Server IP : 66.29.132.124 / Your IP : 3.129.210.36 Web Server : LiteSpeed System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : wavevlvu ( 1524) PHP Version : 7.4.33 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/hc_python/lib/python3.8/site-packages/sqlalchemy/orm/ |
Upload File : |
# orm/query.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """The Query class and support. Defines the :class:`_query.Query` class, the central construct used by the ORM to construct database queries. The :class:`_query.Query` class should not be confused with the :class:`_expression.Select` class, which defines database SELECT operations at the SQL (non-ORM) level. ``Query`` differs from ``Select`` in that it returns ORM-mapped objects and interacts with an ORM session, whereas the ``Select`` construct interacts directly with the database to return iterable result sets. """ from __future__ import annotations import collections.abc as collections_abc import operator from typing import Any from typing import Callable from typing import cast from typing import Dict from typing import Generic from typing import Iterable from typing import Iterator from typing import List from typing import Mapping from typing import Optional from typing import overload from typing import Sequence from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union from . import attributes from . import interfaces from . import loading from . import util as orm_util from ._typing import _O from .base import _assertions from .context import _column_descriptions from .context import _determine_last_joined_entity from .context import _legacy_filter_by_entity_zero from .context import FromStatement from .context import ORMCompileState from .context import QueryContext from .interfaces import ORMColumnDescription from .interfaces import ORMColumnsClauseRole from .util import AliasedClass from .util import object_mapper from .util import with_parent from .. import exc as sa_exc from .. import inspect from .. import inspection from .. import log from .. import sql from .. import util from ..engine import Result from ..engine import Row from ..event import dispatcher from ..event import EventTarget from ..sql import coercions from ..sql import expression from ..sql import roles from ..sql import Select from ..sql import util as sql_util from ..sql import visitors from ..sql._typing import _FromClauseArgument from ..sql._typing import _TP from ..sql.annotation import SupportsCloneAnnotations from ..sql.base import _entity_namespace_key from ..sql.base import _generative from ..sql.base import _NoArg from ..sql.base import Executable from ..sql.base import Generative from ..sql.elements import BooleanClauseList from ..sql.expression import Exists from ..sql.selectable import _MemoizedSelectEntities from ..sql.selectable import _SelectFromElements from ..sql.selectable import ForUpdateArg from ..sql.selectable import HasHints from ..sql.selectable import HasPrefixes from ..sql.selectable import HasSuffixes from ..sql.selectable import LABEL_STYLE_TABLENAME_PLUS_COL from ..sql.selectable import SelectLabelStyle from ..util.typing import Literal from ..util.typing import Self if TYPE_CHECKING: from ._typing import _EntityType from ._typing import _ExternalEntityType from ._typing import _InternalEntityType from ._typing import SynchronizeSessionArgument from .mapper import Mapper from .path_registry import PathRegistry from .session import _PKIdentityArgument from .session import Session from .state import InstanceState from ..engine.cursor import CursorResult from ..engine.interfaces import _ImmutableExecuteOptions from ..engine.interfaces import CompiledCacheType from ..engine.interfaces import IsolationLevel from ..engine.interfaces import SchemaTranslateMapType from ..engine.result import FrozenResult from ..engine.result import ScalarResult from ..sql._typing import _ColumnExpressionArgument from ..sql._typing import _ColumnExpressionOrStrLabelArgument from ..sql._typing import _ColumnsClauseArgument from ..sql._typing import _DMLColumnArgument from ..sql._typing import _JoinTargetArgument from ..sql._typing import _LimitOffsetType from ..sql._typing import _MAYBE_ENTITY from ..sql._typing import _no_kw from ..sql._typing import _NOT_ENTITY from ..sql._typing import _OnClauseArgument from ..sql._typing import _PropagateAttrsType from ..sql._typing import _T0 from ..sql._typing import _T1 from ..sql._typing import _T2 from ..sql._typing import _T3 from ..sql._typing import _T4 from ..sql._typing import _T5 from ..sql._typing import _T6 from ..sql._typing import _T7 from ..sql._typing import _TypedColumnClauseArgument as _TCCA from ..sql.base import CacheableOptions from ..sql.base import ExecutableOption from ..sql.elements import ColumnElement from ..sql.elements import Label from ..sql.selectable import _ForUpdateOfArgument from ..sql.selectable import _JoinTargetElement from ..sql.selectable import _SetupJoinsElement from ..sql.selectable import Alias from ..sql.selectable import CTE from ..sql.selectable import ExecutableReturnsRows from ..sql.selectable import FromClause from ..sql.selectable import ScalarSelect from ..sql.selectable import Subquery __all__ = ["Query", "QueryContext"] _T = TypeVar("_T", bound=Any) @inspection._self_inspects @log.class_logger class Query( _SelectFromElements, SupportsCloneAnnotations, HasPrefixes, HasSuffixes, HasHints, EventTarget, log.Identified, Generative, Executable, Generic[_T], ): """ORM-level SQL construction object. .. legacy:: The ORM :class:`.Query` object is a legacy construct as of SQLAlchemy 2.0. See the notes at the top of :ref:`query_api_toplevel` for an overview, including links to migration documentation. :class:`_query.Query` objects are normally initially generated using the :meth:`~.Session.query` method of :class:`.Session`, and in less common cases by instantiating the :class:`_query.Query` directly and associating with a :class:`.Session` using the :meth:`_query.Query.with_session` method. """ # elements that are in Core and can be cached in the same way _where_criteria: Tuple[ColumnElement[Any], ...] = () _having_criteria: Tuple[ColumnElement[Any], ...] = () _order_by_clauses: Tuple[ColumnElement[Any], ...] = () _group_by_clauses: Tuple[ColumnElement[Any], ...] = () _limit_clause: Optional[ColumnElement[Any]] = None _offset_clause: Optional[ColumnElement[Any]] = None _distinct: bool = False _distinct_on: Tuple[ColumnElement[Any], ...] = () _for_update_arg: Optional[ForUpdateArg] = None _correlate: Tuple[FromClause, ...] = () _auto_correlate: bool = True _from_obj: Tuple[FromClause, ...] = () _setup_joins: Tuple[_SetupJoinsElement, ...] = () _label_style: SelectLabelStyle = SelectLabelStyle.LABEL_STYLE_LEGACY_ORM _memoized_select_entities = () _compile_options: Union[Type[CacheableOptions], CacheableOptions] = ( ORMCompileState.default_compile_options ) _with_options: Tuple[ExecutableOption, ...] load_options = QueryContext.default_load_options + { "_legacy_uniquing": True } _params: util.immutabledict[str, Any] = util.EMPTY_DICT # local Query builder state, not needed for # compilation or execution _enable_assertions = True _statement: Optional[ExecutableReturnsRows] = None session: Session dispatch: dispatcher[Query[_T]] # mirrors that of ClauseElement, used to propagate the "orm" # plugin as well as the "subject" of the plugin, e.g. the mapper # we are querying against. @util.memoized_property def _propagate_attrs(self) -> _PropagateAttrsType: return util.EMPTY_DICT def __init__( self, entities: Union[ _ColumnsClauseArgument[Any], Sequence[_ColumnsClauseArgument[Any]] ], session: Optional[Session] = None, ): """Construct a :class:`_query.Query` directly. E.g.:: q = Query([User, Address], session=some_session) The above is equivalent to:: q = some_session.query(User, Address) :param entities: a sequence of entities and/or SQL expressions. :param session: a :class:`.Session` with which the :class:`_query.Query` will be associated. Optional; a :class:`_query.Query` can be associated with a :class:`.Session` generatively via the :meth:`_query.Query.with_session` method as well. .. seealso:: :meth:`.Session.query` :meth:`_query.Query.with_session` """ # session is usually present. There's one case in subqueryloader # where it stores a Query without a Session and also there are tests # for the query(Entity).with_session(session) API which is likely in # some old recipes, however these are legacy as select() can now be # used. self.session = session # type: ignore self._set_entities(entities) def _set_propagate_attrs(self, values: Mapping[str, Any]) -> Self: self._propagate_attrs = util.immutabledict(values) return self def _set_entities( self, entities: Union[ _ColumnsClauseArgument[Any], Iterable[_ColumnsClauseArgument[Any]] ], ) -> None: self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self, post_inspect=True, ) for ent in util.to_list(entities) ] def tuples(self: Query[_O]) -> Query[Tuple[_O]]: """return a tuple-typed form of this :class:`.Query`. This method invokes the :meth:`.Query.only_return_tuples` method with a value of ``True``, which by itself ensures that this :class:`.Query` will always return :class:`.Row` objects, even if the query is made against a single entity. It then also at the typing level will return a "typed" query, if possible, that will type result rows as ``Tuple`` objects with typed elements. This method can be compared to the :meth:`.Result.tuples` method, which returns "self", but from a typing perspective returns an object that will yield typed ``Tuple`` objects for results. Typing takes effect only if this :class:`.Query` object is a typed query object already. .. versionadded:: 2.0 .. seealso:: :meth:`.Result.tuples` - v2 equivalent method. """ return self.only_return_tuples(True) # type: ignore def _entity_from_pre_ent_zero(self) -> Optional[_InternalEntityType[Any]]: if not self._raw_columns: return None ent = self._raw_columns[0] if "parententity" in ent._annotations: return ent._annotations["parententity"] # type: ignore elif "bundle" in ent._annotations: return ent._annotations["bundle"] # type: ignore else: # label, other SQL expression for element in visitors.iterate(ent): if "parententity" in element._annotations: return element._annotations["parententity"] # type: ignore # noqa: E501 else: return None def _only_full_mapper_zero(self, methname: str) -> Mapper[Any]: if ( len(self._raw_columns) != 1 or "parententity" not in self._raw_columns[0]._annotations or not self._raw_columns[0].is_selectable ): raise sa_exc.InvalidRequestError( "%s() can only be used against " "a single mapped class." % methname ) return self._raw_columns[0]._annotations["parententity"] # type: ignore # noqa: E501 def _set_select_from( self, obj: Iterable[_FromClauseArgument], set_base_alias: bool ) -> None: fa = [ coercions.expect( roles.StrictFromClauseRole, elem, allow_select=True, apply_propagate_attrs=self, ) for elem in obj ] self._compile_options += {"_set_base_alias": set_base_alias} self._from_obj = tuple(fa) @_generative def _set_lazyload_from(self, state: InstanceState[Any]) -> Self: self.load_options += {"_lazy_loaded_from": state} return self def _get_condition(self) -> None: """used by legacy BakedQuery""" self._no_criterion_condition("get", order_by=False, distinct=False) def _get_existing_condition(self) -> None: self._no_criterion_assertion("get", order_by=False, distinct=False) def _no_criterion_assertion( self, meth: str, order_by: bool = True, distinct: bool = True ) -> None: if not self._enable_assertions: return if ( self._where_criteria or self._statement is not None or self._from_obj or self._setup_joins or self._limit_clause is not None or self._offset_clause is not None or self._group_by_clauses or (order_by and self._order_by_clauses) or (distinct and self._distinct) ): raise sa_exc.InvalidRequestError( "Query.%s() being called on a " "Query with existing criterion. " % meth ) def _no_criterion_condition( self, meth: str, order_by: bool = True, distinct: bool = True ) -> None: self._no_criterion_assertion(meth, order_by, distinct) self._from_obj = self._setup_joins = () if self._statement is not None: self._compile_options += {"_statement": None} self._where_criteria = () self._distinct = False self._order_by_clauses = self._group_by_clauses = () def _no_clauseelement_condition(self, meth: str) -> None: if not self._enable_assertions: return if self._order_by_clauses: raise sa_exc.InvalidRequestError( "Query.%s() being called on a " "Query with existing criterion. " % meth ) self._no_criterion_condition(meth) def _no_statement_condition(self, meth: str) -> None: if not self._enable_assertions: return if self._statement is not None: raise sa_exc.InvalidRequestError( ( "Query.%s() being called on a Query with an existing full " "statement - can't apply criterion." ) % meth ) def _no_limit_offset(self, meth: str) -> None: if not self._enable_assertions: return if self._limit_clause is not None or self._offset_clause is not None: raise sa_exc.InvalidRequestError( "Query.%s() being called on a Query which already has LIMIT " "or OFFSET applied. Call %s() before limit() or offset() " "are applied." % (meth, meth) ) @property def _has_row_limiting_clause(self) -> bool: return ( self._limit_clause is not None or self._offset_clause is not None ) def _get_options( self, populate_existing: Optional[bool] = None, version_check: Optional[bool] = None, only_load_props: Optional[Sequence[str]] = None, refresh_state: Optional[InstanceState[Any]] = None, identity_token: Optional[Any] = None, ) -> Self: load_options: Dict[str, Any] = {} compile_options: Dict[str, Any] = {} if version_check: load_options["_version_check"] = version_check if populate_existing: load_options["_populate_existing"] = populate_existing if refresh_state: load_options["_refresh_state"] = refresh_state compile_options["_for_refresh_state"] = True if only_load_props: compile_options["_only_load_props"] = frozenset(only_load_props) if identity_token: load_options["_identity_token"] = identity_token if load_options: self.load_options += load_options if compile_options: self._compile_options += compile_options return self def _clone(self, **kw: Any) -> Self: return self._generate() def _get_select_statement_only(self) -> Select[_T]: if self._statement is not None: raise sa_exc.InvalidRequestError( "Can't call this method on a Query that uses from_statement()" ) return cast("Select[_T]", self.statement) @property def statement(self) -> Union[Select[_T], FromStatement[_T]]: """The full SELECT statement represented by this Query. The statement by default will not have disambiguating labels applied to the construct unless with_labels(True) is called first. """ # .statement can return the direct future.Select() construct here, as # long as we are not using subsequent adaption features that # are made against raw entities, e.g. from_self(), with_polymorphic(), # select_entity_from(). If these features are being used, then # the Select() we return will not have the correct .selected_columns # collection and will not embed in subsequent queries correctly. # We could find a way to make this collection "correct", however # this would not be too different from doing the full compile as # we are doing in any case, the Select() would still not have the # proper state for other attributes like whereclause, order_by, # and these features are all deprecated in any case. # # for these reasons, Query is not a Select, it remains an ORM # object for which __clause_element__() must be called in order for # it to provide a real expression object. # # from there, it starts to look much like Query itself won't be # passed into the execute process and won't generate its own cache # key; this will all occur in terms of the ORM-enabled Select. if not self._compile_options._set_base_alias: # if we don't have legacy top level aliasing features in use # then convert to a future select() directly stmt = self._statement_20(for_statement=True) else: stmt = self._compile_state(for_statement=True).statement if self._params: stmt = stmt.params(self._params) return stmt def _final_statement(self, legacy_query_style: bool = True) -> Select[Any]: """Return the 'final' SELECT statement for this :class:`.Query`. This is used by the testing suite only and is fairly inefficient. This is the Core-only select() that will be rendered by a complete compilation of this query, and is what .statement used to return in 1.3. """ q = self._clone() return q._compile_state( use_legacy_query_style=legacy_query_style ).statement # type: ignore def _statement_20( self, for_statement: bool = False, use_legacy_query_style: bool = True ) -> Union[Select[_T], FromStatement[_T]]: # TODO: this event needs to be deprecated, as it currently applies # only to ORM query and occurs at this spot that is now more # or less an artificial spot if self.dispatch.before_compile: for fn in self.dispatch.before_compile: new_query = fn(self) if new_query is not None and new_query is not self: self = new_query if not fn._bake_ok: # type: ignore self._compile_options += {"_bake_ok": False} compile_options = self._compile_options compile_options += { "_for_statement": for_statement, "_use_legacy_query_style": use_legacy_query_style, } stmt: Union[Select[_T], FromStatement[_T]] if self._statement is not None: stmt = FromStatement(self._raw_columns, self._statement) stmt.__dict__.update( _with_options=self._with_options, _with_context_options=self._with_context_options, _compile_options=compile_options, _execution_options=self._execution_options, _propagate_attrs=self._propagate_attrs, ) else: # Query / select() internal attributes are 99% cross-compatible stmt = Select._create_raw_select(**self.__dict__) stmt.__dict__.update( _label_style=self._label_style, _compile_options=compile_options, _propagate_attrs=self._propagate_attrs, ) stmt.__dict__.pop("session", None) # ensure the ORM context is used to compile the statement, even # if it has no ORM entities. This is so ORM-only things like # _legacy_joins are picked up that wouldn't be picked up by the # Core statement context if "compile_state_plugin" not in stmt._propagate_attrs: stmt._propagate_attrs = stmt._propagate_attrs.union( {"compile_state_plugin": "orm", "plugin_subject": None} ) return stmt def subquery( self, name: Optional[str] = None, with_labels: bool = False, reduce_columns: bool = False, ) -> Subquery: """Return the full SELECT statement represented by this :class:`_query.Query`, embedded within an :class:`_expression.Alias`. Eager JOIN generation within the query is disabled. .. seealso:: :meth:`_sql.Select.subquery` - v2 comparable method. :param name: string name to be assigned as the alias; this is passed through to :meth:`_expression.FromClause.alias`. If ``None``, a name will be deterministically generated at compile time. :param with_labels: if True, :meth:`.with_labels` will be called on the :class:`_query.Query` first to apply table-qualified labels to all columns. :param reduce_columns: if True, :meth:`_expression.Select.reduce_columns` will be called on the resulting :func:`_expression.select` construct, to remove same-named columns where one also refers to the other via foreign key or WHERE clause equivalence. """ q = self.enable_eagerloads(False) if with_labels: q = q.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) stmt = q._get_select_statement_only() if TYPE_CHECKING: assert isinstance(stmt, Select) if reduce_columns: stmt = stmt.reduce_columns() return stmt.subquery(name=name) def cte( self, name: Optional[str] = None, recursive: bool = False, nesting: bool = False, ) -> CTE: r"""Return the full SELECT statement represented by this :class:`_query.Query` represented as a common table expression (CTE). Parameters and usage are the same as those of the :meth:`_expression.SelectBase.cte` method; see that method for further details. Here is the `PostgreSQL WITH RECURSIVE example <https://www.postgresql.org/docs/current/static/queries-with.html>`_. Note that, in this example, the ``included_parts`` cte and the ``incl_alias`` alias of it are Core selectables, which means the columns are accessed via the ``.c.`` attribute. The ``parts_alias`` object is an :func:`_orm.aliased` instance of the ``Part`` entity, so column-mapped attributes are available directly:: from sqlalchemy.orm import aliased class Part(Base): __tablename__ = 'part' part = Column(String, primary_key=True) sub_part = Column(String, primary_key=True) quantity = Column(Integer) included_parts = session.query( Part.sub_part, Part.part, Part.quantity).\ filter(Part.part=="our part").\ cte(name="included_parts", recursive=True) incl_alias = aliased(included_parts, name="pr") parts_alias = aliased(Part, name="p") included_parts = included_parts.union_all( session.query( parts_alias.sub_part, parts_alias.part, parts_alias.quantity).\ filter(parts_alias.part==incl_alias.c.sub_part) ) q = session.query( included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ).\ group_by(included_parts.c.sub_part) .. seealso:: :meth:`_sql.Select.cte` - v2 equivalent method. """ return ( self.enable_eagerloads(False) ._get_select_statement_only() .cte(name=name, recursive=recursive, nesting=nesting) ) def label(self, name: Optional[str]) -> Label[Any]: """Return the full SELECT statement represented by this :class:`_query.Query`, converted to a scalar subquery with a label of the given name. .. seealso:: :meth:`_sql.Select.label` - v2 comparable method. """ return ( self.enable_eagerloads(False) ._get_select_statement_only() .label(name) ) @overload def as_scalar( # type: ignore[overload-overlap] self: Query[Tuple[_MAYBE_ENTITY]], ) -> ScalarSelect[_MAYBE_ENTITY]: ... @overload def as_scalar( self: Query[Tuple[_NOT_ENTITY]], ) -> ScalarSelect[_NOT_ENTITY]: ... @overload def as_scalar(self) -> ScalarSelect[Any]: ... @util.deprecated( "1.4", "The :meth:`_query.Query.as_scalar` method is deprecated and will be " "removed in a future release. Please refer to " ":meth:`_query.Query.scalar_subquery`.", ) def as_scalar(self) -> ScalarSelect[Any]: """Return the full SELECT statement represented by this :class:`_query.Query`, converted to a scalar subquery. """ return self.scalar_subquery() @overload def scalar_subquery( self: Query[Tuple[_MAYBE_ENTITY]], ) -> ScalarSelect[Any]: ... @overload def scalar_subquery( self: Query[Tuple[_NOT_ENTITY]], ) -> ScalarSelect[_NOT_ENTITY]: ... @overload def scalar_subquery(self) -> ScalarSelect[Any]: ... def scalar_subquery(self) -> ScalarSelect[Any]: """Return the full SELECT statement represented by this :class:`_query.Query`, converted to a scalar subquery. Analogous to :meth:`sqlalchemy.sql.expression.SelectBase.scalar_subquery`. .. versionchanged:: 1.4 The :meth:`_query.Query.scalar_subquery` method replaces the :meth:`_query.Query.as_scalar` method. .. seealso:: :meth:`_sql.Select.scalar_subquery` - v2 comparable method. """ return ( self.enable_eagerloads(False) ._get_select_statement_only() .scalar_subquery() ) @property def selectable(self) -> Union[Select[_T], FromStatement[_T]]: """Return the :class:`_expression.Select` object emitted by this :class:`_query.Query`. Used for :func:`_sa.inspect` compatibility, this is equivalent to:: query.enable_eagerloads(False).with_labels().statement """ return self.__clause_element__() def __clause_element__(self) -> Union[Select[_T], FromStatement[_T]]: return ( self._with_compile_options( _enable_eagerloads=False, _render_for_subquery=True ) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .statement ) @overload def only_return_tuples( self: Query[_O], value: Literal[True] ) -> RowReturningQuery[Tuple[_O]]: ... @overload def only_return_tuples( self: Query[_O], value: Literal[False] ) -> Query[_O]: ... @_generative def only_return_tuples(self, value: bool) -> Query[Any]: """When set to True, the query results will always be a :class:`.Row` object. This can change a query that normally returns a single entity as a scalar to return a :class:`.Row` result in all cases. .. seealso:: :meth:`.Query.tuples` - returns tuples, but also at the typing level will type results as ``Tuple``. :meth:`_query.Query.is_single_entity` :meth:`_engine.Result.tuples` - v2 comparable method. """ self.load_options += dict(_only_return_tuples=value) return self @property def is_single_entity(self) -> bool: """Indicates if this :class:`_query.Query` returns tuples or single entities. Returns True if this query returns a single entity for each instance in its result list, and False if this query returns a tuple of entities for each result. .. versionadded:: 1.3.11 .. seealso:: :meth:`_query.Query.only_return_tuples` """ return ( not self.load_options._only_return_tuples and len(self._raw_columns) == 1 and "parententity" in self._raw_columns[0]._annotations and isinstance( self._raw_columns[0]._annotations["parententity"], ORMColumnsClauseRole, ) ) @_generative def enable_eagerloads(self, value: bool) -> Self: """Control whether or not eager joins and subqueries are rendered. When set to False, the returned Query will not render eager joins regardless of :func:`~sqlalchemy.orm.joinedload`, :func:`~sqlalchemy.orm.subqueryload` options or mapper-level ``lazy='joined'``/``lazy='subquery'`` configurations. This is used primarily when nesting the Query's statement into a subquery or other selectable, or when using :meth:`_query.Query.yield_per`. """ self._compile_options += {"_enable_eagerloads": value} return self @_generative def _with_compile_options(self, **opt: Any) -> Self: self._compile_options += opt return self @util.became_legacy_20( ":meth:`_orm.Query.with_labels` and :meth:`_orm.Query.apply_labels`", alternative="Use set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) " "instead.", ) def with_labels(self) -> Self: return self.set_label_style( SelectLabelStyle.LABEL_STYLE_TABLENAME_PLUS_COL ) apply_labels = with_labels @property def get_label_style(self) -> SelectLabelStyle: """ Retrieve the current label style. .. versionadded:: 1.4 .. seealso:: :meth:`_sql.Select.get_label_style` - v2 equivalent method. """ return self._label_style def set_label_style(self, style: SelectLabelStyle) -> Self: """Apply column labels to the return value of Query.statement. Indicates that this Query's `statement` accessor should return a SELECT statement that applies labels to all columns in the form <tablename>_<columnname>; this is commonly used to disambiguate columns from multiple tables which have the same name. When the `Query` actually issues SQL to load rows, it always uses column labeling. .. note:: The :meth:`_query.Query.set_label_style` method *only* applies the output of :attr:`_query.Query.statement`, and *not* to any of the result-row invoking systems of :class:`_query.Query` itself, e.g. :meth:`_query.Query.first`, :meth:`_query.Query.all`, etc. To execute a query using :meth:`_query.Query.set_label_style`, invoke the :attr:`_query.Query.statement` using :meth:`.Session.execute`:: result = session.execute( query .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .statement ) .. versionadded:: 1.4 .. seealso:: :meth:`_sql.Select.set_label_style` - v2 equivalent method. """ # noqa if self._label_style is not style: self = self._generate() self._label_style = style return self @_generative def enable_assertions(self, value: bool) -> Self: """Control whether assertions are generated. When set to False, the returned Query will not assert its state before certain operations, including that LIMIT/OFFSET has not been applied when filter() is called, no criterion exists when get() is called, and no "from_statement()" exists when filter()/order_by()/group_by() etc. is called. This more permissive mode is used by custom Query subclasses to specify criterion or other modifiers outside of the usual usage patterns. Care should be taken to ensure that the usage pattern is even possible. A statement applied by from_statement() will override any criterion set by filter() or order_by(), for example. """ self._enable_assertions = value return self @property def whereclause(self) -> Optional[ColumnElement[bool]]: """A readonly attribute which returns the current WHERE criterion for this Query. This returned value is a SQL expression construct, or ``None`` if no criterion has been established. .. seealso:: :attr:`_sql.Select.whereclause` - v2 equivalent property. """ return BooleanClauseList._construct_for_whereclause( self._where_criteria ) @_generative def _with_current_path(self, path: PathRegistry) -> Self: """indicate that this query applies to objects loaded within a certain path. Used by deferred loaders (see strategies.py) which transfer query options from an originating query to a newly generated query intended for the deferred load. """ self._compile_options += {"_current_path": path} return self @_generative def yield_per(self, count: int) -> Self: r"""Yield only ``count`` rows at a time. The purpose of this method is when fetching very large result sets (> 10K rows), to batch results in sub-collections and yield them out partially, so that the Python interpreter doesn't need to declare very large areas of memory which is both time consuming and leads to excessive memory use. The performance from fetching hundreds of thousands of rows can often double when a suitable yield-per setting (e.g. approximately 1000) is used, even with DBAPIs that buffer rows (which are most). As of SQLAlchemy 1.4, the :meth:`_orm.Query.yield_per` method is equivalent to using the ``yield_per`` execution option at the ORM level. See the section :ref:`orm_queryguide_yield_per` for further background on this option. .. seealso:: :ref:`orm_queryguide_yield_per` """ self.load_options += {"_yield_per": count} return self @util.became_legacy_20( ":meth:`_orm.Query.get`", alternative="The method is now available as :meth:`_orm.Session.get`", ) def get(self, ident: _PKIdentityArgument) -> Optional[Any]: """Return an instance based on the given primary key identifier, or ``None`` if not found. E.g.:: my_user = session.query(User).get(5) some_object = session.query(VersionedFoo).get((5, 10)) some_object = session.query(VersionedFoo).get( {"id": 5, "version_id": 10}) :meth:`_query.Query.get` is special in that it provides direct access to the identity map of the owning :class:`.Session`. If the given primary key identifier is present in the local identity map, the object is returned directly from this collection and no SQL is emitted, unless the object has been marked fully expired. If not present, a SELECT is performed in order to locate the object. :meth:`_query.Query.get` also will perform a check if the object is present in the identity map and marked as expired - a SELECT is emitted to refresh the object as well as to ensure that the row is still present. If not, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. :meth:`_query.Query.get` is only used to return a single mapped instance, not multiple instances or individual column constructs, and strictly on a single primary key value. The originating :class:`_query.Query` must be constructed in this way, i.e. against a single mapped entity, with no additional filtering criterion. Loading options via :meth:`_query.Query.options` may be applied however, and will be used if the object is not yet locally present. :param ident: A scalar, tuple, or dictionary representing the primary key. For a composite (e.g. multiple column) primary key, a tuple or dictionary should be passed. For a single-column primary key, the scalar calling form is typically the most expedient. If the primary key of a row is the value "5", the call looks like:: my_object = query.get(5) The tuple form contains primary key values typically in the order in which they correspond to the mapped :class:`_schema.Table` object's primary key columns, or if the :paramref:`_orm.Mapper.primary_key` configuration parameter were used, in the order used for that parameter. For example, if the primary key of a row is represented by the integer digits "5, 10" the call would look like:: my_object = query.get((5, 10)) The dictionary form should include as keys the mapped attribute names corresponding to each element of the primary key. If the mapped class has the attributes ``id``, ``version_id`` as the attributes which store the object's primary key value, the call would look like:: my_object = query.get({"id": 5, "version_id": 10}) .. versionadded:: 1.3 the :meth:`_query.Query.get` method now optionally accepts a dictionary of attribute names to values in order to indicate a primary key identifier. :return: The object instance, or ``None``. """ self._no_criterion_assertion("get", order_by=False, distinct=False) # we still implement _get_impl() so that baked query can override # it return self._get_impl(ident, loading.load_on_pk_identity) def _get_impl( self, primary_key_identity: _PKIdentityArgument, db_load_fn: Callable[..., Any], identity_token: Optional[Any] = None, ) -> Optional[Any]: mapper = self._only_full_mapper_zero("get") return self.session._get_impl( mapper, primary_key_identity, db_load_fn, populate_existing=self.load_options._populate_existing, with_for_update=self._for_update_arg, options=self._with_options, identity_token=identity_token, execution_options=self._execution_options, ) @property def lazy_loaded_from(self) -> Optional[InstanceState[Any]]: """An :class:`.InstanceState` that is using this :class:`_query.Query` for a lazy load operation. .. deprecated:: 1.4 This attribute should be viewed via the :attr:`.ORMExecuteState.lazy_loaded_from` attribute, within the context of the :meth:`.SessionEvents.do_orm_execute` event. .. seealso:: :attr:`.ORMExecuteState.lazy_loaded_from` """ return self.load_options._lazy_loaded_from # type: ignore @property def _current_path(self) -> PathRegistry: return self._compile_options._current_path # type: ignore @_generative def correlate( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: """Return a :class:`.Query` construct which will correlate the given FROM clauses to that of an enclosing :class:`.Query` or :func:`~.expression.select`. The method here accepts mapped classes, :func:`.aliased` constructs, and :class:`_orm.Mapper` constructs as arguments, which are resolved into expression constructs, in addition to appropriate expression constructs. The correlation arguments are ultimately passed to :meth:`_expression.Select.correlate` after coercion to expression constructs. The correlation arguments take effect in such cases as when :meth:`_query.Query.from_self` is used, or when a subquery as returned by :meth:`_query.Query.subquery` is embedded in another :func:`_expression.select` construct. .. seealso:: :meth:`_sql.Select.correlate` - v2 equivalent method. """ self._auto_correlate = False if fromclauses and fromclauses[0] in {None, False}: self._correlate = () else: self._correlate = self._correlate + tuple( coercions.expect(roles.FromClauseRole, f) for f in fromclauses ) return self @_generative def autoflush(self, setting: bool) -> Self: """Return a Query with a specific 'autoflush' setting. As of SQLAlchemy 1.4, the :meth:`_orm.Query.autoflush` method is equivalent to using the ``autoflush`` execution option at the ORM level. See the section :ref:`orm_queryguide_autoflush` for further background on this option. """ self.load_options += {"_autoflush": setting} return self @_generative def populate_existing(self) -> Self: """Return a :class:`_query.Query` that will expire and refresh all instances as they are loaded, or reused from the current :class:`.Session`. As of SQLAlchemy 1.4, the :meth:`_orm.Query.populate_existing` method is equivalent to using the ``populate_existing`` execution option at the ORM level. See the section :ref:`orm_queryguide_populate_existing` for further background on this option. """ self.load_options += {"_populate_existing": True} return self @_generative def _with_invoke_all_eagers(self, value: bool) -> Self: """Set the 'invoke all eagers' flag which causes joined- and subquery loaders to traverse into already-loaded related objects and collections. Default is that of :attr:`_query.Query._invoke_all_eagers`. """ self.load_options += {"_invoke_all_eagers": value} return self @util.became_legacy_20( ":meth:`_orm.Query.with_parent`", alternative="Use the :func:`_orm.with_parent` standalone construct.", ) @util.preload_module("sqlalchemy.orm.relationships") def with_parent( self, instance: object, property: Optional[ # noqa: A002 attributes.QueryableAttribute[Any] ] = None, from_entity: Optional[_ExternalEntityType[Any]] = None, ) -> Self: """Add filtering criterion that relates the given instance to a child object or collection, using its attribute state as well as an established :func:`_orm.relationship()` configuration. The method uses the :func:`.with_parent` function to generate the clause, the result of which is passed to :meth:`_query.Query.filter`. Parameters are the same as :func:`.with_parent`, with the exception that the given property can be None, in which case a search is performed against this :class:`_query.Query` object's target mapper. :param instance: An instance which has some :func:`_orm.relationship`. :param property: Class bound attribute which indicates what relationship from the instance should be used to reconcile the parent/child relationship. :param from_entity: Entity in which to consider as the left side. This defaults to the "zero" entity of the :class:`_query.Query` itself. """ relationships = util.preloaded.orm_relationships if from_entity: entity_zero = inspect(from_entity) else: entity_zero = _legacy_filter_by_entity_zero(self) if property is None: # TODO: deprecate, property has to be supplied mapper = object_mapper(instance) for prop in mapper.iterate_properties: if ( isinstance(prop, relationships.RelationshipProperty) and prop.mapper is entity_zero.mapper # type: ignore ): property = prop # type: ignore # noqa: A001 break else: raise sa_exc.InvalidRequestError( "Could not locate a property which relates instances " "of class '%s' to instances of class '%s'" % ( entity_zero.mapper.class_.__name__, # type: ignore instance.__class__.__name__, ) ) return self.filter( with_parent( instance, property, # type: ignore entity_zero.entity, # type: ignore ) ) @_generative def add_entity( self, entity: _EntityType[Any], alias: Optional[Union[Alias, Subquery]] = None, ) -> Query[Any]: """add a mapped entity to the list of result columns to be returned. .. seealso:: :meth:`_sql.Select.add_columns` - v2 comparable method. """ if alias is not None: # TODO: deprecate entity = AliasedClass(entity, alias) self._raw_columns = list(self._raw_columns) self._raw_columns.append( coercions.expect( roles.ColumnsClauseRole, entity, apply_propagate_attrs=self ) ) return self @_generative def with_session(self, session: Session) -> Self: """Return a :class:`_query.Query` that will use the given :class:`.Session`. While the :class:`_query.Query` object is normally instantiated using the :meth:`.Session.query` method, it is legal to build the :class:`_query.Query` directly without necessarily using a :class:`.Session`. Such a :class:`_query.Query` object, or any :class:`_query.Query` already associated with a different :class:`.Session`, can produce a new :class:`_query.Query` object associated with a target session using this method:: from sqlalchemy.orm import Query query = Query([MyClass]).filter(MyClass.id == 5) result = query.with_session(my_session).one() """ self.session = session return self def _legacy_from_self( self, *entities: _ColumnsClauseArgument[Any] ) -> Self: # used for query.count() as well as for the same # function in BakedQuery, as well as some old tests in test_baked.py. fromclause = ( self.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .correlate(None) .subquery() ._anonymous_fromclause() ) q = self._from_selectable(fromclause) if entities: q._set_entities(entities) return q @_generative def _set_enable_single_crit(self, val: bool) -> Self: self._compile_options += {"_enable_single_crit": val} return self @_generative def _from_selectable( self, fromclause: FromClause, set_entity_from: bool = True ) -> Self: for attr in ( "_where_criteria", "_order_by_clauses", "_group_by_clauses", "_limit_clause", "_offset_clause", "_last_joined_entity", "_setup_joins", "_memoized_select_entities", "_distinct", "_distinct_on", "_having_criteria", "_prefixes", "_suffixes", ): self.__dict__.pop(attr, None) self._set_select_from([fromclause], set_entity_from) self._compile_options += { "_enable_single_crit": False, } return self @util.deprecated( "1.4", ":meth:`_query.Query.values` " "is deprecated and will be removed in a " "future release. Please use :meth:`_query.Query.with_entities`", ) def values(self, *columns: _ColumnsClauseArgument[Any]) -> Iterable[Any]: """Return an iterator yielding result tuples corresponding to the given list of columns """ return self._values_no_warn(*columns) _values = values def _values_no_warn( self, *columns: _ColumnsClauseArgument[Any] ) -> Iterable[Any]: if not columns: return iter(()) q = self._clone().enable_eagerloads(False) q._set_entities(columns) if not q.load_options._yield_per: q.load_options += {"_yield_per": 10} return iter(q) @util.deprecated( "1.4", ":meth:`_query.Query.value` " "is deprecated and will be removed in a " "future release. Please use :meth:`_query.Query.with_entities` " "in combination with :meth:`_query.Query.scalar`", ) def value(self, column: _ColumnExpressionArgument[Any]) -> Any: """Return a scalar result corresponding to the given column expression. """ try: return next(self._values_no_warn(column))[0] # type: ignore except StopIteration: return None @overload def with_entities(self, _entity: _EntityType[_O]) -> Query[_O]: ... @overload def with_entities( self, _colexpr: roles.TypedColumnsClauseRole[_T], ) -> RowReturningQuery[Tuple[_T]]: ... # START OVERLOADED FUNCTIONS self.with_entities RowReturningQuery 2-8 # code within this block is **programmatically, # statically generated** by tools/generate_tuple_map_overloads.py @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1] ) -> RowReturningQuery[Tuple[_T0, _T1]]: ... @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2] ) -> RowReturningQuery[Tuple[_T0, _T1, _T2]]: ... @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], ) -> RowReturningQuery[Tuple[_T0, _T1, _T2, _T3]]: ... @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], ) -> RowReturningQuery[Tuple[_T0, _T1, _T2, _T3, _T4]]: ... @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], ) -> RowReturningQuery[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]: ... @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], ) -> RowReturningQuery[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]: ... @overload def with_entities( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], __ent7: _TCCA[_T7], ) -> RowReturningQuery[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]: ... # END OVERLOADED FUNCTIONS self.with_entities @overload def with_entities( self, *entities: _ColumnsClauseArgument[Any] ) -> Query[Any]: ... @_generative def with_entities( self, *entities: _ColumnsClauseArgument[Any], **__kw: Any ) -> Query[Any]: r"""Return a new :class:`_query.Query` replacing the SELECT list with the given entities. e.g.:: # Users, filtered on some arbitrary criterion # and then ordered by related email address q = session.query(User).\ join(User.address).\ filter(User.name.like('%ed%')).\ order_by(Address.email) # given *only* User.id==5, Address.email, and 'q', what # would the *next* User in the result be ? subq = q.with_entities(Address.email).\ order_by(None).\ filter(User.id==5).\ subquery() q = q.join((subq, subq.c.email < Address.email)).\ limit(1) .. seealso:: :meth:`_sql.Select.with_only_columns` - v2 comparable method. """ if __kw: raise _no_kw() # Query has all the same fields as Select for this operation # this could in theory be based on a protocol but not sure if it's # worth it _MemoizedSelectEntities._generate_for_statement(self) # type: ignore self._set_entities(entities) return self @_generative def add_columns( self, *column: _ColumnExpressionArgument[Any] ) -> Query[Any]: """Add one or more column expressions to the list of result columns to be returned. .. seealso:: :meth:`_sql.Select.add_columns` - v2 comparable method. """ self._raw_columns = list(self._raw_columns) self._raw_columns.extend( coercions.expect( roles.ColumnsClauseRole, c, apply_propagate_attrs=self, post_inspect=True, ) for c in column ) return self @util.deprecated( "1.4", ":meth:`_query.Query.add_column` " "is deprecated and will be removed in a " "future release. Please use :meth:`_query.Query.add_columns`", ) def add_column(self, column: _ColumnExpressionArgument[Any]) -> Query[Any]: """Add a column expression to the list of result columns to be returned. """ return self.add_columns(column) @_generative def options(self, *args: ExecutableOption) -> Self: """Return a new :class:`_query.Query` object, applying the given list of mapper options. Most supplied options regard changing how column- and relationship-mapped attributes are loaded. .. seealso:: :ref:`loading_columns` :ref:`relationship_loader_options` """ opts = tuple(util.flatten_iterator(args)) if self._compile_options._current_path: # opting for lower method overhead for the checks for opt in opts: if not opt._is_core and opt._is_legacy_option: # type: ignore opt.process_query_conditionally(self) # type: ignore else: for opt in opts: if not opt._is_core and opt._is_legacy_option: # type: ignore opt.process_query(self) # type: ignore self._with_options += opts return self def with_transformation( self, fn: Callable[[Query[Any]], Query[Any]] ) -> Query[Any]: """Return a new :class:`_query.Query` object transformed by the given function. E.g.:: def filter_something(criterion): def transform(q): return q.filter(criterion) return transform q = q.with_transformation(filter_something(x==5)) This allows ad-hoc recipes to be created for :class:`_query.Query` objects. """ return fn(self) def get_execution_options(self) -> _ImmutableExecuteOptions: """Get the non-SQL options which will take effect during execution. .. versionadded:: 1.3 .. seealso:: :meth:`_query.Query.execution_options` :meth:`_sql.Select.get_execution_options` - v2 comparable method. """ return self._execution_options @overload def execution_options( self, *, compiled_cache: Optional[CompiledCacheType] = ..., logging_token: str = ..., isolation_level: IsolationLevel = ..., no_parameters: bool = False, stream_results: bool = False, max_row_buffer: int = ..., yield_per: int = ..., insertmanyvalues_page_size: int = ..., schema_translate_map: Optional[SchemaTranslateMapType] = ..., populate_existing: bool = False, autoflush: bool = False, preserve_rowcount: bool = False, **opt: Any, ) -> Self: ... @overload def execution_options(self, **opt: Any) -> Self: ... @_generative def execution_options(self, **kwargs: Any) -> Self: """Set non-SQL options which take effect during execution. Options allowed here include all of those accepted by :meth:`_engine.Connection.execution_options`, as well as a series of ORM specific options: ``populate_existing=True`` - equivalent to using :meth:`_orm.Query.populate_existing` ``autoflush=True|False`` - equivalent to using :meth:`_orm.Query.autoflush` ``yield_per=<value>`` - equivalent to using :meth:`_orm.Query.yield_per` Note that the ``stream_results`` execution option is enabled automatically if the :meth:`~sqlalchemy.orm.query.Query.yield_per()` method or execution option is used. .. versionadded:: 1.4 - added ORM options to :meth:`_orm.Query.execution_options` The execution options may also be specified on a per execution basis when using :term:`2.0 style` queries via the :paramref:`_orm.Session.execution_options` parameter. .. warning:: The :paramref:`_engine.Connection.execution_options.stream_results` parameter should not be used at the level of individual ORM statement executions, as the :class:`_orm.Session` will not track objects from different schema translate maps within a single session. For multiple schema translate maps within the scope of a single :class:`_orm.Session`, see :ref:`examples_sharding`. .. seealso:: :ref:`engine_stream_results` :meth:`_query.Query.get_execution_options` :meth:`_sql.Select.execution_options` - v2 equivalent method. """ self._execution_options = self._execution_options.union(kwargs) return self @_generative def with_for_update( self, *, nowait: bool = False, read: bool = False, of: Optional[_ForUpdateOfArgument] = None, skip_locked: bool = False, key_share: bool = False, ) -> Self: """return a new :class:`_query.Query` with the specified options for the ``FOR UPDATE`` clause. The behavior of this method is identical to that of :meth:`_expression.GenerativeSelect.with_for_update`. When called with no arguments, the resulting ``SELECT`` statement will have a ``FOR UPDATE`` clause appended. When additional arguments are specified, backend-specific options such as ``FOR UPDATE NOWAIT`` or ``LOCK IN SHARE MODE`` can take effect. E.g.:: q = sess.query(User).populate_existing().with_for_update(nowait=True, of=User) The above query on a PostgreSQL backend will render like:: SELECT users.id AS users_id FROM users FOR UPDATE OF users NOWAIT .. warning:: Using ``with_for_update`` in the context of eager loading relationships is not officially supported or recommended by SQLAlchemy and may not work with certain queries on various database backends. When ``with_for_update`` is successfully used with a query that involves :func:`_orm.joinedload`, SQLAlchemy will attempt to emit SQL that locks all involved tables. .. note:: It is generally a good idea to combine the use of the :meth:`_orm.Query.populate_existing` method when using the :meth:`_orm.Query.with_for_update` method. The purpose of :meth:`_orm.Query.populate_existing` is to force all the data read from the SELECT to be populated into the ORM objects returned, even if these objects are already in the :term:`identity map`. .. seealso:: :meth:`_expression.GenerativeSelect.with_for_update` - Core level method with full argument and behavioral description. :meth:`_orm.Query.populate_existing` - overwrites attributes of objects already loaded in the identity map. """ # noqa: E501 self._for_update_arg = ForUpdateArg( read=read, nowait=nowait, of=of, skip_locked=skip_locked, key_share=key_share, ) return self @_generative def params( self, __params: Optional[Dict[str, Any]] = None, **kw: Any ) -> Self: r"""Add values for bind parameters which may have been specified in filter(). Parameters may be specified using \**kwargs, or optionally a single dictionary as the first positional argument. The reason for both is that \**kwargs is convenient, however some parameter dictionaries contain unicode keys in which case \**kwargs cannot be used. """ if __params: kw.update(__params) self._params = self._params.union(kw) return self def where(self, *criterion: _ColumnExpressionArgument[bool]) -> Self: """A synonym for :meth:`.Query.filter`. .. versionadded:: 1.4 .. seealso:: :meth:`_sql.Select.where` - v2 equivalent method. """ return self.filter(*criterion) @_generative @_assertions(_no_statement_condition, _no_limit_offset) def filter(self, *criterion: _ColumnExpressionArgument[bool]) -> Self: r"""Apply the given filtering criterion to a copy of this :class:`_query.Query`, using SQL expressions. e.g.:: session.query(MyClass).filter(MyClass.name == 'some name') Multiple criteria may be specified as comma separated; the effect is that they will be joined together using the :func:`.and_` function:: session.query(MyClass).\ filter(MyClass.name == 'some name', MyClass.id > 5) The criterion is any SQL expression object applicable to the WHERE clause of a select. String expressions are coerced into SQL expression constructs via the :func:`_expression.text` construct. .. seealso:: :meth:`_query.Query.filter_by` - filter on keyword expressions. :meth:`_sql.Select.where` - v2 equivalent method. """ for crit in list(criterion): crit = coercions.expect( roles.WhereHavingRole, crit, apply_propagate_attrs=self ) self._where_criteria += (crit,) return self @util.memoized_property def _last_joined_entity( self, ) -> Optional[Union[_InternalEntityType[Any], _JoinTargetElement]]: if self._setup_joins: return _determine_last_joined_entity( self._setup_joins, ) else: return None def _filter_by_zero(self) -> Any: """for the filter_by() method, return the target entity for which we will attempt to derive an expression from based on string name. """ if self._setup_joins: _last_joined_entity = self._last_joined_entity if _last_joined_entity is not None: return _last_joined_entity # discussion related to #7239 # special check determines if we should try to derive attributes # for filter_by() from the "from object", i.e., if the user # called query.select_from(some selectable).filter_by(some_attr=value). # We don't want to do that in the case that methods like # from_self(), select_entity_from(), or a set op like union() were # called; while these methods also place a # selectable in the _from_obj collection, they also set up # the _set_base_alias boolean which turns on the whole "adapt the # entity to this selectable" thing, meaning the query still continues # to construct itself in terms of the lead entity that was passed # to query(), e.g. query(User).from_self() is still in terms of User, # and not the subquery that from_self() created. This feature of # "implicitly adapt all occurrences of entity X to some arbitrary # subquery" is the main thing I am trying to do away with in 2.0 as # users should now used aliased() for that, but I can't entirely get # rid of it due to query.union() and other set ops relying upon it. # # compare this to the base Select()._filter_by_zero() which can # just return self._from_obj[0] if present, because there is no # "_set_base_alias" feature. # # IOW, this conditional essentially detects if # "select_from(some_selectable)" has been called, as opposed to # "select_entity_from()", "from_self()" # or "union() / some_set_op()". if self._from_obj and not self._compile_options._set_base_alias: return self._from_obj[0] return self._raw_columns[0] def filter_by(self, **kwargs: Any) -> Self: r"""Apply the given filtering criterion to a copy of this :class:`_query.Query`, using keyword expressions. e.g.:: session.query(MyClass).filter_by(name = 'some name') Multiple criteria may be specified as comma separated; the effect is that they will be joined together using the :func:`.and_` function:: session.query(MyClass).\ filter_by(name = 'some name', id = 5) The keyword expressions are extracted from the primary entity of the query, or the last entity that was the target of a call to :meth:`_query.Query.join`. .. seealso:: :meth:`_query.Query.filter` - filter on SQL expressions. :meth:`_sql.Select.filter_by` - v2 comparable method. """ from_entity = self._filter_by_zero() clauses = [ _entity_namespace_key(from_entity, key) == value for key, value in kwargs.items() ] return self.filter(*clauses) @_generative def order_by( self, __first: Union[ Literal[None, False, _NoArg.NO_ARG], _ColumnExpressionOrStrLabelArgument[Any], ] = _NoArg.NO_ARG, *clauses: _ColumnExpressionOrStrLabelArgument[Any], ) -> Self: """Apply one or more ORDER BY criteria to the query and return the newly resulting :class:`_query.Query`. e.g.:: q = session.query(Entity).order_by(Entity.id, Entity.name) Calling this method multiple times is equivalent to calling it once with all the clauses concatenated. All existing ORDER BY criteria may be cancelled by passing ``None`` by itself. New ORDER BY criteria may then be added by invoking :meth:`_orm.Query.order_by` again, e.g.:: # will erase all ORDER BY and ORDER BY new_col alone q = q.order_by(None).order_by(new_col) .. seealso:: These sections describe ORDER BY in terms of :term:`2.0 style` invocation but apply to :class:`_orm.Query` as well: :ref:`tutorial_order_by` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` :meth:`_sql.Select.order_by` - v2 equivalent method. """ for assertion in (self._no_statement_condition, self._no_limit_offset): assertion("order_by") if not clauses and (__first is None or __first is False): self._order_by_clauses = () elif __first is not _NoArg.NO_ARG: criterion = tuple( coercions.expect(roles.OrderByRole, clause) for clause in (__first,) + clauses ) self._order_by_clauses += criterion return self @_generative def group_by( self, __first: Union[ Literal[None, False, _NoArg.NO_ARG], _ColumnExpressionOrStrLabelArgument[Any], ] = _NoArg.NO_ARG, *clauses: _ColumnExpressionOrStrLabelArgument[Any], ) -> Self: """Apply one or more GROUP BY criterion to the query and return the newly resulting :class:`_query.Query`. All existing GROUP BY settings can be suppressed by passing ``None`` - this will suppress any GROUP BY configured on mappers as well. .. seealso:: These sections describe GROUP BY in terms of :term:`2.0 style` invocation but apply to :class:`_orm.Query` as well: :ref:`tutorial_group_by_w_aggregates` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` :meth:`_sql.Select.group_by` - v2 equivalent method. """ for assertion in (self._no_statement_condition, self._no_limit_offset): assertion("group_by") if not clauses and (__first is None or __first is False): self._group_by_clauses = () elif __first is not _NoArg.NO_ARG: criterion = tuple( coercions.expect(roles.GroupByRole, clause) for clause in (__first,) + clauses ) self._group_by_clauses += criterion return self @_generative @_assertions(_no_statement_condition, _no_limit_offset) def having(self, *having: _ColumnExpressionArgument[bool]) -> Self: r"""Apply a HAVING criterion to the query and return the newly resulting :class:`_query.Query`. :meth:`_query.Query.having` is used in conjunction with :meth:`_query.Query.group_by`. HAVING criterion makes it possible to use filters on aggregate functions like COUNT, SUM, AVG, MAX, and MIN, eg.:: q = session.query(User.id).\ join(User.addresses).\ group_by(User.id).\ having(func.count(Address.id) > 2) .. seealso:: :meth:`_sql.Select.having` - v2 equivalent method. """ for criterion in having: having_criteria = coercions.expect( roles.WhereHavingRole, criterion ) self._having_criteria += (having_criteria,) return self def _set_op(self, expr_fn: Any, *q: Query[Any]) -> Self: list_of_queries = (self,) + q return self._from_selectable(expr_fn(*(list_of_queries)).subquery()) def union(self, *q: Query[Any]) -> Self: """Produce a UNION of this Query against one or more queries. e.g.:: q1 = sess.query(SomeClass).filter(SomeClass.foo=='bar') q2 = sess.query(SomeClass).filter(SomeClass.bar=='foo') q3 = q1.union(q2) The method accepts multiple Query objects so as to control the level of nesting. A series of ``union()`` calls such as:: x.union(y).union(z).all() will nest on each ``union()``, and produces:: SELECT * FROM (SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y) UNION SELECT * FROM Z) Whereas:: x.union(y, z).all() produces:: SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y UNION SELECT * FROM Z) Note that many database backends do not allow ORDER BY to be rendered on a query called within UNION, EXCEPT, etc. To disable all ORDER BY clauses including those configured on mappers, issue ``query.order_by(None)`` - the resulting :class:`_query.Query` object will not render ORDER BY within its SELECT statement. .. seealso:: :meth:`_sql.Select.union` - v2 equivalent method. """ return self._set_op(expression.union, *q) def union_all(self, *q: Query[Any]) -> Self: """Produce a UNION ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. .. seealso:: :meth:`_sql.Select.union_all` - v2 equivalent method. """ return self._set_op(expression.union_all, *q) def intersect(self, *q: Query[Any]) -> Self: """Produce an INTERSECT of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. .. seealso:: :meth:`_sql.Select.intersect` - v2 equivalent method. """ return self._set_op(expression.intersect, *q) def intersect_all(self, *q: Query[Any]) -> Self: """Produce an INTERSECT ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. .. seealso:: :meth:`_sql.Select.intersect_all` - v2 equivalent method. """ return self._set_op(expression.intersect_all, *q) def except_(self, *q: Query[Any]) -> Self: """Produce an EXCEPT of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. .. seealso:: :meth:`_sql.Select.except_` - v2 equivalent method. """ return self._set_op(expression.except_, *q) def except_all(self, *q: Query[Any]) -> Self: """Produce an EXCEPT ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. .. seealso:: :meth:`_sql.Select.except_all` - v2 equivalent method. """ return self._set_op(expression.except_all, *q) @_generative @_assertions(_no_statement_condition, _no_limit_offset) def join( self, target: _JoinTargetArgument, onclause: Optional[_OnClauseArgument] = None, *, isouter: bool = False, full: bool = False, ) -> Self: r"""Create a SQL JOIN against this :class:`_query.Query` object's criterion and apply generatively, returning the newly resulting :class:`_query.Query`. **Simple Relationship Joins** Consider a mapping between two classes ``User`` and ``Address``, with a relationship ``User.addresses`` representing a collection of ``Address`` objects associated with each ``User``. The most common usage of :meth:`_query.Query.join` is to create a JOIN along this relationship, using the ``User.addresses`` attribute as an indicator for how this should occur:: q = session.query(User).join(User.addresses) Where above, the call to :meth:`_query.Query.join` along ``User.addresses`` will result in SQL approximately equivalent to:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id In the above example we refer to ``User.addresses`` as passed to :meth:`_query.Query.join` as the "on clause", that is, it indicates how the "ON" portion of the JOIN should be constructed. To construct a chain of joins, multiple :meth:`_query.Query.join` calls may be used. The relationship-bound attribute implies both the left and right side of the join at once:: q = session.query(User).\ join(User.orders).\ join(Order.items).\ join(Item.keywords) .. note:: as seen in the above example, **the order in which each call to the join() method occurs is important**. Query would not, for example, know how to join correctly if we were to specify ``User``, then ``Item``, then ``Order``, in our chain of joins; in such a case, depending on the arguments passed, it may raise an error that it doesn't know how to join, or it may produce invalid SQL in which case the database will raise an error. In correct practice, the :meth:`_query.Query.join` method is invoked in such a way that lines up with how we would want the JOIN clauses in SQL to be rendered, and each call should represent a clear link from what precedes it. **Joins to a Target Entity or Selectable** A second form of :meth:`_query.Query.join` allows any mapped entity or core selectable construct as a target. In this usage, :meth:`_query.Query.join` will attempt to create a JOIN along the natural foreign key relationship between two entities:: q = session.query(User).join(Address) In the above calling form, :meth:`_query.Query.join` is called upon to create the "on clause" automatically for us. This calling form will ultimately raise an error if either there are no foreign keys between the two entities, or if there are multiple foreign key linkages between the target entity and the entity or entities already present on the left side such that creating a join requires more information. Note that when indicating a join to a target without any ON clause, ORM configured relationships are not taken into account. **Joins to a Target with an ON Clause** The third calling form allows both the target entity as well as the ON clause to be passed explicitly. A example that includes a SQL expression as the ON clause is as follows:: q = session.query(User).join(Address, User.id==Address.user_id) The above form may also use a relationship-bound attribute as the ON clause as well:: q = session.query(User).join(Address, User.addresses) The above syntax can be useful for the case where we wish to join to an alias of a particular target entity. If we wanted to join to ``Address`` twice, it could be achieved using two aliases set up using the :func:`~sqlalchemy.orm.aliased` function:: a1 = aliased(Address) a2 = aliased(Address) q = session.query(User).\ join(a1, User.addresses).\ join(a2, User.addresses).\ filter(a1.email_address=='ed@foo.com').\ filter(a2.email_address=='ed@bar.com') The relationship-bound calling form can also specify a target entity using the :meth:`_orm.PropComparator.of_type` method; a query equivalent to the one above would be:: a1 = aliased(Address) a2 = aliased(Address) q = session.query(User).\ join(User.addresses.of_type(a1)).\ join(User.addresses.of_type(a2)).\ filter(a1.email_address == 'ed@foo.com').\ filter(a2.email_address == 'ed@bar.com') **Augmenting Built-in ON Clauses** As a substitute for providing a full custom ON condition for an existing relationship, the :meth:`_orm.PropComparator.and_` function may be applied to a relationship attribute to augment additional criteria into the ON clause; the additional criteria will be combined with the default criteria using AND:: q = session.query(User).join( User.addresses.and_(Address.email_address != 'foo@bar.com') ) .. versionadded:: 1.4 **Joining to Tables and Subqueries** The target of a join may also be any table or SELECT statement, which may be related to a target entity or not. Use the appropriate ``.subquery()`` method in order to make a subquery out of a query:: subq = session.query(Address).\ filter(Address.email_address == 'ed@foo.com').\ subquery() q = session.query(User).join( subq, User.id == subq.c.user_id ) Joining to a subquery in terms of a specific relationship and/or target entity may be achieved by linking the subquery to the entity using :func:`_orm.aliased`:: subq = session.query(Address).\ filter(Address.email_address == 'ed@foo.com').\ subquery() address_subq = aliased(Address, subq) q = session.query(User).join( User.addresses.of_type(address_subq) ) **Controlling what to Join From** In cases where the left side of the current state of :class:`_query.Query` is not in line with what we want to join from, the :meth:`_query.Query.select_from` method may be used:: q = session.query(Address).select_from(User).\ join(User.addresses).\ filter(User.name == 'ed') Which will produce SQL similar to:: SELECT address.* FROM user JOIN address ON user.id=address.user_id WHERE user.name = :name_1 .. seealso:: :meth:`_sql.Select.join` - v2 equivalent method. :param \*props: Incoming arguments for :meth:`_query.Query.join`, the props collection in modern use should be considered to be a one or two argument form, either as a single "target" entity or ORM attribute-bound relationship, or as a target entity plus an "on clause" which may be a SQL expression or ORM attribute-bound relationship. :param isouter=False: If True, the join used will be a left outer join, just as if the :meth:`_query.Query.outerjoin` method were called. :param full=False: render FULL OUTER JOIN; implies ``isouter``. """ join_target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self, legacy=True, ) if onclause is not None: onclause_element = coercions.expect( roles.OnClauseRole, onclause, legacy=True ) else: onclause_element = None self._setup_joins += ( ( join_target, onclause_element, None, { "isouter": isouter, "full": full, }, ), ) self.__dict__.pop("_last_joined_entity", None) return self def outerjoin( self, target: _JoinTargetArgument, onclause: Optional[_OnClauseArgument] = None, *, full: bool = False, ) -> Self: """Create a left outer join against this ``Query`` object's criterion and apply generatively, returning the newly resulting ``Query``. Usage is the same as the ``join()`` method. .. seealso:: :meth:`_sql.Select.outerjoin` - v2 equivalent method. """ return self.join(target, onclause=onclause, isouter=True, full=full) @_generative @_assertions(_no_statement_condition) def reset_joinpoint(self) -> Self: """Return a new :class:`.Query`, where the "join point" has been reset back to the base FROM entities of the query. This method is usually used in conjunction with the ``aliased=True`` feature of the :meth:`~.Query.join` method. See the example in :meth:`~.Query.join` for how this is used. """ self._last_joined_entity = None return self @_generative @_assertions(_no_clauseelement_condition) def select_from(self, *from_obj: _FromClauseArgument) -> Self: r"""Set the FROM clause of this :class:`.Query` explicitly. :meth:`.Query.select_from` is often used in conjunction with :meth:`.Query.join` in order to control which entity is selected from on the "left" side of the join. The entity or selectable object here effectively replaces the "left edge" of any calls to :meth:`~.Query.join`, when no joinpoint is otherwise established - usually, the default "join point" is the leftmost entity in the :class:`~.Query` object's list of entities to be selected. A typical example:: q = session.query(Address).select_from(User).\ join(User.addresses).\ filter(User.name == 'ed') Which produces SQL equivalent to:: SELECT address.* FROM user JOIN address ON user.id=address.user_id WHERE user.name = :name_1 :param \*from_obj: collection of one or more entities to apply to the FROM clause. Entities can be mapped classes, :class:`.AliasedClass` objects, :class:`.Mapper` objects as well as core :class:`.FromClause` elements like subqueries. .. seealso:: :meth:`~.Query.join` :meth:`.Query.select_entity_from` :meth:`_sql.Select.select_from` - v2 equivalent method. """ self._set_select_from(from_obj, False) return self def __getitem__(self, item: Any) -> Any: return orm_util._getitem( self, item, ) @_generative @_assertions(_no_statement_condition) def slice( self, start: int, stop: int, ) -> Self: """Computes the "slice" of the :class:`_query.Query` represented by the given indices and returns the resulting :class:`_query.Query`. The start and stop indices behave like the argument to Python's built-in :func:`range` function. This method provides an alternative to using ``LIMIT``/``OFFSET`` to get a slice of the query. For example, :: session.query(User).order_by(User.id).slice(1, 3) renders as .. sourcecode:: sql SELECT users.id AS users_id, users.name AS users_name FROM users ORDER BY users.id LIMIT ? OFFSET ? (2, 1) .. seealso:: :meth:`_query.Query.limit` :meth:`_query.Query.offset` :meth:`_sql.Select.slice` - v2 equivalent method. """ self._limit_clause, self._offset_clause = sql_util._make_slice( self._limit_clause, self._offset_clause, start, stop ) return self @_generative @_assertions(_no_statement_condition) def limit(self, limit: _LimitOffsetType) -> Self: """Apply a ``LIMIT`` to the query and return the newly resulting ``Query``. .. seealso:: :meth:`_sql.Select.limit` - v2 equivalent method. """ self._limit_clause = sql_util._offset_or_limit_clause(limit) return self @_generative @_assertions(_no_statement_condition) def offset(self, offset: _LimitOffsetType) -> Self: """Apply an ``OFFSET`` to the query and return the newly resulting ``Query``. .. seealso:: :meth:`_sql.Select.offset` - v2 equivalent method. """ self._offset_clause = sql_util._offset_or_limit_clause(offset) return self @_generative @_assertions(_no_statement_condition) def distinct(self, *expr: _ColumnExpressionArgument[Any]) -> Self: r"""Apply a ``DISTINCT`` to the query and return the newly resulting ``Query``. .. note:: The ORM-level :meth:`.distinct` call includes logic that will automatically add columns from the ORDER BY of the query to the columns clause of the SELECT statement, to satisfy the common need of the database backend that ORDER BY columns be part of the SELECT list when DISTINCT is used. These columns *are not* added to the list of columns actually fetched by the :class:`_query.Query`, however, so would not affect results. The columns are passed through when using the :attr:`_query.Query.statement` accessor, however. .. deprecated:: 2.0 This logic is deprecated and will be removed in SQLAlchemy 2.0. See :ref:`migration_20_query_distinct` for a description of this use case in 2.0. .. seealso:: :meth:`_sql.Select.distinct` - v2 equivalent method. :param \*expr: optional column expressions. When present, the PostgreSQL dialect will render a ``DISTINCT ON (<expressions>)`` construct. .. deprecated:: 1.4 Using \*expr in other dialects is deprecated and will raise :class:`_exc.CompileError` in a future version. """ if expr: self._distinct = True self._distinct_on = self._distinct_on + tuple( coercions.expect(roles.ByOfRole, e) for e in expr ) else: self._distinct = True return self def all(self) -> List[_T]: """Return the results represented by this :class:`_query.Query` as a list. This results in an execution of the underlying SQL statement. .. warning:: The :class:`_query.Query` object, when asked to return either a sequence or iterator that consists of full ORM-mapped entities, will **deduplicate entries based on primary key**. See the FAQ for more details. .. seealso:: :ref:`faq_query_deduplicating` .. seealso:: :meth:`_engine.Result.all` - v2 comparable method. :meth:`_engine.Result.scalars` - v2 comparable method. """ return self._iter().all() # type: ignore @_generative @_assertions(_no_clauseelement_condition) def from_statement(self, statement: ExecutableReturnsRows) -> Self: """Execute the given SELECT statement and return results. This method bypasses all internal statement compilation, and the statement is executed without modification. The statement is typically either a :func:`_expression.text` or :func:`_expression.select` construct, and should return the set of columns appropriate to the entity class represented by this :class:`_query.Query`. .. seealso:: :meth:`_sql.Select.from_statement` - v2 comparable method. """ statement = coercions.expect( roles.SelectStatementRole, statement, apply_propagate_attrs=self ) self._statement = statement return self def first(self) -> Optional[_T]: """Return the first result of this ``Query`` or None if the result doesn't contain any row. first() applies a limit of one within the generated SQL, so that only one primary entity row is generated on the server side (note this may consist of multiple result rows if join-loaded collections are present). Calling :meth:`_query.Query.first` results in an execution of the underlying query. .. seealso:: :meth:`_query.Query.one` :meth:`_query.Query.one_or_none` :meth:`_engine.Result.first` - v2 comparable method. :meth:`_engine.Result.scalars` - v2 comparable method. """ # replicates limit(1) behavior if self._statement is not None: return self._iter().first() # type: ignore else: return self.limit(1)._iter().first() # type: ignore def one_or_none(self) -> Optional[_T]: """Return at most one result or raise an exception. Returns ``None`` if the query selects no rows. Raises ``sqlalchemy.orm.exc.MultipleResultsFound`` if multiple object identities are returned, or if multiple rows are returned for a query that returns only scalar values as opposed to full identity-mapped entities. Calling :meth:`_query.Query.one_or_none` results in an execution of the underlying query. .. seealso:: :meth:`_query.Query.first` :meth:`_query.Query.one` :meth:`_engine.Result.one_or_none` - v2 comparable method. :meth:`_engine.Result.scalar_one_or_none` - v2 comparable method. """ return self._iter().one_or_none() # type: ignore def one(self) -> _T: """Return exactly one result or raise an exception. Raises ``sqlalchemy.orm.exc.NoResultFound`` if the query selects no rows. Raises ``sqlalchemy.orm.exc.MultipleResultsFound`` if multiple object identities are returned, or if multiple rows are returned for a query that returns only scalar values as opposed to full identity-mapped entities. Calling :meth:`.one` results in an execution of the underlying query. .. seealso:: :meth:`_query.Query.first` :meth:`_query.Query.one_or_none` :meth:`_engine.Result.one` - v2 comparable method. :meth:`_engine.Result.scalar_one` - v2 comparable method. """ return self._iter().one() # type: ignore def scalar(self) -> Any: """Return the first element of the first result or None if no rows present. If multiple rows are returned, raises MultipleResultsFound. >>> session.query(Item).scalar() <Item> >>> session.query(Item.id).scalar() 1 >>> session.query(Item.id).filter(Item.id < 0).scalar() None >>> session.query(Item.id, Item.name).scalar() 1 >>> session.query(func.count(Parent.id)).scalar() 20 This results in an execution of the underlying query. .. seealso:: :meth:`_engine.Result.scalar` - v2 comparable method. """ # TODO: not sure why we can't use result.scalar() here try: ret = self.one() if not isinstance(ret, collections_abc.Sequence): return ret return ret[0] except sa_exc.NoResultFound: return None def __iter__(self) -> Iterator[_T]: result = self._iter() try: yield from result # type: ignore except GeneratorExit: # issue #8710 - direct iteration is not re-usable after # an iterable block is broken, so close the result result._soft_close() raise def _iter(self) -> Union[ScalarResult[_T], Result[_T]]: # new style execution. params = self._params statement = self._statement_20() result: Union[ScalarResult[_T], Result[_T]] = self.session.execute( statement, params, execution_options={"_sa_orm_load_options": self.load_options}, ) # legacy: automatically set scalars, unique if result._attributes.get("is_single_entity", False): result = cast("Result[_T]", result).scalars() if ( result._attributes.get("filtered", False) and not self.load_options._yield_per ): result = result.unique() return result def __str__(self) -> str: statement = self._statement_20() try: bind = ( self._get_bind_args(statement, self.session.get_bind) if self.session else None ) except sa_exc.UnboundExecutionError: bind = None return str(statement.compile(bind)) def _get_bind_args(self, statement: Any, fn: Any, **kw: Any) -> Any: return fn(clause=statement, **kw) @property def column_descriptions(self) -> List[ORMColumnDescription]: """Return metadata about the columns which would be returned by this :class:`_query.Query`. Format is a list of dictionaries:: user_alias = aliased(User, name='user2') q = sess.query(User, User.id, user_alias) # this expression: q.column_descriptions # would return: [ { 'name':'User', 'type':User, 'aliased':False, 'expr':User, 'entity': User }, { 'name':'id', 'type':Integer(), 'aliased':False, 'expr':User.id, 'entity': User }, { 'name':'user2', 'type':User, 'aliased':True, 'expr':user_alias, 'entity': user_alias } ] .. seealso:: This API is available using :term:`2.0 style` queries as well, documented at: * :ref:`queryguide_inspection` * :attr:`.Select.column_descriptions` """ return _column_descriptions(self, legacy=True) @util.deprecated( "2.0", "The :meth:`_orm.Query.instances` method is deprecated and will " "be removed in a future release. " "Use the Select.from_statement() method or aliased() construct in " "conjunction with Session.execute() instead.", ) def instances( self, result_proxy: CursorResult[Any], context: Optional[QueryContext] = None, ) -> Any: """Return an ORM result given a :class:`_engine.CursorResult` and :class:`.QueryContext`. """ if context is None: util.warn_deprecated( "Using the Query.instances() method without a context " "is deprecated and will be disallowed in a future release. " "Please make use of :meth:`_query.Query.from_statement` " "for linking ORM results to arbitrary select constructs.", version="1.4", ) compile_state = self._compile_state(for_statement=False) context = QueryContext( compile_state, compile_state.statement, self._params, self.session, self.load_options, ) result = loading.instances(result_proxy, context) # legacy: automatically set scalars, unique if result._attributes.get("is_single_entity", False): result = result.scalars() # type: ignore if result._attributes.get("filtered", False): result = result.unique() # TODO: isn't this supposed to be a list? return result @util.became_legacy_20( ":meth:`_orm.Query.merge_result`", alternative="The method is superseded by the " ":func:`_orm.merge_frozen_result` function.", enable_warnings=False, # warnings occur via loading.merge_result ) def merge_result( self, iterator: Union[ FrozenResult[Any], Iterable[Sequence[Any]], Iterable[object] ], load: bool = True, ) -> Union[FrozenResult[Any], Iterable[Any]]: """Merge a result into this :class:`_query.Query` object's Session. Given an iterator returned by a :class:`_query.Query` of the same structure as this one, return an identical iterator of results, with all mapped instances merged into the session using :meth:`.Session.merge`. This is an optimized method which will merge all mapped instances, preserving the structure of the result rows and unmapped columns with less method overhead than that of calling :meth:`.Session.merge` explicitly for each value. The structure of the results is determined based on the column list of this :class:`_query.Query` - if these do not correspond, unchecked errors will occur. The 'load' argument is the same as that of :meth:`.Session.merge`. For an example of how :meth:`_query.Query.merge_result` is used, see the source code for the example :ref:`examples_caching`, where :meth:`_query.Query.merge_result` is used to efficiently restore state from a cache back into a target :class:`.Session`. """ return loading.merge_result(self, iterator, load) def exists(self) -> Exists: """A convenience method that turns a query into an EXISTS subquery of the form EXISTS (SELECT 1 FROM ... WHERE ...). e.g.:: q = session.query(User).filter(User.name == 'fred') session.query(q.exists()) Producing SQL similar to:: SELECT EXISTS ( SELECT 1 FROM users WHERE users.name = :name_1 ) AS anon_1 The EXISTS construct is usually used in the WHERE clause:: session.query(User.id).filter(q.exists()).scalar() Note that some databases such as SQL Server don't allow an EXISTS expression to be present in the columns clause of a SELECT. To select a simple boolean value based on the exists as a WHERE, use :func:`.literal`:: from sqlalchemy import literal session.query(literal(True)).filter(q.exists()).scalar() .. seealso:: :meth:`_sql.Select.exists` - v2 comparable method. """ # .add_columns() for the case that we are a query().select_from(X), # so that ".statement" can be produced (#2995) but also without # omitting the FROM clause from a query(X) (#2818); # .with_only_columns() after we have a core select() so that # we get just "SELECT 1" without any entities. inner = ( self.enable_eagerloads(False) .add_columns(sql.literal_column("1")) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) ._get_select_statement_only() .with_only_columns(1) ) ezero = self._entity_from_pre_ent_zero() if ezero is not None: inner = inner.select_from(ezero) return sql.exists(inner) def count(self) -> int: r"""Return a count of rows this the SQL formed by this :class:`Query` would return. This generates the SQL for this Query as follows:: SELECT count(1) AS count_1 FROM ( SELECT <rest of query follows...> ) AS anon_1 The above SQL returns a single row, which is the aggregate value of the count function; the :meth:`_query.Query.count` method then returns that single integer value. .. warning:: It is important to note that the value returned by count() is **not the same as the number of ORM objects that this Query would return from a method such as the .all() method**. The :class:`_query.Query` object, when asked to return full entities, will **deduplicate entries based on primary key**, meaning if the same primary key value would appear in the results more than once, only one object of that primary key would be present. This does not apply to a query that is against individual columns. .. seealso:: :ref:`faq_query_deduplicating` For fine grained control over specific columns to count, to skip the usage of a subquery or otherwise control of the FROM clause, or to use other aggregate functions, use :attr:`~sqlalchemy.sql.expression.func` expressions in conjunction with :meth:`~.Session.query`, i.e.:: from sqlalchemy import func # count User records, without # using a subquery. session.query(func.count(User.id)) # return count of user "id" grouped # by "name" session.query(func.count(User.id)).\ group_by(User.name) from sqlalchemy import distinct # count distinct "name" values session.query(func.count(distinct(User.name))) .. seealso:: :ref:`migration_20_query_usage` """ col = sql.func.count(sql.literal_column("*")) return ( # type: ignore self._legacy_from_self(col).enable_eagerloads(False).scalar() ) def delete( self, synchronize_session: SynchronizeSessionArgument = "auto" ) -> int: r"""Perform a DELETE with an arbitrary WHERE clause. Deletes rows matched by this query from the database. E.g.:: sess.query(User).filter(User.age == 25).\ delete(synchronize_session=False) sess.query(User).filter(User.age == 25).\ delete(synchronize_session='evaluate') .. warning:: See the section :ref:`orm_expression_update_delete` for important caveats and warnings, including limitations when using bulk UPDATE and DELETE with mapper inheritance configurations. :param synchronize_session: chooses the strategy to update the attributes on objects in the session. See the section :ref:`orm_expression_update_delete` for a discussion of these strategies. :return: the count of rows matched as returned by the database's "row count" feature. .. seealso:: :ref:`orm_expression_update_delete` """ bulk_del = BulkDelete(self) if self.dispatch.before_compile_delete: for fn in self.dispatch.before_compile_delete: new_query = fn(bulk_del.query, bulk_del) if new_query is not None: bulk_del.query = new_query self = bulk_del.query delete_ = sql.delete(*self._raw_columns) # type: ignore delete_._where_criteria = self._where_criteria result: CursorResult[Any] = self.session.execute( delete_, self._params, execution_options=self._execution_options.union( {"synchronize_session": synchronize_session} ), ) bulk_del.result = result # type: ignore self.session.dispatch.after_bulk_delete(bulk_del) result.close() return result.rowcount def update( self, values: Dict[_DMLColumnArgument, Any], synchronize_session: SynchronizeSessionArgument = "auto", update_args: Optional[Dict[Any, Any]] = None, ) -> int: r"""Perform an UPDATE with an arbitrary WHERE clause. Updates rows matched by this query in the database. E.g.:: sess.query(User).filter(User.age == 25).\ update({User.age: User.age - 10}, synchronize_session=False) sess.query(User).filter(User.age == 25).\ update({"age": User.age - 10}, synchronize_session='evaluate') .. warning:: See the section :ref:`orm_expression_update_delete` for important caveats and warnings, including limitations when using arbitrary UPDATE and DELETE with mapper inheritance configurations. :param values: a dictionary with attributes names, or alternatively mapped attributes or SQL expressions, as keys, and literal values or sql expressions as values. If :ref:`parameter-ordered mode <tutorial_parameter_ordered_updates>` is desired, the values can be passed as a list of 2-tuples; this requires that the :paramref:`~sqlalchemy.sql.expression.update.preserve_parameter_order` flag is passed to the :paramref:`.Query.update.update_args` dictionary as well. :param synchronize_session: chooses the strategy to update the attributes on objects in the session. See the section :ref:`orm_expression_update_delete` for a discussion of these strategies. :param update_args: Optional dictionary, if present will be passed to the underlying :func:`_expression.update` construct as the ``**kw`` for the object. May be used to pass dialect-specific arguments such as ``mysql_limit``, as well as other special arguments such as :paramref:`~sqlalchemy.sql.expression.update.preserve_parameter_order`. :return: the count of rows matched as returned by the database's "row count" feature. .. seealso:: :ref:`orm_expression_update_delete` """ update_args = update_args or {} bulk_ud = BulkUpdate(self, values, update_args) if self.dispatch.before_compile_update: for fn in self.dispatch.before_compile_update: new_query = fn(bulk_ud.query, bulk_ud) if new_query is not None: bulk_ud.query = new_query self = bulk_ud.query upd = sql.update(*self._raw_columns) # type: ignore ppo = update_args.pop("preserve_parameter_order", False) if ppo: upd = upd.ordered_values(*values) # type: ignore else: upd = upd.values(values) if update_args: upd = upd.with_dialect_options(**update_args) upd._where_criteria = self._where_criteria result: CursorResult[Any] = self.session.execute( upd, self._params, execution_options=self._execution_options.union( {"synchronize_session": synchronize_session} ), ) bulk_ud.result = result # type: ignore self.session.dispatch.after_bulk_update(bulk_ud) result.close() return result.rowcount def _compile_state( self, for_statement: bool = False, **kw: Any ) -> ORMCompileState: """Create an out-of-compiler ORMCompileState object. The ORMCompileState object is normally created directly as a result of the SQLCompiler.process() method being handed a Select() or FromStatement() object that uses the "orm" plugin. This method provides a means of creating this ORMCompileState object directly without using the compiler. This method is used only for deprecated cases, which include the .from_self() method for a Query that has multiple levels of .from_self() in use, as well as the instances() method. It is also used within the test suite to generate ORMCompileState objects for test purposes. """ stmt = self._statement_20(for_statement=for_statement, **kw) assert for_statement == stmt._compile_options._for_statement # this chooses between ORMFromStatementCompileState and # ORMSelectCompileState. We could also base this on # query._statement is not None as we have the ORM Query here # however this is the more general path. compile_state_cls = cast( ORMCompileState, ORMCompileState._get_plugin_class_for_plugin(stmt, "orm"), ) return compile_state_cls.create_for_statement(stmt, None) def _compile_context(self, for_statement: bool = False) -> QueryContext: compile_state = self._compile_state(for_statement=for_statement) context = QueryContext( compile_state, compile_state.statement, self._params, self.session, self.load_options, ) return context class AliasOption(interfaces.LoaderOption): inherit_cache = False @util.deprecated( "1.4", "The :class:`.AliasOption` object is not necessary " "for entities to be matched up to a query that is established " "via :meth:`.Query.from_statement` and now does nothing.", ) def __init__(self, alias: Union[Alias, Subquery]): r"""Return a :class:`.MapperOption` that will indicate to the :class:`_query.Query` that the main table has been aliased. """ def process_compile_state(self, compile_state: ORMCompileState) -> None: pass class BulkUD: """State used for the orm.Query version of update() / delete(). This object is now specific to Query only. """ def __init__(self, query: Query[Any]): self.query = query.enable_eagerloads(False) self._validate_query_state() self.mapper = self.query._entity_from_pre_ent_zero() def _validate_query_state(self) -> None: for attr, methname, notset, op in ( ("_limit_clause", "limit()", None, operator.is_), ("_offset_clause", "offset()", None, operator.is_), ("_order_by_clauses", "order_by()", (), operator.eq), ("_group_by_clauses", "group_by()", (), operator.eq), ("_distinct", "distinct()", False, operator.is_), ( "_from_obj", "join(), outerjoin(), select_from(), or from_self()", (), operator.eq, ), ( "_setup_joins", "join(), outerjoin(), select_from(), or from_self()", (), operator.eq, ), ): if not op(getattr(self.query, attr), notset): raise sa_exc.InvalidRequestError( "Can't call Query.update() or Query.delete() " "when %s has been called" % (methname,) ) @property def session(self) -> Session: return self.query.session class BulkUpdate(BulkUD): """BulkUD which handles UPDATEs.""" def __init__( self, query: Query[Any], values: Dict[_DMLColumnArgument, Any], update_kwargs: Optional[Dict[Any, Any]], ): super().__init__(query) self.values = values self.update_kwargs = update_kwargs class BulkDelete(BulkUD): """BulkUD which handles DELETEs.""" class RowReturningQuery(Query[Row[_TP]]): if TYPE_CHECKING: def tuples(self) -> Query[_TP]: # type: ignore ...