Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.118.126.51
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/hc_python/lib64/python3.8/site-packages/sentry_sdk/integrations/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/hc_python/lib64/python3.8/site-packages/sentry_sdk/integrations/openai.py
from functools import wraps

import sentry_sdk
from sentry_sdk import consts
from sentry_sdk.ai.monitoring import record_token_usage
from sentry_sdk.ai.utils import set_data_normalized
from sentry_sdk.consts import SPANDATA
from sentry_sdk.integrations import DidNotEnable, Integration
from sentry_sdk.scope import should_send_default_pii
from sentry_sdk.utils import (
    capture_internal_exceptions,
    event_from_exception,
)

from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from typing import Any, Iterable, List, Optional, Callable, AsyncIterator, Iterator
    from sentry_sdk.tracing import Span

try:
    from openai.resources.chat.completions import Completions, AsyncCompletions
    from openai.resources import Embeddings, AsyncEmbeddings

    if TYPE_CHECKING:
        from openai.types.chat import ChatCompletionMessageParam, ChatCompletionChunk
except ImportError:
    raise DidNotEnable("OpenAI not installed")


class OpenAIIntegration(Integration):
    identifier = "openai"
    origin = f"auto.ai.{identifier}"

    def __init__(self, include_prompts=True, tiktoken_encoding_name=None):
        # type: (OpenAIIntegration, bool, Optional[str]) -> None
        self.include_prompts = include_prompts

        self.tiktoken_encoding = None
        if tiktoken_encoding_name is not None:
            import tiktoken  # type: ignore

            self.tiktoken_encoding = tiktoken.get_encoding(tiktoken_encoding_name)

    @staticmethod
    def setup_once():
        # type: () -> None
        Completions.create = _wrap_chat_completion_create(Completions.create)
        Embeddings.create = _wrap_embeddings_create(Embeddings.create)

        AsyncCompletions.create = _wrap_async_chat_completion_create(
            AsyncCompletions.create
        )
        AsyncEmbeddings.create = _wrap_async_embeddings_create(AsyncEmbeddings.create)

    def count_tokens(self, s):
        # type: (OpenAIIntegration, str) -> int
        if self.tiktoken_encoding is not None:
            return len(self.tiktoken_encoding.encode_ordinary(s))
        return 0


def _capture_exception(exc):
    # type: (Any) -> None
    event, hint = event_from_exception(
        exc,
        client_options=sentry_sdk.get_client().options,
        mechanism={"type": "openai", "handled": False},
    )
    sentry_sdk.capture_event(event, hint=hint)


def _calculate_chat_completion_usage(
    messages, response, span, streaming_message_responses, count_tokens
):
    # type: (Iterable[ChatCompletionMessageParam], Any, Span, Optional[List[str]], Callable[..., Any]) -> None
    completion_tokens = 0  # type: Optional[int]
    prompt_tokens = 0  # type: Optional[int]
    total_tokens = 0  # type: Optional[int]
    if hasattr(response, "usage"):
        if hasattr(response.usage, "completion_tokens") and isinstance(
            response.usage.completion_tokens, int
        ):
            completion_tokens = response.usage.completion_tokens
        if hasattr(response.usage, "prompt_tokens") and isinstance(
            response.usage.prompt_tokens, int
        ):
            prompt_tokens = response.usage.prompt_tokens
        if hasattr(response.usage, "total_tokens") and isinstance(
            response.usage.total_tokens, int
        ):
            total_tokens = response.usage.total_tokens

    if prompt_tokens == 0:
        for message in messages:
            if "content" in message:
                prompt_tokens += count_tokens(message["content"])

    if completion_tokens == 0:
        if streaming_message_responses is not None:
            for message in streaming_message_responses:
                completion_tokens += count_tokens(message)
        elif hasattr(response, "choices"):
            for choice in response.choices:
                if hasattr(choice, "message"):
                    completion_tokens += count_tokens(choice.message)

    if prompt_tokens == 0:
        prompt_tokens = None
    if completion_tokens == 0:
        completion_tokens = None
    if total_tokens == 0:
        total_tokens = None
    record_token_usage(span, prompt_tokens, completion_tokens, total_tokens)


def _new_chat_completion_common(f, *args, **kwargs):
    # type: (Any, *Any, **Any) -> Any
    integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
    if integration is None:
        return f(*args, **kwargs)

    if "messages" not in kwargs:
        # invalid call (in all versions of openai), let it return error
        return f(*args, **kwargs)

    try:
        iter(kwargs["messages"])
    except TypeError:
        # invalid call (in all versions), messages must be iterable
        return f(*args, **kwargs)

    kwargs["messages"] = list(kwargs["messages"])
    messages = kwargs["messages"]
    model = kwargs.get("model")
    streaming = kwargs.get("stream")

    span = sentry_sdk.start_span(
        op=consts.OP.OPENAI_CHAT_COMPLETIONS_CREATE,
        description="Chat Completion",
        origin=OpenAIIntegration.origin,
    )
    span.__enter__()

    res = yield f, args, kwargs

    with capture_internal_exceptions():
        if should_send_default_pii() and integration.include_prompts:
            set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, messages)

        set_data_normalized(span, SPANDATA.AI_MODEL_ID, model)
        set_data_normalized(span, SPANDATA.AI_STREAMING, streaming)

        if hasattr(res, "choices"):
            if should_send_default_pii() and integration.include_prompts:
                set_data_normalized(
                    span,
                    "ai.responses",
                    list(map(lambda x: x.message, res.choices)),
                )
            _calculate_chat_completion_usage(
                messages, res, span, None, integration.count_tokens
            )
            span.__exit__(None, None, None)
        elif hasattr(res, "_iterator"):
            data_buf: list[list[str]] = []  # one for each choice

            old_iterator = res._iterator

            def new_iterator():
                # type: () -> Iterator[ChatCompletionChunk]
                with capture_internal_exceptions():
                    for x in old_iterator:
                        if hasattr(x, "choices"):
                            choice_index = 0
                            for choice in x.choices:
                                if hasattr(choice, "delta") and hasattr(
                                    choice.delta, "content"
                                ):
                                    content = choice.delta.content
                                    if len(data_buf) <= choice_index:
                                        data_buf.append([])
                                    data_buf[choice_index].append(content or "")
                                choice_index += 1
                        yield x
                    if len(data_buf) > 0:
                        all_responses = list(
                            map(lambda chunk: "".join(chunk), data_buf)
                        )
                        if should_send_default_pii() and integration.include_prompts:
                            set_data_normalized(
                                span, SPANDATA.AI_RESPONSES, all_responses
                            )
                        _calculate_chat_completion_usage(
                            messages,
                            res,
                            span,
                            all_responses,
                            integration.count_tokens,
                        )
                span.__exit__(None, None, None)

            async def new_iterator_async():
                # type: () -> AsyncIterator[ChatCompletionChunk]
                with capture_internal_exceptions():
                    async for x in old_iterator:
                        if hasattr(x, "choices"):
                            choice_index = 0
                            for choice in x.choices:
                                if hasattr(choice, "delta") and hasattr(
                                    choice.delta, "content"
                                ):
                                    content = choice.delta.content
                                    if len(data_buf) <= choice_index:
                                        data_buf.append([])
                                    data_buf[choice_index].append(content or "")
                                choice_index += 1
                        yield x
                    if len(data_buf) > 0:
                        all_responses = list(
                            map(lambda chunk: "".join(chunk), data_buf)
                        )
                        if should_send_default_pii() and integration.include_prompts:
                            set_data_normalized(
                                span, SPANDATA.AI_RESPONSES, all_responses
                            )
                        _calculate_chat_completion_usage(
                            messages,
                            res,
                            span,
                            all_responses,
                            integration.count_tokens,
                        )
                span.__exit__(None, None, None)

            if str(type(res._iterator)) == "<class 'async_generator'>":
                res._iterator = new_iterator_async()
            else:
                res._iterator = new_iterator()

        else:
            set_data_normalized(span, "unknown_response", True)
            span.__exit__(None, None, None)
    return res


def _wrap_chat_completion_create(f):
    # type: (Callable[..., Any]) -> Callable[..., Any]
    def _execute_sync(f, *args, **kwargs):
        # type: (Any, *Any, **Any) -> Any
        gen = _new_chat_completion_common(f, *args, **kwargs)

        try:
            f, args, kwargs = next(gen)
        except StopIteration as e:
            return e.value

        try:
            try:
                result = f(*args, **kwargs)
            except Exception as e:
                _capture_exception(e)
                raise e from None

            return gen.send(result)
        except StopIteration as e:
            return e.value

    @wraps(f)
    def _sentry_patched_create_sync(*args, **kwargs):
        # type: (*Any, **Any) -> Any
        integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
        if integration is None or "messages" not in kwargs:
            # no "messages" means invalid call (in all versions of openai), let it return error
            return f(*args, **kwargs)

        return _execute_sync(f, *args, **kwargs)

    return _sentry_patched_create_sync


def _wrap_async_chat_completion_create(f):
    # type: (Callable[..., Any]) -> Callable[..., Any]
    async def _execute_async(f, *args, **kwargs):
        # type: (Any, *Any, **Any) -> Any
        gen = _new_chat_completion_common(f, *args, **kwargs)

        try:
            f, args, kwargs = next(gen)
        except StopIteration as e:
            return await e.value

        try:
            try:
                result = await f(*args, **kwargs)
            except Exception as e:
                _capture_exception(e)
                raise e from None

            return gen.send(result)
        except StopIteration as e:
            return e.value

    @wraps(f)
    async def _sentry_patched_create_async(*args, **kwargs):
        # type: (*Any, **Any) -> Any
        integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
        if integration is None or "messages" not in kwargs:
            # no "messages" means invalid call (in all versions of openai), let it return error
            return await f(*args, **kwargs)

        return await _execute_async(f, *args, **kwargs)

    return _sentry_patched_create_async


def _new_embeddings_create_common(f, *args, **kwargs):
    # type: (Any, *Any, **Any) -> Any
    integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
    if integration is None:
        return f(*args, **kwargs)

    with sentry_sdk.start_span(
        op=consts.OP.OPENAI_EMBEDDINGS_CREATE,
        description="OpenAI Embedding Creation",
        origin=OpenAIIntegration.origin,
    ) as span:
        if "input" in kwargs and (
            should_send_default_pii() and integration.include_prompts
        ):
            if isinstance(kwargs["input"], str):
                set_data_normalized(span, "ai.input_messages", [kwargs["input"]])
            elif (
                isinstance(kwargs["input"], list)
                and len(kwargs["input"]) > 0
                and isinstance(kwargs["input"][0], str)
            ):
                set_data_normalized(span, "ai.input_messages", kwargs["input"])
        if "model" in kwargs:
            set_data_normalized(span, "ai.model_id", kwargs["model"])

        response = yield f, args, kwargs

        prompt_tokens = 0
        total_tokens = 0
        if hasattr(response, "usage"):
            if hasattr(response.usage, "prompt_tokens") and isinstance(
                response.usage.prompt_tokens, int
            ):
                prompt_tokens = response.usage.prompt_tokens
            if hasattr(response.usage, "total_tokens") and isinstance(
                response.usage.total_tokens, int
            ):
                total_tokens = response.usage.total_tokens

        if prompt_tokens == 0:
            prompt_tokens = integration.count_tokens(kwargs["input"] or "")

        record_token_usage(span, prompt_tokens, None, total_tokens or prompt_tokens)

        return response


def _wrap_embeddings_create(f):
    # type: (Any) -> Any
    def _execute_sync(f, *args, **kwargs):
        # type: (Any, *Any, **Any) -> Any
        gen = _new_embeddings_create_common(f, *args, **kwargs)

        try:
            f, args, kwargs = next(gen)
        except StopIteration as e:
            return e.value

        try:
            try:
                result = f(*args, **kwargs)
            except Exception as e:
                _capture_exception(e)
                raise e from None

            return gen.send(result)
        except StopIteration as e:
            return e.value

    @wraps(f)
    def _sentry_patched_create_sync(*args, **kwargs):
        # type: (*Any, **Any) -> Any
        integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
        if integration is None:
            return f(*args, **kwargs)

        return _execute_sync(f, *args, **kwargs)

    return _sentry_patched_create_sync


def _wrap_async_embeddings_create(f):
    # type: (Any) -> Any
    async def _execute_async(f, *args, **kwargs):
        # type: (Any, *Any, **Any) -> Any
        gen = _new_embeddings_create_common(f, *args, **kwargs)

        try:
            f, args, kwargs = next(gen)
        except StopIteration as e:
            return await e.value

        try:
            try:
                result = await f(*args, **kwargs)
            except Exception as e:
                _capture_exception(e)
                raise e from None

            return gen.send(result)
        except StopIteration as e:
            return e.value

    @wraps(f)
    async def _sentry_patched_create_async(*args, **kwargs):
        # type: (*Any, **Any) -> Any
        integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
        if integration is None:
            return await f(*args, **kwargs)

        return await _execute_async(f, *args, **kwargs)

    return _sentry_patched_create_async

Youez - 2016 - github.com/yon3zu
LinuXploit