfc6979':
        return DeterministicDsaSigScheme(key, encoding, order, private_key)
    elif mode == 'fips-186-3':
        if isinstance(key, EccKey):
            return FipsEcDsaSigScheme(key, encoding, order, randfunc)
        else:
            return FipsDsaSigScheme(key, encoding, order, randfunc)
    else:
        raise ValueError("Unknown DSS mode '%s'" % mode)

Youez - 2016 - github.com/yon3zu
LinuXploit