Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.15.202.169
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby22/lib64/ruby/2.2.0/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby22/lib64/ruby/2.2.0/matrix.rb
# encoding: utf-8
#
# = matrix.rb
#
# An implementation of Matrix and Vector classes.
#
# See classes Matrix and Vector for documentation.
#
# Current Maintainer:: Marc-André Lafortune
# Original Author:: Keiju ISHITSUKA
# Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
##

require "e2mmap.rb"

module ExceptionForMatrix # :nodoc:
  extend Exception2MessageMapper
  def_e2message(TypeError, "wrong argument type %s (expected %s)")
  def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")

  def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
  def_exception("ErrNotRegular", "Not Regular Matrix")
  def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s")
  def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s")
end

#
# The +Matrix+ class represents a mathematical matrix. It provides methods for creating
# matrices, operating on them arithmetically and algebraically,
# and determining their mathematical properties (trace, rank, inverse, determinant).
#
# == Method Catalogue
#
# To create a matrix:
# * Matrix[*rows]
# * Matrix.[](*rows)
# * Matrix.rows(rows, copy = true)
# * Matrix.columns(columns)
# * Matrix.build(row_count, column_count, &block)
# * Matrix.diagonal(*values)
# * Matrix.scalar(n, value)
# * Matrix.identity(n)
# * Matrix.unit(n)
# * Matrix.I(n)
# * Matrix.zero(n)
# * Matrix.row_vector(row)
# * Matrix.column_vector(column)
# * Matrix.hstack(*matrices)
# * Matrix.vstack(*matrices)
#
# To access Matrix elements/columns/rows/submatrices/properties:
# * #[](i, j)
# * #row_count (row_size)
# * #column_count (column_size)
# * #row(i)
# * #column(j)
# * #collect
# * #map
# * #each
# * #each_with_index
# * #find_index
# * #minor(*param)
# * #first_minor(row, column)
# * #cofactor(row, column)
# * #adjugate
# * #laplace_expansion(row_or_column: num)
# * #cofactor_expansion(row_or_column: num)
#
# Properties of a matrix:
# * #diagonal?
# * #empty?
# * #hermitian?
# * #lower_triangular?
# * #normal?
# * #orthogonal?
# * #permutation?
# * #real?
# * #regular?
# * #singular?
# * #square?
# * #symmetric?
# * #unitary?
# * #upper_triangular?
# * #zero?
#
# Matrix arithmetic:
# * #*(m)
# * #+(m)
# * #-(m)
# * #/(m)
# * #inverse
# * #inv
# * #**
# * #+@
# * #-@
#
# Matrix functions:
# * #determinant
# * #det
# * #hstack(*matrices)
# * #rank
# * #round
# * #trace
# * #tr
# * #transpose
# * #t
# * #vstack(*matrices)
#
# Matrix decompositions:
# * #eigen
# * #eigensystem
# * #lup
# * #lup_decomposition
#
# Complex arithmetic:
# * conj
# * conjugate
# * imag
# * imaginary
# * real
# * rect
# * rectangular
#
# Conversion to other data types:
# * #coerce(other)
# * #row_vectors
# * #column_vectors
# * #to_a
#
# String representations:
# * #to_s
# * #inspect
#
class Matrix
  include Enumerable
  include ExceptionForMatrix
  autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
  autoload :LUPDecomposition, "matrix/lup_decomposition"

  # instance creations
  private_class_method :new
  attr_reader :rows
  protected :rows

  #
  # Creates a matrix where each argument is a row.
  #   Matrix[ [25, 93], [-1, 66] ]
  #      =>  25 93
  #          -1 66
  #
  def Matrix.[](*rows)
    rows(rows, false)
  end

  #
  # Creates a matrix where +rows+ is an array of arrays, each of which is a row
  # of the matrix.  If the optional argument +copy+ is false, use the given
  # arrays as the internal structure of the matrix without copying.
  #   Matrix.rows([[25, 93], [-1, 66]])
  #      =>  25 93
  #          -1 66
  #
  def Matrix.rows(rows, copy = true)
    rows = convert_to_array(rows, copy)
    rows.map! do |row|
      convert_to_array(row, copy)
    end
    size = (rows[0] || []).size
    rows.each do |row|
      raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
    end
    new rows, size
  end

  #
  # Creates a matrix using +columns+ as an array of column vectors.
  #   Matrix.columns([[25, 93], [-1, 66]])
  #      =>  25 -1
  #          93 66
  #
  def Matrix.columns(columns)
    rows(columns, false).transpose
  end

  #
  # Creates a matrix of size +row_count+ x +column_count+.
  # It fills the values by calling the given block,
  # passing the current row and column.
  # Returns an enumerator if no block is given.
  #
  #   m = Matrix.build(2, 4) {|row, col| col - row }
  #     => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
  #   m = Matrix.build(3) { rand }
  #     => a 3x3 matrix with random elements
  #
  def Matrix.build(row_count, column_count = row_count)
    row_count = CoercionHelper.coerce_to_int(row_count)
    column_count = CoercionHelper.coerce_to_int(column_count)
    raise ArgumentError if row_count < 0 || column_count < 0
    return to_enum :build, row_count, column_count unless block_given?
    rows = Array.new(row_count) do |i|
      Array.new(column_count) do |j|
        yield i, j
      end
    end
    new rows, column_count
  end

  #
  # Creates a matrix where the diagonal elements are composed of +values+.
  #   Matrix.diagonal(9, 5, -3)
  #     =>  9  0  0
  #         0  5  0
  #         0  0 -3
  #
  def Matrix.diagonal(*values)
    size = values.size
    return Matrix.empty if size == 0
    rows = Array.new(size) {|j|
      row = Array.new(size, 0)
      row[j] = values[j]
      row
    }
    new rows
  end

  #
  # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
  # +value+.
  #   Matrix.scalar(2, 5)
  #     => 5 0
  #        0 5
  #
  def Matrix.scalar(n, value)
    diagonal(*Array.new(n, value))
  end

  #
  # Creates an +n+ by +n+ identity matrix.
  #   Matrix.identity(2)
  #     => 1 0
  #        0 1
  #
  def Matrix.identity(n)
    scalar(n, 1)
  end
  class << Matrix
    alias unit identity
    alias I identity
  end

  #
  # Creates a zero matrix.
  #   Matrix.zero(2)
  #     => 0 0
  #        0 0
  #
  def Matrix.zero(row_count, column_count = row_count)
    rows = Array.new(row_count){Array.new(column_count, 0)}
    new rows, column_count
  end

  #
  # Creates a single-row matrix where the values of that row are as given in
  # +row+.
  #   Matrix.row_vector([4,5,6])
  #     => 4 5 6
  #
  def Matrix.row_vector(row)
    row = convert_to_array(row)
    new [row]
  end

  #
  # Creates a single-column matrix where the values of that column are as given
  # in +column+.
  #   Matrix.column_vector([4,5,6])
  #     => 4
  #        5
  #        6
  #
  def Matrix.column_vector(column)
    column = convert_to_array(column)
    new [column].transpose, 1
  end

  #
  # Creates a empty matrix of +row_count+ x +column_count+.
  # At least one of +row_count+ or +column_count+ must be 0.
  #
  #   m = Matrix.empty(2, 0)
  #   m == Matrix[ [], [] ]
  #     => true
  #   n = Matrix.empty(0, 3)
  #   n == Matrix.columns([ [], [], [] ])
  #     => true
  #   m * n
  #     => Matrix[[0, 0, 0], [0, 0, 0]]
  #
  def Matrix.empty(row_count = 0, column_count = 0)
    raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
    raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0

    new([[]]*row_count, column_count)
  end

  #
  # Create a matrix by stacking matrices vertically
  #
  #   x = Matrix[[1, 2], [3, 4]]
  #   y = Matrix[[5, 6], [7, 8]]
  #   Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
  #
  def Matrix.vstack(x, *matrices)
    raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
    result = x.send(:rows).map(&:dup)
    matrices.each do |m|
      raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
      if m.column_count != x.column_count
        raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
      end
      result.concat(m.send(:rows))
    end
    new result, x.column_count
  end


  #
  # Create a matrix by stacking matrices horizontally
  #
  #   x = Matrix[[1, 2], [3, 4]]
  #   y = Matrix[[5, 6], [7, 8]]
  #   Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
  #
  def Matrix.hstack(x, *matrices)
    raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
    result = x.send(:rows).map(&:dup)
    total_column_count = x.column_count
    matrices.each do |m|
      raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
      if m.row_count != x.row_count
        raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
      end
      result.each_with_index do |row, i|
        row.concat m.send(:rows)[i]
      end
      total_column_count += m.column_count
    end
    new result, total_column_count
  end

  #
  # Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
  #
  def initialize(rows, column_count = rows[0].size)
    # No checking is done at this point. rows must be an Array of Arrays.
    # column_count must be the size of the first row, if there is one,
    # otherwise it *must* be specified and can be any integer >= 0
    @rows = rows
    @column_count = column_count
  end

  def new_matrix(rows, column_count = rows[0].size) # :nodoc:
    self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
  end
  private :new_matrix

  #
  # Returns element (+i+,+j+) of the matrix.  That is: row +i+, column +j+.
  #
  def [](i, j)
    @rows.fetch(i){return nil}[j]
  end
  alias element []
  alias component []

  def []=(i, j, v)
    @rows[i][j] = v
  end
  alias set_element []=
  alias set_component []=
  private :[]=, :set_element, :set_component

  #
  # Returns the number of rows.
  #
  def row_count
    @rows.size
  end

  alias_method :row_size, :row_count
  #
  # Returns the number of columns.
  #
  attr_reader :column_count
  alias_method :column_size, :column_count

  #
  # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
  # an array).  When a block is given, the elements of that vector are iterated.
  #
  def row(i, &block) # :yield: e
    if block_given?
      @rows.fetch(i){return self}.each(&block)
      self
    else
      Vector.elements(@rows.fetch(i){return nil})
    end
  end

  #
  # Returns column vector number +j+ of the matrix as a Vector (starting at 0
  # like an array).  When a block is given, the elements of that vector are
  # iterated.
  #
  def column(j) # :yield: e
    if block_given?
      return self if j >= column_count || j < -column_count
      row_count.times do |i|
        yield @rows[i][j]
      end
      self
    else
      return nil if j >= column_count || j < -column_count
      col = Array.new(row_count) {|i|
        @rows[i][j]
      }
      Vector.elements(col, false)
    end
  end

  #
  # Returns a matrix that is the result of iteration of the given block over all
  # elements of the matrix.
  #   Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
  #     => 1  4
  #        9 16
  #
  def collect(&block) # :yield: e
    return to_enum(:collect) unless block_given?
    rows = @rows.collect{|row| row.collect(&block)}
    new_matrix rows, column_count
  end
  alias map collect

  #
  # Yields all elements of the matrix, starting with those of the first row,
  # or returns an Enumerator if no block given.
  # Elements can be restricted by passing an argument:
  # * :all (default): yields all elements
  # * :diagonal: yields only elements on the diagonal
  # * :off_diagonal: yields all elements except on the diagonal
  # * :lower: yields only elements on or below the diagonal
  # * :strict_lower: yields only elements below the diagonal
  # * :strict_upper: yields only elements above the diagonal
  # * :upper: yields only elements on or above the diagonal
  #
  #   Matrix[ [1,2], [3,4] ].each { |e| puts e }
  #     # => prints the numbers 1 to 4
  #   Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
  #
  def each(which = :all) # :yield: e
    return to_enum :each, which unless block_given?
    last = column_count - 1
    case which
    when :all
      block = Proc.new
      @rows.each do |row|
        row.each(&block)
      end
    when :diagonal
      @rows.each_with_index do |row, row_index|
        yield row.fetch(row_index){return self}
      end
    when :off_diagonal
      @rows.each_with_index do |row, row_index|
        column_count.times do |col_index|
          yield row[col_index] unless row_index == col_index
        end
      end
    when :lower
      @rows.each_with_index do |row, row_index|
        0.upto([row_index, last].min) do |col_index|
          yield row[col_index]
        end
      end
    when :strict_lower
      @rows.each_with_index do |row, row_index|
        [row_index, column_count].min.times do |col_index|
          yield row[col_index]
        end
      end
    when :strict_upper
      @rows.each_with_index do |row, row_index|
        (row_index+1).upto(last) do |col_index|
          yield row[col_index]
        end
      end
    when :upper
      @rows.each_with_index do |row, row_index|
        row_index.upto(last) do |col_index|
          yield row[col_index]
        end
      end
    else
      raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
    end
    self
  end

  #
  # Same as #each, but the row index and column index in addition to the element
  #
  #   Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
  #     puts "#{e} at #{row}, #{col}"
  #   end
  #     # => Prints:
  #     #    1 at 0, 0
  #     #    2 at 0, 1
  #     #    3 at 1, 0
  #     #    4 at 1, 1
  #
  def each_with_index(which = :all) # :yield: e, row, column
    return to_enum :each_with_index, which unless block_given?
    last = column_count - 1
    case which
    when :all
      @rows.each_with_index do |row, row_index|
        row.each_with_index do |e, col_index|
          yield e, row_index, col_index
        end
      end
    when :diagonal
      @rows.each_with_index do |row, row_index|
        yield row.fetch(row_index){return self}, row_index, row_index
      end
    when :off_diagonal
      @rows.each_with_index do |row, row_index|
        column_count.times do |col_index|
          yield row[col_index], row_index, col_index unless row_index == col_index
        end
      end
    when :lower
      @rows.each_with_index do |row, row_index|
        0.upto([row_index, last].min) do |col_index|
          yield row[col_index], row_index, col_index
        end
      end
    when :strict_lower
      @rows.each_with_index do |row, row_index|
        [row_index, column_count].min.times do |col_index|
          yield row[col_index], row_index, col_index
        end
      end
    when :strict_upper
      @rows.each_with_index do |row, row_index|
        (row_index+1).upto(last) do |col_index|
          yield row[col_index], row_index, col_index
        end
      end
    when :upper
      @rows.each_with_index do |row, row_index|
        row_index.upto(last) do |col_index|
          yield row[col_index], row_index, col_index
        end
      end
    else
      raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
    end
    self
  end

  SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
  #
  # :call-seq:
  #   index(value, selector = :all) -> [row, column]
  #   index(selector = :all){ block } -> [row, column]
  #   index(selector = :all) -> an_enumerator
  #
  # The index method is specialized to return the index as [row, column]
  # It also accepts an optional +selector+ argument, see #each for details.
  #
  #   Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
  #   Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
  #
  def index(*args)
    raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
    which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
    return to_enum :find_index, which, *args unless block_given? || args.size == 1
    if args.size == 1
      value = args.first
      each_with_index(which) do |e, row_index, col_index|
        return row_index, col_index if e == value
      end
    else
      each_with_index(which) do |e, row_index, col_index|
        return row_index, col_index if yield e
      end
    end
    nil
  end
  alias_method :find_index, :index

  #
  # Returns a section of the matrix.  The parameters are either:
  # *  start_row, nrows, start_col, ncols; OR
  # *  row_range, col_range
  #
  #   Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
  #     => 9 0 0
  #        0 5 0
  #
  # Like Array#[], negative indices count backward from the end of the
  # row or column (-1 is the last element). Returns nil if the starting
  # row or column is greater than row_count or column_count respectively.
  #
  def minor(*param)
    case param.size
    when 2
      row_range, col_range = param
      from_row = row_range.first
      from_row += row_count if from_row < 0
      to_row = row_range.end
      to_row += row_count if to_row < 0
      to_row += 1 unless row_range.exclude_end?
      size_row = to_row - from_row

      from_col = col_range.first
      from_col += column_count if from_col < 0
      to_col = col_range.end
      to_col += column_count if to_col < 0
      to_col += 1 unless col_range.exclude_end?
      size_col = to_col - from_col
    when 4
      from_row, size_row, from_col, size_col = param
      return nil if size_row < 0 || size_col < 0
      from_row += row_count if from_row < 0
      from_col += column_count if from_col < 0
    else
      raise ArgumentError, param.inspect
    end

    return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
    rows = @rows[from_row, size_row].collect{|row|
      row[from_col, size_col]
    }
    new_matrix rows, [column_count - from_col, size_col].min
  end

  #
  # Returns the submatrix obtained by deleting the specified row and column.
  #
  #   Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
  #     => 9 0 0
  #        0 0 0
  #        0 0 4
  #
  def first_minor(row, column)
    raise RuntimeError, "first_minor of empty matrix is not defined" if empty?

    unless 0 <= row && row < row_count
      raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
    end

    unless 0 <= column && column < column_count
      raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
    end

    arrays = to_a
    arrays.delete_at(row)
    arrays.each do |array|
      array.delete_at(column)
    end

    new_matrix arrays, column_count - 1
  end

  #
  # Returns the (row, column) cofactor which is obtained by multiplying
  # the first minor by (-1)**(row + column).
  #
  #   Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
  #     => -108
  #
  def cofactor(row, column)
    raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
    Matrix.Raise ErrDimensionMismatch unless square?

    det_of_minor = first_minor(row, column).determinant
    det_of_minor * (-1) ** (row + column)
  end

  #
  # Returns the adjugate of the matrix.
  #
  #   Matrix[ [7,6],[3,9] ].adjugate
  #     => 9 -6
  #        -3 7
  #
  def adjugate
    Matrix.Raise ErrDimensionMismatch unless square?
    Matrix.build(row_count, column_count) do |row, column|
      cofactor(column, row)
    end
  end

  #
  # Returns the Laplace expansion along given row or column.
  #
  #    Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
  #     => 45
  #
  #    Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
  #     => Vector[3, -2]
  #
  #
  def laplace_expansion(row: nil, column: nil)
    num = row || column

    if !num || (row && column)
      raise ArgumentError, "exactly one the row or column arguments must be specified"
    end

    Matrix.Raise ErrDimensionMismatch unless square?
    raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?

    unless 0 <= num && num < row_count
      raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
    end

    send(row ? :row : :column, num).map.with_index { |e, k|
      e * cofactor(*(row ? [num, k] : [k,num]))
    }.inject(:+)
  end
  alias_method :cofactor_expansion, :laplace_expansion


  #--
  # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Returns +true+ if this is a diagonal matrix.
  # Raises an error if matrix is not square.
  #
  def diagonal?
    Matrix.Raise ErrDimensionMismatch unless square?
    each(:off_diagonal).all?(&:zero?)
  end

  #
  # Returns +true+ if this is an empty matrix, i.e. if the number of rows
  # or the number of columns is 0.
  #
  def empty?
    column_count == 0 || row_count == 0
  end

  #
  # Returns +true+ if this is an hermitian matrix.
  # Raises an error if matrix is not square.
  #
  def hermitian?
    Matrix.Raise ErrDimensionMismatch unless square?
    each_with_index(:upper).all? do |e, row, col|
      e == rows[col][row].conj
    end
  end

  #
  # Returns +true+ if this is a lower triangular matrix.
  #
  def lower_triangular?
    each(:strict_upper).all?(&:zero?)
  end

  #
  # Returns +true+ if this is a normal matrix.
  # Raises an error if matrix is not square.
  #
  def normal?
    Matrix.Raise ErrDimensionMismatch unless square?
    rows.each_with_index do |row_i, i|
      rows.each_with_index do |row_j, j|
        s = 0
        rows.each_with_index do |row_k, k|
          s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
        end
        return false unless s == 0
      end
    end
    true
  end

  #
  # Returns +true+ if this is an orthogonal matrix
  # Raises an error if matrix is not square.
  #
  def orthogonal?
    Matrix.Raise ErrDimensionMismatch unless square?
    rows.each_with_index do |row, i|
      column_count.times do |j|
        s = 0
        row_count.times do |k|
          s += row[k] * rows[k][j]
        end
        return false unless s == (i == j ? 1 : 0)
      end
    end
    true
  end

  #
  # Returns +true+ if this is a permutation matrix
  # Raises an error if matrix is not square.
  #
  def permutation?
    Matrix.Raise ErrDimensionMismatch unless square?
    cols = Array.new(column_count)
    rows.each_with_index do |row, i|
      found = false
      row.each_with_index do |e, j|
        if e == 1
          return false if found || cols[j]
          found = cols[j] = true
        elsif e != 0
          return false
        end
      end
      return false unless found
    end
    true
  end

  #
  # Returns +true+ if all entries of the matrix are real.
  #
  def real?
    all?(&:real?)
  end

  #
  # Returns +true+ if this is a regular (i.e. non-singular) matrix.
  #
  def regular?
    not singular?
  end

  #
  # Returns +true+ if this is a singular matrix.
  #
  def singular?
    determinant == 0
  end

  #
  # Returns +true+ if this is a square matrix.
  #
  def square?
    column_count == row_count
  end

  #
  # Returns +true+ if this is a symmetric matrix.
  # Raises an error if matrix is not square.
  #
  def symmetric?
    Matrix.Raise ErrDimensionMismatch unless square?
    each_with_index(:strict_upper) do |e, row, col|
      return false if e != rows[col][row]
    end
    true
  end

  #
  # Returns +true+ if this is a unitary matrix
  # Raises an error if matrix is not square.
  #
  def unitary?
    Matrix.Raise ErrDimensionMismatch unless square?
    rows.each_with_index do |row, i|
      column_count.times do |j|
        s = 0
        row_count.times do |k|
          s += row[k].conj * rows[k][j]
        end
        return false unless s == (i == j ? 1 : 0)
      end
    end
    true
  end

  #
  # Returns +true+ if this is an upper triangular matrix.
  #
  def upper_triangular?
    each(:strict_lower).all?(&:zero?)
  end

  #
  # Returns +true+ if this is a matrix with only zero elements
  #
  def zero?
    all?(&:zero?)
  end

  #--
  # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Returns +true+ if and only if the two matrices contain equal elements.
  #
  def ==(other)
    return false unless Matrix === other &&
                        column_count == other.column_count # necessary for empty matrices
    rows == other.rows
  end

  def eql?(other)
    return false unless Matrix === other &&
                        column_count == other.column_count # necessary for empty matrices
    rows.eql? other.rows
  end

  #
  # Returns a clone of the matrix, so that the contents of each do not reference
  # identical objects.
  # There should be no good reason to do this since Matrices are immutable.
  #
  def clone
    new_matrix @rows.map(&:dup), column_count
  end

  #
  # Returns a hash-code for the matrix.
  #
  def hash
    @rows.hash
  end

  #--
  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Matrix multiplication.
  #   Matrix[[2,4], [6,8]] * Matrix.identity(2)
  #     => 2 4
  #        6 8
  #
  def *(m) # m is matrix or vector or number
    case(m)
    when Numeric
      rows = @rows.collect {|row|
        row.collect {|e| e * m }
      }
      return new_matrix rows, column_count
    when Vector
      m = self.class.column_vector(m)
      r = self * m
      return r.column(0)
    when Matrix
      Matrix.Raise ErrDimensionMismatch if column_count != m.row_count

      rows = Array.new(row_count) {|i|
        Array.new(m.column_count) {|j|
          (0 ... column_count).inject(0) do |vij, k|
            vij + self[i, k] * m[k, j]
          end
        }
      }
      return new_matrix rows, m.column_count
    else
      return apply_through_coercion(m, __method__)
    end
  end

  #
  # Matrix addition.
  #   Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
  #     =>  6  0
  #        -4 12
  #
  def +(m)
    case m
    when Numeric
      Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
    when Vector
      m = self.class.column_vector(m)
    when Matrix
    else
      return apply_through_coercion(m, __method__)
    end

    Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count

    rows = Array.new(row_count) {|i|
      Array.new(column_count) {|j|
        self[i, j] + m[i, j]
      }
    }
    new_matrix rows, column_count
  end

  #
  # Matrix subtraction.
  #   Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
  #     => -8  2
  #         8  1
  #
  def -(m)
    case m
    when Numeric
      Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
    when Vector
      m = self.class.column_vector(m)
    when Matrix
    else
      return apply_through_coercion(m, __method__)
    end

    Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count

    rows = Array.new(row_count) {|i|
      Array.new(column_count) {|j|
        self[i, j] - m[i, j]
      }
    }
    new_matrix rows, column_count
  end

  #
  # Matrix division (multiplication by the inverse).
  #   Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
  #     => -7  1
  #        -3 -6
  #
  def /(other)
    case other
    when Numeric
      rows = @rows.collect {|row|
        row.collect {|e| e / other }
      }
      return new_matrix rows, column_count
    when Matrix
      return self * other.inverse
    else
      return apply_through_coercion(other, __method__)
    end
  end

  #
  # Returns the inverse of the matrix.
  #   Matrix[[-1, -1], [0, -1]].inverse
  #     => -1  1
  #         0 -1
  #
  def inverse
    Matrix.Raise ErrDimensionMismatch unless square?
    self.class.I(row_count).send(:inverse_from, self)
  end
  alias inv inverse

  def inverse_from(src) # :nodoc:
    last = row_count - 1
    a = src.to_a

    0.upto(last) do |k|
      i = k
      akk = a[k][k].abs
      (k+1).upto(last) do |j|
        v = a[j][k].abs
        if v > akk
          i = j
          akk = v
        end
      end
      Matrix.Raise ErrNotRegular if akk == 0
      if i != k
        a[i], a[k] = a[k], a[i]
        @rows[i], @rows[k] = @rows[k], @rows[i]
      end
      akk = a[k][k]

      0.upto(last) do |ii|
        next if ii == k
        q = a[ii][k].quo(akk)
        a[ii][k] = 0

        (k + 1).upto(last) do |j|
          a[ii][j] -= a[k][j] * q
        end
        0.upto(last) do |j|
          @rows[ii][j] -= @rows[k][j] * q
        end
      end

      (k+1).upto(last) do |j|
        a[k][j] = a[k][j].quo(akk)
      end
      0.upto(last) do |j|
        @rows[k][j] = @rows[k][j].quo(akk)
      end
    end
    self
  end
  private :inverse_from

  #
  # Matrix exponentiation.
  # Equivalent to multiplying the matrix by itself N times.
  # Non integer exponents will be handled by diagonalizing the matrix.
  #
  #   Matrix[[7,6], [3,9]] ** 2
  #     => 67 96
  #        48 99
  #
  def ** (other)
    case other
    when Integer
      x = self
      if other <= 0
        x = self.inverse
        return self.class.identity(self.column_count) if other == 0
        other = -other
      end
      z = nil
      loop do
        z = z ? z * x : x if other[0] == 1
        return z if (other >>= 1).zero?
        x *= x
      end
    when Numeric
      v, d, v_inv = eigensystem
      v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
    else
      Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
    end
  end

  def +@
    self
  end

  def -@
    collect {|e| -e }
  end

  #--
  # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Returns the determinant of the matrix.
  #
  # Beware that using Float values can yield erroneous results
  # because of their lack of precision.
  # Consider using exact types like Rational or BigDecimal instead.
  #
  #   Matrix[[7,6], [3,9]].determinant
  #     => 45
  #
  def determinant
    Matrix.Raise ErrDimensionMismatch unless square?
    m = @rows
    case row_count
      # Up to 4x4, give result using Laplacian expansion by minors.
      # This will typically be faster, as well as giving good results
      # in case of Floats
    when 0
      +1
    when 1
      + m[0][0]
    when 2
      + m[0][0] * m[1][1] - m[0][1] * m[1][0]
    when 3
      m0, m1, m2 = m
      + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
      - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
      + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
    when 4
      m0, m1, m2, m3 = m
      + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
      - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
      + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
      - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
      + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
      - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
      + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
      - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
      + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
      - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
      + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
      - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
    else
      # For bigger matrices, use an efficient and general algorithm.
      # Currently, we use the Gauss-Bareiss algorithm
      determinant_bareiss
    end
  end
  alias_method :det, :determinant

  #
  # Private. Use Matrix#determinant
  #
  # Returns the determinant of the matrix, using
  # Bareiss' multistep integer-preserving gaussian elimination.
  # It has the same computational cost order O(n^3) as standard Gaussian elimination.
  # Intermediate results are fraction free and of lower complexity.
  # A matrix of Integers will have thus intermediate results that are also Integers,
  # with smaller bignums (if any), while a matrix of Float will usually have
  # intermediate results with better precision.
  #
  def determinant_bareiss
    size = row_count
    last = size - 1
    a = to_a
    no_pivot = Proc.new{ return 0 }
    sign = +1
    pivot = 1
    size.times do |k|
      previous_pivot = pivot
      if (pivot = a[k][k]) == 0
        switch = (k+1 ... size).find(no_pivot) {|row|
          a[row][k] != 0
        }
        a[switch], a[k] = a[k], a[switch]
        pivot = a[k][k]
        sign = -sign
      end
      (k+1).upto(last) do |i|
        ai = a[i]
        (k+1).upto(last) do |j|
          ai[j] =  (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
        end
      end
    end
    sign * pivot
  end
  private :determinant_bareiss

  #
  # deprecated; use Matrix#determinant
  #
  def determinant_e
    warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
    determinant
  end
  alias det_e determinant_e

  #
  # Returns a new matrix resulting by stacking horizontally
  # the receiver with the given matrices
  #
  #   x = Matrix[[1, 2], [3, 4]]
  #   y = Matrix[[5, 6], [7, 8]]
  #   x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
  #
  def hstack(*matrices)
    self.class.hstack(self, *matrices)
  end

  #
  # Returns the rank of the matrix.
  # Beware that using Float values can yield erroneous results
  # because of their lack of precision.
  # Consider using exact types like Rational or BigDecimal instead.
  #
  #   Matrix[[7,6], [3,9]].rank
  #     => 2
  #
  def rank
    # We currently use Bareiss' multistep integer-preserving gaussian elimination
    # (see comments on determinant)
    a = to_a
    last_column = column_count - 1
    last_row = row_count - 1
    pivot_row = 0
    previous_pivot = 1
    0.upto(last_column) do |k|
      switch_row = (pivot_row .. last_row).find {|row|
        a[row][k] != 0
      }
      if switch_row
        a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
        pivot = a[pivot_row][k]
        (pivot_row+1).upto(last_row) do |i|
           ai = a[i]
           (k+1).upto(last_column) do |j|
             ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
           end
         end
        pivot_row += 1
        previous_pivot = pivot
      end
    end
    pivot_row
  end

  #
  # deprecated; use Matrix#rank
  #
  def rank_e
    warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
    rank
  end

  # Returns a matrix with entries rounded to the given precision
  # (see Float#round)
  #
  def round(ndigits=0)
    map{|e| e.round(ndigits)}
  end

  #
  # Returns the trace (sum of diagonal elements) of the matrix.
  #   Matrix[[7,6], [3,9]].trace
  #     => 16
  #
  def trace
    Matrix.Raise ErrDimensionMismatch unless square?
    (0...column_count).inject(0) do |tr, i|
      tr + @rows[i][i]
    end
  end
  alias tr trace

  #
  # Returns the transpose of the matrix.
  #   Matrix[[1,2], [3,4], [5,6]]
  #     => 1 2
  #        3 4
  #        5 6
  #   Matrix[[1,2], [3,4], [5,6]].transpose
  #     => 1 3 5
  #        2 4 6
  #
  def transpose
    return self.class.empty(column_count, 0) if row_count.zero?
    new_matrix @rows.transpose, row_count
  end
  alias t transpose

  #
  # Returns a new matrix resulting by stacking vertically
  # the receiver with the given matrices
  #
  #   x = Matrix[[1, 2], [3, 4]]
  #   y = Matrix[[5, 6], [7, 8]]
  #   x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
  #
  def vstack(*matrices)
    self.class.vstack(self, *matrices)
  end

  #--
  # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  #++

  #
  # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
  #   m = Matrix[[1, 2], [3, 4]]
  #   v, d, v_inv = m.eigensystem
  #   d.diagonal? # => true
  #   v.inv == v_inv # => true
  #   (v * d * v_inv).round(5) == m # => true
  #
  def eigensystem
    EigenvalueDecomposition.new(self)
  end
  alias eigen eigensystem

  #
  # Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
  #   a = Matrix[[1, 2], [3, 4]]
  #   l, u, p = a.lup
  #   l.lower_triangular? # => true
  #   u.upper_triangular? # => true
  #   p.permutation?      # => true
  #   l * u == p * a      # => true
  #   a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
  #
  def lup
    LUPDecomposition.new(self)
  end
  alias lup_decomposition lup

  #--
  # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  #++

  #
  # Returns the conjugate of the matrix.
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  #     => 1+2i   i  0
  #           1   2  3
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
  #     => 1-2i  -i  0
  #           1   2  3
  #
  def conjugate
    collect(&:conjugate)
  end
  alias conj conjugate

  #
  # Returns the imaginary part of the matrix.
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  #     => 1+2i  i  0
  #           1  2  3
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
  #     =>   2i  i  0
  #           0  0  0
  #
  def imaginary
    collect(&:imaginary)
  end
  alias imag imaginary

  #
  # Returns the real part of the matrix.
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  #     => 1+2i  i  0
  #           1  2  3
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
  #     =>    1  0  0
  #           1  2  3
  #
  def real
    collect(&:real)
  end

  #
  # Returns an array containing matrices corresponding to the real and imaginary
  # parts of the matrix
  #
  # m.rect == [m.real, m.imag]  # ==> true for all matrices m
  #
  def rect
    [real, imag]
  end
  alias rectangular rect

  #--
  # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # The coerce method provides support for Ruby type coercion.
  # This coercion mechanism is used by Ruby to handle mixed-type
  # numeric operations: it is intended to find a compatible common
  # type between the two operands of the operator.
  # See also Numeric#coerce.
  #
  def coerce(other)
    case other
    when Numeric
      return Scalar.new(other), self
    else
      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
    end
  end

  #
  # Returns an array of the row vectors of the matrix.  See Vector.
  #
  def row_vectors
    Array.new(row_count) {|i|
      row(i)
    }
  end

  #
  # Returns an array of the column vectors of the matrix.  See Vector.
  #
  def column_vectors
    Array.new(column_count) {|i|
      column(i)
    }
  end

  #
  # Returns an array of arrays that describe the rows of the matrix.
  #
  def to_a
    @rows.collect(&:dup)
  end

  def elements_to_f
    warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
    map(&:to_f)
  end

  def elements_to_i
    warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
    map(&:to_i)
  end

  def elements_to_r
    warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
    map(&:to_r)
  end

  #--
  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Overrides Object#to_s
  #
  def to_s
    if empty?
      "#{self.class}.empty(#{row_count}, #{column_count})"
    else
      "#{self.class}[" + @rows.collect{|row|
        "[" + row.collect{|e| e.to_s}.join(", ") + "]"
      }.join(", ")+"]"
    end
  end

  #
  # Overrides Object#inspect
  #
  def inspect
    if empty?
      "#{self.class}.empty(#{row_count}, #{column_count})"
    else
      "#{self.class}#{@rows.inspect}"
    end
  end

  # Private helper modules

  module ConversionHelper # :nodoc:
    #
    # Converts the obj to an Array. If copy is set to true
    # a copy of obj will be made if necessary.
    #
    def convert_to_array(obj, copy = false) # :nodoc:
      case obj
      when Array
        copy ? obj.dup : obj
      when Vector
        obj.to_a
      else
        begin
          converted = obj.to_ary
        rescue Exception => e
          raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
        end
        raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
        converted
      end
    end
    private :convert_to_array
  end

  extend ConversionHelper

  module CoercionHelper # :nodoc:
    #
    # Applies the operator +oper+ with argument +obj+
    # through coercion of +obj+
    #
    def apply_through_coercion(obj, oper)
      coercion = obj.coerce(self)
      raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
      coercion[0].public_send(oper, coercion[1])
    rescue
      raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
    end
    private :apply_through_coercion

    #
    # Helper method to coerce a value into a specific class.
    # Raises a TypeError if the coercion fails or the returned value
    # is not of the right class.
    # (from Rubinius)
    #
    def self.coerce_to(obj, cls, meth) # :nodoc:
      return obj if obj.kind_of?(cls)

      begin
        ret = obj.__send__(meth)
      rescue Exception => e
        raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
                         "(#{e.message})"
      end
      raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
      ret
    end

    def self.coerce_to_int(obj)
      coerce_to(obj, Integer, :to_int)
    end
  end

  include CoercionHelper

  # Private CLASS

  class Scalar < Numeric # :nodoc:
    include ExceptionForMatrix
    include CoercionHelper

    def initialize(value)
      @value = value
    end

    # ARITHMETIC
    def +(other)
      case other
      when Numeric
        Scalar.new(@value + other)
      when Vector, Matrix
        Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class
      else
        apply_through_coercion(other, __method__)
      end
    end

    def -(other)
      case other
      when Numeric
        Scalar.new(@value - other)
      when Vector, Matrix
        Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class
      else
        apply_through_coercion(other, __method__)
      end
    end

    def *(other)
      case other
      when Numeric
        Scalar.new(@value * other)
      when Vector, Matrix
        other.collect{|e| @value * e}
      else
        apply_through_coercion(other, __method__)
      end
    end

    def / (other)
      case other
      when Numeric
        Scalar.new(@value / other)
      when Vector
        Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class
      when Matrix
        self * other.inverse
      else
        apply_through_coercion(other, __method__)
      end
    end

    def ** (other)
      case other
      when Numeric
        Scalar.new(@value ** other)
      when Vector
        Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class
      when Matrix
        #other.powered_by(self)
        Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class
      else
        apply_through_coercion(other, __method__)
      end
    end
  end

end


#
# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
# also constitutes a row or column of a Matrix.
#
# == Method Catalogue
#
# To create a Vector:
# * Vector.[](*array)
# * Vector.elements(array, copy = true)
# * Vector.basis(size: n, index: k)
#
# To access elements:
# * #[](i)
#
# To enumerate the elements:
# * #each2(v)
# * #collect2(v)
#
# Properties of vectors:
# * #angle_with(v)
# * Vector.independent?(*vs)
# * #independent?(*vs)
#
# Vector arithmetic:
# * #*(x) "is matrix or number"
# * #+(v)
# * #-(v)
# * #+@
# * #-@
#
# Vector functions:
# * #inner_product(v), dot(v)
# * #cross_product(v), cross(v)
# * #collect
# * #magnitude
# * #map
# * #map2(v)
# * #norm
# * #normalize
# * #r
# * #size
#
# Conversion to other data types:
# * #covector
# * #to_a
# * #coerce(other)
#
# String representations:
# * #to_s
# * #inspect
#
class Vector
  include ExceptionForMatrix
  include Enumerable
  include Matrix::CoercionHelper
  extend Matrix::ConversionHelper
  #INSTANCE CREATION

  private_class_method :new
  attr_reader :elements
  protected :elements

  #
  # Creates a Vector from a list of elements.
  #   Vector[7, 4, ...]
  #
  def Vector.[](*array)
    new convert_to_array(array, false)
  end

  #
  # Creates a vector from an Array.  The optional second argument specifies
  # whether the array itself or a copy is used internally.
  #
  def Vector.elements(array, copy = true)
    new convert_to_array(array, copy)
  end

  #
  # Returns a standard basis +n+-vector, where k is the index.
  #
  #    Vector.basis(size:, index:) # => Vector[0, 1, 0]
  #
  def Vector.basis(size:, index:)
    raise ArgumentError, "invalid size (#{size} for 1..)" if size < 1
    raise ArgumentError, "invalid index (#{index} for 0...#{size})" unless 0 <= index && index < size
    array = Array.new(size, 0)
    array[index] = 1
    new convert_to_array(array, false)
  end

  #
  # Vector.new is private; use Vector[] or Vector.elements to create.
  #
  def initialize(array)
    # No checking is done at this point.
    @elements = array
  end

  # ACCESSING

  #
  # Returns element number +i+ (starting at zero) of the vector.
  #
  def [](i)
    @elements[i]
  end
  alias element []
  alias component []

  def []=(i, v)
    @elements[i]= v
  end
  alias set_element []=
  alias set_component []=
  private :[]=, :set_element, :set_component

  #
  # Returns the number of elements in the vector.
  #
  def size
    @elements.size
  end

  #--
  # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Iterate over the elements of this vector
  #
  def each(&block)
    return to_enum(:each) unless block_given?
    @elements.each(&block)
    self
  end

  #
  # Iterate over the elements of this vector and +v+ in conjunction.
  #
  def each2(v) # :yield: e1, e2
    raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
    Vector.Raise ErrDimensionMismatch if size != v.size
    return to_enum(:each2, v) unless block_given?
    size.times do |i|
      yield @elements[i], v[i]
    end
    self
  end

  #
  # Collects (as in Enumerable#collect) over the elements of this vector and +v+
  # in conjunction.
  #
  def collect2(v) # :yield: e1, e2
    raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
    Vector.Raise ErrDimensionMismatch if size != v.size
    return to_enum(:collect2, v) unless block_given?
    Array.new(size) do |i|
      yield @elements[i], v[i]
    end
  end

  #--
  # PROPERTIES -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Returns +true+ iff all of vectors are linearly independent.
  #
  #   Vector.independent?(Vector[1,0], Vector[0,1])
  #     => true
  #
  #   Vector.independent?(Vector[1,2], Vector[2,4])
  #     => false
  #
  def Vector.independent?(*vs)
    vs.each do |v|
      raise TypeError, "expected Vector, got #{v.class}" unless v.is_a?(Vector)
      Vector.Raise ErrDimensionMismatch unless v.size == vs.first.size
    end
    return false if vs.count > vs.first.size
    Matrix[*vs].rank.eql?(vs.count)
  end

  #
  # Returns +true+ iff all of vectors are linearly independent.
  #
  #   Vector[1,0].independent?(Vector[0,1])
  #     => true
  #
  #   Vector[1,2].independent?(Vector[2,4])
  #     => false
  #
  def independent?(*vs)
    self.class.independent?(self, *vs)
  end

  #--
  # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Returns +true+ iff the two vectors have the same elements in the same order.
  #
  def ==(other)
    return false unless Vector === other
    @elements == other.elements
  end

  def eql?(other)
    return false unless Vector === other
    @elements.eql? other.elements
  end

  #
  # Returns a copy of the vector.
  #
  def clone
    self.class.elements(@elements)
  end

  #
  # Returns a hash-code for the vector.
  #
  def hash
    @elements.hash
  end

  #--
  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Multiplies the vector by +x+, where +x+ is a number or another vector.
  #
  def *(x)
    case x
    when Numeric
      els = @elements.collect{|e| e * x}
      self.class.elements(els, false)
    when Matrix
      Matrix.column_vector(self) * x
    when Vector
      Vector.Raise ErrOperationNotDefined, "*", self.class, x.class
    else
      apply_through_coercion(x, __method__)
    end
  end

  #
  # Vector addition.
  #
  def +(v)
    case v
    when Vector
      Vector.Raise ErrDimensionMismatch if size != v.size
      els = collect2(v) {|v1, v2|
        v1 + v2
      }
      self.class.elements(els, false)
    when Matrix
      Matrix.column_vector(self) + v
    else
      apply_through_coercion(v, __method__)
    end
  end

  #
  # Vector subtraction.
  #
  def -(v)
    case v
    when Vector
      Vector.Raise ErrDimensionMismatch if size != v.size
      els = collect2(v) {|v1, v2|
        v1 - v2
      }
      self.class.elements(els, false)
    when Matrix
      Matrix.column_vector(self) - v
    else
      apply_through_coercion(v, __method__)
    end
  end

  #
  # Vector division.
  #
  def /(x)
    case x
    when Numeric
      els = @elements.collect{|e| e / x}
      self.class.elements(els, false)
    when Matrix, Vector
      Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
    else
      apply_through_coercion(x, __method__)
    end
  end

  def +@
    self
  end

  def -@
    collect {|e| -e }
  end

  #--
  # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Returns the inner product of this vector with the other.
  #   Vector[4,7].inner_product Vector[10,1]  => 47
  #
  def inner_product(v)
    Vector.Raise ErrDimensionMismatch if size != v.size

    p = 0
    each2(v) {|v1, v2|
      p += v1 * v2.conj
    }
    p
  end
  alias_method :dot, :inner_product

  #
  # Returns the cross product of this vector with the others.
  #   Vector[1, 0, 0].cross_product Vector[0, 1, 0]   => Vector[0, 0, 1]
  #
  # It is generalized to other dimensions to return a vector perpendicular
  # to the arguments.
  #   Vector[1, 2].cross_product # => Vector[-2, 1]
  #   Vector[1, 0, 0, 0].cross_product(
  #      Vector[0, 1, 0, 0],
  #      Vector[0, 0, 1, 0]
  #   )  #=> Vector[0, 0, 0, 1]
  #
  def cross_product(*vs)
    raise ErrOperationNotDefined, "cross product is not defined on vectors of dimension #{size}" unless size >= 2
    raise ArgumentError, "wrong number of arguments (#{vs.size} for #{size - 2})" unless vs.size == size - 2
    vs.each do |v|
      raise TypeError, "expected Vector, got #{v.class}" unless v.is_a? Vector
      Vector.Raise ErrDimensionMismatch unless v.size == size
    end
    case size
    when 2
      Vector[-@elements[1], @elements[0]]
    when 3
      v = vs[0]
      Vector[ v[2]*@elements[1] - v[1]*@elements[2],
        v[0]*@elements[2] - v[2]*@elements[0],
        v[1]*@elements[0] - v[0]*@elements[1] ]
    else
      rows = self, *vs, Array.new(size) {|i| Vector.basis(size: size, index: i) }
      Matrix.rows(rows).laplace_expansion(row: size - 1)
    end
  end
  alias_method :cross, :cross_product

  #
  # Like Array#collect.
  #
  def collect(&block) # :yield: e
    return to_enum(:collect) unless block_given?
    els = @elements.collect(&block)
    self.class.elements(els, false)
  end
  alias map collect

  #
  # Returns the modulus (Pythagorean distance) of the vector.
  #   Vector[5,8,2].r => 9.643650761
  #
  def magnitude
    Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
  end
  alias r magnitude
  alias norm magnitude

  #
  # Like Vector#collect2, but returns a Vector instead of an Array.
  #
  def map2(v, &block) # :yield: e1, e2
    return to_enum(:map2, v) unless block_given?
    els = collect2(v, &block)
    self.class.elements(els, false)
  end

  class ZeroVectorError < StandardError
  end
  #
  # Returns a new vector with the same direction but with norm 1.
  #   v = Vector[5,8,2].normalize
  #   # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
  #   v.norm => 1.0
  #
  def normalize
    n = magnitude
    raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
    self / n
  end

  #
  # Returns an angle with another vector. Result is within the [0...Math::PI].
  #   Vector[1,0].angle_with(Vector[0,1])
  #   # => Math::PI / 2
  #
  def angle_with(v)
    raise TypeError, "Expected a Vector, got a #{v.class}" unless v.is_a?(Vector)
    Vector.Raise ErrDimensionMismatch if size != v.size
    prod = magnitude * v.magnitude
    raise ZeroVectorError, "Can't get angle of zero vector" if prod == 0

    Math.acos( inner_product(v) / prod )
  end

  #--
  # CONVERTING
  #++

  #
  # Creates a single-row matrix from this vector.
  #
  def covector
    Matrix.row_vector(self)
  end

  #
  # Returns the elements of the vector in an array.
  #
  def to_a
    @elements.dup
  end

  def elements_to_f
    warn "#{caller(1)[0]}: warning: Vector#elements_to_f is deprecated"
    map(&:to_f)
  end

  def elements_to_i
    warn "#{caller(1)[0]}: warning: Vector#elements_to_i is deprecated"
    map(&:to_i)
  end

  def elements_to_r
    warn "#{caller(1)[0]}: warning: Vector#elements_to_r is deprecated"
    map(&:to_r)
  end

  #
  # The coerce method provides support for Ruby type coercion.
  # This coercion mechanism is used by Ruby to handle mixed-type
  # numeric operations: it is intended to find a compatible common
  # type between the two operands of the operator.
  # See also Numeric#coerce.
  #
  def coerce(other)
    case other
    when Numeric
      return Matrix::Scalar.new(other), self
    else
      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
    end
  end

  #--
  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
  #++

  #
  # Overrides Object#to_s
  #
  def to_s
    "Vector[" + @elements.join(", ") + "]"
  end

  #
  # Overrides Object#inspect
  #
  def inspect
    "Vector" + @elements.inspect
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit