Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 13.59.83.202
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby20/lib64/ruby/2.0.0/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby20/lib64/ruby/2.0.0/prime.rb
#
# = prime.rb
#
# Prime numbers and factorization library.
#
# Copyright::
#   Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
#   Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
#
# Documentation::
#   Yuki Sonoda
#

require "singleton"
require "forwardable"

class Integer
  # Re-composes a prime factorization and returns the product.
  #
  # See Prime#int_from_prime_division for more details.
  def Integer.from_prime_division(pd)
    Prime.int_from_prime_division(pd)
  end

  # Returns the factorization of +self+.
  #
  # See Prime#prime_division for more details.
  def prime_division(generator = Prime::Generator23.new)
    Prime.prime_division(self, generator)
  end

  # Returns true if +self+ is a prime number, false for a composite.
  def prime?
    Prime.prime?(self)
  end

  # Iterates the given block over all prime numbers.
  #
  # See +Prime+#each for more details.
  def Integer.each_prime(ubound, &block) # :yields: prime
    Prime.each(ubound, &block)
  end
end

#
# The set of all prime numbers.
#
# == Example
#
#   Prime.each(100) do |prime|
#     p prime  #=> 2, 3, 5, 7, 11, ...., 97
#   end
#
# Prime is Enumerable:
#
#   Prime.first 5 # => [2, 3, 5, 7, 11]
#
# == Retrieving the instance
#
# +Prime+.new is obsolete. Now +Prime+ has the default instance and you can
# access it as +Prime+.instance.
#
# For convenience, each instance method of +Prime+.instance can be accessed
# as a class method of +Prime+.
#
# e.g.
#   Prime.instance.prime?(2)  #=> true
#   Prime.prime?(2)           #=> true
#
# == Generators
#
# A "generator" provides an implementation of enumerating pseudo-prime
# numbers and it remembers the position of enumeration and upper bound.
# Furthermore, it is a external iterator of prime enumeration which is
# compatible to an Enumerator.
#
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
# There are few implementations of generator.
#
# [+Prime+::+EratosthenesGenerator+]
#   Uses eratosthenes's sieve.
# [+Prime+::+TrialDivisionGenerator+]
#   Uses the trial division method.
# [+Prime+::+Generator23+]
#   Generates all positive integers which is not divided by 2 nor 3.
#   This sequence is very bad as a pseudo-prime sequence. But this
#   is faster and uses much less memory than other generators. So,
#   it is suitable for factorizing an integer which is not large but
#   has many prime factors. e.g. for Prime#prime? .

class Prime
  include Enumerable
  @the_instance = Prime.new

  # obsolete. Use +Prime+::+instance+ or class methods of +Prime+.
  def initialize
    @generator = EratosthenesGenerator.new
    extend OldCompatibility
    warn "Prime::new is obsolete. use Prime::instance or class methods of Prime."
  end

  class << self
    extend Forwardable
    include Enumerable
    # Returns the default instance of Prime.
    def instance; @the_instance end

    def method_added(method) # :nodoc:
      (class<< self;self;end).def_delegator :instance, method
    end
  end

  # Iterates the given block over all prime numbers.
  #
  # == Parameters
  #
  # +ubound+::
  #   Optional. An arbitrary positive number.
  #   The upper bound of enumeration. The method enumerates
  #   prime numbers infinitely if +ubound+ is nil.
  # +generator+::
  #   Optional. An implementation of pseudo-prime generator.
  #
  # == Return value
  #
  # An evaluated value of the given block at the last time.
  # Or an enumerator which is compatible to an +Enumerator+
  # if no block given.
  #
  # == Description
  #
  # Calls +block+ once for each prime number, passing the prime as
  # a parameter.
  #
  # +ubound+::
  #   Upper bound of prime numbers. The iterator stops after
  #   yields all prime numbers p <= +ubound+.
  #
  # == Note
  #
  # +Prime+.+new+ returns a object extended by +Prime+::+OldCompatibility+
  # in order to compatibility to Ruby 1.8, and +Prime+#each is overwritten
  # by +Prime+::+OldCompatibility+#+each+.
  #
  # +Prime+.+new+ is now obsolete. Use +Prime+.+instance+.+each+ or simply
  # +Prime+.+each+.
  def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
    generator.upper_bound = ubound
    generator.each(&block)
  end


  # Returns true if +value+ is prime, false for a composite.
  #
  # == Parameters
  #
  # +value+:: an arbitrary integer to be checked.
  # +generator+:: optional. A pseudo-prime generator.
  def prime?(value, generator = Prime::Generator23.new)
    value = -value if value < 0
    return false if value < 2
    for num in generator
      q,r = value.divmod num
      return true if q < num
      return false if r == 0
    end
  end

  # Re-composes a prime factorization and returns the product.
  #
  # == Parameters
  # +pd+:: Array of pairs of integers. The each internal
  #        pair consists of a prime number -- a prime factor --
  #        and a natural number -- an exponent.
  #
  # == Example
  # For <tt>[[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]]</tt>, it returns:
  #
  #   p_1**e_1 * p_2**e_2 * .... * p_n**e_n.
  #
  #   Prime.int_from_prime_division([[2,2], [3,1]])  #=> 12
  def int_from_prime_division(pd)
    pd.inject(1){|value, (prime, index)|
      value *= prime**index
    }
  end

  # Returns the factorization of +value+.
  #
  # == Parameters
  # +value+:: An arbitrary integer.
  # +generator+:: Optional. A pseudo-prime generator.
  #               +generator+.succ must return the next
  #               pseudo-prime number in the ascendent
  #               order. It must generate all prime numbers,
  #               but may generate non prime numbers.
  #
  # === Exceptions
  # +ZeroDivisionError+:: when +value+ is zero.
  #
  # == Example
  # For an arbitrary integer:
  #
  #   n = p_1**e_1 * p_2**e_2 * .... * p_n**e_n,
  #
  # prime_division(n) returns:
  #
  #   [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]].
  #
  #   Prime.prime_division(12) #=> [[2,2], [3,1]]
  #
  def prime_division(value, generator= Prime::Generator23.new)
    raise ZeroDivisionError if value == 0
    if value < 0
      value = -value
      pv = [[-1, 1]]
    else
      pv = []
    end
    for prime in generator
      count = 0
      while (value1, mod = value.divmod(prime)
             mod) == 0
        value = value1
        count += 1
      end
      if count != 0
        pv.push [prime, count]
      end
      break if value1 <= prime
    end
    if value > 1
      pv.push [value, 1]
    end
    return pv
  end

  # An abstract class for enumerating pseudo-prime numbers.
  #
  # Concrete subclasses should override succ, next, rewind.
  class PseudoPrimeGenerator
    include Enumerable

    def initialize(ubound = nil)
      @ubound = ubound
    end

    def upper_bound=(ubound)
      @ubound = ubound
    end
    def upper_bound
      @ubound
    end

    # returns the next pseudo-prime number, and move the internal
    # position forward.
    #
    # +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
    def succ
      raise NotImplementedError, "need to define `succ'"
    end

    # alias of +succ+.
    def next
      raise NotImplementedError, "need to define `next'"
    end

    # Rewinds the internal position for enumeration.
    #
    # See +Enumerator+#rewind.
    def rewind
      raise NotImplementedError, "need to define `rewind'"
    end

    # Iterates the given block for each prime numbers.
    def each(&block)
      return self.dup unless block
      if @ubound
        last_value = nil
        loop do
          prime = succ
          break last_value if prime > @ubound
          last_value = block.call(prime)
        end
      else
        loop do
          block.call(succ)
        end
      end
    end

    # see +Enumerator+#with_index.
    alias with_index each_with_index

    # see +Enumerator+#with_object.
    def with_object(obj)
      return enum_for(:with_object) unless block_given?
      each do |prime|
        yield prime, obj
      end
    end
  end

  # An implementation of +PseudoPrimeGenerator+.
  #
  # Uses +EratosthenesSieve+.
  class EratosthenesGenerator < PseudoPrimeGenerator
    def initialize
      @last_prime = nil
      super
    end

    def succ
      @last_prime = @last_prime ? EratosthenesSieve.instance.next_to(@last_prime) : 2
    end
    def rewind
      initialize
    end
    alias next succ
  end

  # An implementation of +PseudoPrimeGenerator+ which uses
  # a prime table generated by trial division.
  class TrialDivisionGenerator<PseudoPrimeGenerator
    def initialize
      @index = -1
      super
    end

    def succ
      TrialDivision.instance[@index += 1]
    end
    def rewind
      initialize
    end
    alias next succ
  end

  # Generates all integer which are greater than 2 and
  # are not divided by 2 nor 3.
  #
  # This is a pseudo-prime generator, suitable on
  # checking primality of a integer by brute force
  # method.
  class Generator23<PseudoPrimeGenerator
    def initialize
      @prime = 1
      @step = nil
      super
    end

    def succ
      loop do
        if (@step)
          @prime += @step
          @step = 6 - @step
        else
          case @prime
          when 1; @prime = 2
          when 2; @prime = 3
          when 3; @prime = 5; @step = 2
          end
        end
        return @prime
      end
    end
    alias next succ
    def rewind
      initialize
    end
  end

  # Internal use. An implementation of prime table by trial division method.
  class TrialDivision
    include Singleton

    def initialize # :nodoc:
      # These are included as class variables to cache them for later uses.  If memory
      #   usage is a problem, they can be put in Prime#initialize as instance variables.

      # There must be no primes between @primes[-1] and @next_to_check.
      @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
      # @next_to_check % 6 must be 1.
      @next_to_check = 103            # @primes[-1] - @primes[-1] % 6 + 7
      @ulticheck_index = 3            # @primes.index(@primes.reverse.find {|n|
      #   n < Math.sqrt(@@next_to_check) })
      @ulticheck_next_squared = 121   # @primes[@ulticheck_index + 1] ** 2
    end

    # Returns the cached prime numbers.
    def cache
      return @primes
    end
    alias primes cache
    alias primes_so_far cache

    # Returns the +index+th prime number.
    #
    # +index+ is a 0-based index.
    def [](index)
      while index >= @primes.length
        # Only check for prime factors up to the square root of the potential primes,
        #   but without the performance hit of an actual square root calculation.
        if @next_to_check + 4 > @ulticheck_next_squared
          @ulticheck_index += 1
          @ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
        end
        # Only check numbers congruent to one and five, modulo six. All others

        #   are divisible by two or three.  This also allows us to skip checking against
        #   two and three.
        @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
        @next_to_check += 4
        @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
        @next_to_check += 2
      end
      return @primes[index]
    end
  end

  # Internal use. An implementation of eratosthenes's sieve
  class EratosthenesSieve
    include Singleton

    BITS_PER_ENTRY = 16  # each entry is a set of 16-bits in a Fixnum
    NUMS_PER_ENTRY = BITS_PER_ENTRY * 2 # twiced because even numbers are omitted
    ENTRIES_PER_TABLE = 8
    NUMS_PER_TABLE = NUMS_PER_ENTRY * ENTRIES_PER_TABLE
    FILLED_ENTRY = (1 << NUMS_PER_ENTRY) - 1

    def initialize # :nodoc:
      # bitmap for odd prime numbers less than 256.
      # For an arbitrary odd number n, @tables[i][j][k] is
      # * 1 if n is prime,
      # * 0 if n is composite,
      # where i,j,k = indices(n)
      @tables = [[0xcb6e, 0x64b4, 0x129a, 0x816d, 0x4c32, 0x864a, 0x820d, 0x2196].freeze]
    end

    # returns the least odd prime number which is greater than +n+.
    def next_to(n)
      n = (n-1).div(2)*2+3 # the next odd number to given n
      table_index, integer_index, bit_index = indices(n)
      loop do
        extend_table until @tables.length > table_index
        for j in integer_index...ENTRIES_PER_TABLE
          if !@tables[table_index][j].zero?
            for k in bit_index...BITS_PER_ENTRY
              return NUMS_PER_TABLE*table_index + NUMS_PER_ENTRY*j + 2*k+1 if !@tables[table_index][j][k].zero?
            end
          end
          bit_index = 0
        end
        table_index += 1; integer_index = 0
      end
    end

    private
    # for an odd number +n+, returns (i, j, k) such that @tables[i][j][k] represents primarity of the number
    def indices(n)
      #   binary digits of n: |0|1|2|3|4|5|6|7|8|9|10|11|....
      #   indices:            |-|    k  |  j  |     i
      # because of NUMS_PER_ENTRY, NUMS_PER_TABLE

      k = (n & 0b00011111) >> 1
      j = (n & 0b11100000) >> 5
      i = n >> 8
      return i, j, k
    end

    def extend_table
      lbound = NUMS_PER_TABLE * @tables.length
      ubound = lbound + NUMS_PER_TABLE
      new_table = [FILLED_ENTRY] * ENTRIES_PER_TABLE # which represents primarity in lbound...ubound
      (3..Integer(Math.sqrt(ubound))).step(2) do |p|
        i, j, k = indices(p)
        next if @tables[i][j][k].zero?

        start = (lbound.div(p)+1)*p  # least multiple of p which is >= lbound
        start += p if start.even?
        (start...ubound).step(2*p) do |n|
          _, j, k = indices(n)
          new_table[j] &= FILLED_ENTRY^(1<<k)
        end
      end
      @tables << new_table.freeze
    end
  end

  # Provides a +Prime+ object with compatibility to Ruby 1.8 when instantiated via +Prime+.+new+.
  module OldCompatibility
    # Returns the next prime number and forwards internal pointer.
    def succ
      @generator.succ
    end
    alias next succ

    # Overwrites Prime#each.
    #
    # Iterates the given block over all prime numbers. Note that enumeration
    # starts from the current position of internal pointer, not rewound.
    def each(&block)
      return @generator.dup unless block_given?
      loop do
        yield succ
      end
    end
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit