Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.119.123.10
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /home/wavevlvu/book24.ng/vendor/bacon/bacon-qr-code/src/Common/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /home/wavevlvu/book24.ng/vendor/bacon/bacon-qr-code/src/Common/ReedSolomonCodec.php
<?php
declare(strict_types = 1);

namespace BaconQrCode\Common;

use BaconQrCode\Exception\InvalidArgumentException;
use BaconQrCode\Exception\RuntimeException;
use SplFixedArray;

/**
 * Reed-Solomon codec for 8-bit characters.
 *
 * Based on libfec by Phil Karn, KA9Q.
 */
final class ReedSolomonCodec
{
    /**
     * Symbol size in bits.
     *
     * @var int
     */
    private $symbolSize;

    /**
     * Block size in symbols.
     *
     * @var int
     */
    private $blockSize;

    /**
     * First root of RS code generator polynomial, index form.
     *
     * @var int
     */
    private $firstRoot;

    /**
     * Primitive element to generate polynomial roots, index form.
     *
     * @var int
     */
    private $primitive;

    /**
     * Prim-th root of 1, index form.
     *
     * @var int
     */
    private $iPrimitive;

    /**
     * RS code generator polynomial degree (number of roots).
     *
     * @var int
     */
    private $numRoots;

    /**
     * Padding bytes at front of shortened block.
     *
     * @var int
     */
    private $padding;

    /**
     * Log lookup table.
     *
     * @var SplFixedArray
     */
    private $alphaTo;

    /**
     * Anti-Log lookup table.
     *
     * @var SplFixedArray
     */
    private $indexOf;

    /**
     * Generator polynomial.
     *
     * @var SplFixedArray
     */
    private $generatorPoly;

    /**
     * @throws InvalidArgumentException if symbol size ist not between 0 and 8
     * @throws InvalidArgumentException if first root is invalid
     * @throws InvalidArgumentException if num roots is invalid
     * @throws InvalidArgumentException if padding is invalid
     * @throws RuntimeException if field generator polynomial is not primitive
     */
    public function __construct(
        int $symbolSize,
        int $gfPoly,
        int $firstRoot,
        int $primitive,
        int $numRoots,
        int $padding
    ) {
        if ($symbolSize < 0 || $symbolSize > 8) {
            throw new InvalidArgumentException('Symbol size must be between 0 and 8');
        }

        if ($firstRoot < 0 || $firstRoot >= (1 << $symbolSize)) {
            throw new InvalidArgumentException('First root must be between 0 and ' . (1 << $symbolSize));
        }

        if ($numRoots < 0 || $numRoots >= (1 << $symbolSize)) {
            throw new InvalidArgumentException('Num roots must be between 0 and ' . (1 << $symbolSize));
        }

        if ($padding < 0 || $padding >= ((1 << $symbolSize) - 1 - $numRoots)) {
            throw new InvalidArgumentException(
                'Padding must be between 0 and ' . ((1 << $symbolSize) - 1 - $numRoots)
            );
        }

        $this->symbolSize = $symbolSize;
        $this->blockSize = (1 << $symbolSize) - 1;
        $this->padding = $padding;
        $this->alphaTo = SplFixedArray::fromArray(array_fill(0, $this->blockSize + 1, 0), false);
        $this->indexOf = SplFixedArray::fromArray(array_fill(0, $this->blockSize + 1, 0), false);

        // Generate galous field lookup table
        $this->indexOf[0] = $this->blockSize;
        $this->alphaTo[$this->blockSize] = 0;

        $sr = 1;

        for ($i = 0; $i < $this->blockSize; ++$i) {
            $this->indexOf[$sr] = $i;
            $this->alphaTo[$i]  = $sr;

            $sr <<= 1;

            if ($sr & (1 << $symbolSize)) {
                $sr ^= $gfPoly;
            }

            $sr &= $this->blockSize;
        }

        if (1 !== $sr) {
            throw new RuntimeException('Field generator polynomial is not primitive');
        }

        // Form RS code generator polynomial from its roots
        $this->generatorPoly = SplFixedArray::fromArray(array_fill(0, $numRoots + 1, 0), false);
        $this->firstRoot = $firstRoot;
        $this->primitive = $primitive;
        $this->numRoots = $numRoots;

        // Find prim-th root of 1, used in decoding
        for ($iPrimitive = 1; ($iPrimitive % $primitive) !== 0; $iPrimitive += $this->blockSize) {
        }

        $this->iPrimitive = intdiv($iPrimitive, $primitive);

        $this->generatorPoly[0] = 1;

        for ($i = 0, $root = $firstRoot * $primitive; $i < $numRoots; ++$i, $root += $primitive) {
            $this->generatorPoly[$i + 1] = 1;

            for ($j = $i; $j > 0; $j--) {
                if ($this->generatorPoly[$j] !== 0) {
                    $this->generatorPoly[$j] = $this->generatorPoly[$j - 1] ^ $this->alphaTo[
                        $this->modNn($this->indexOf[$this->generatorPoly[$j]] + $root)
                    ];
                } else {
                    $this->generatorPoly[$j] = $this->generatorPoly[$j - 1];
                }
            }

            $this->generatorPoly[$j] = $this->alphaTo[$this->modNn($this->indexOf[$this->generatorPoly[0]] + $root)];
        }

        // Convert generator poly to index form for quicker encoding
        for ($i = 0; $i <= $numRoots; ++$i) {
            $this->generatorPoly[$i] = $this->indexOf[$this->generatorPoly[$i]];
        }
    }

    /**
     * Encodes data and writes result back into parity array.
     */
    public function encode(SplFixedArray $data, SplFixedArray $parity) : void
    {
        for ($i = 0; $i < $this->numRoots; ++$i) {
            $parity[$i] = 0;
        }

        $iterations = $this->blockSize - $this->numRoots - $this->padding;

        for ($i = 0; $i < $iterations; ++$i) {
            $feedback = $this->indexOf[$data[$i] ^ $parity[0]];

            if ($feedback !== $this->blockSize) {
                // Feedback term is non-zero
                $feedback = $this->modNn($this->blockSize - $this->generatorPoly[$this->numRoots] + $feedback);

                for ($j = 1; $j < $this->numRoots; ++$j) {
                    $parity[$j] = $parity[$j] ^ $this->alphaTo[
                        $this->modNn($feedback + $this->generatorPoly[$this->numRoots - $j])
                    ];
                }
            }

            for ($j = 0; $j < $this->numRoots - 1; ++$j) {
                $parity[$j] = $parity[$j + 1];
            }

            if ($feedback !== $this->blockSize) {
                $parity[$this->numRoots - 1] = $this->alphaTo[$this->modNn($feedback + $this->generatorPoly[0])];
            } else {
                $parity[$this->numRoots - 1] = 0;
            }
        }
    }

    /**
     * Decodes received data.
     */
    public function decode(SplFixedArray $data, SplFixedArray $erasures = null) : ?int
    {
        // This speeds up the initialization a bit.
        $numRootsPlusOne = SplFixedArray::fromArray(array_fill(0, $this->numRoots + 1, 0), false);
        $numRoots = SplFixedArray::fromArray(array_fill(0, $this->numRoots, 0), false);

        $lambda = clone $numRootsPlusOne;
        $b = clone $numRootsPlusOne;
        $t = clone $numRootsPlusOne;
        $omega = clone $numRootsPlusOne;
        $root = clone $numRoots;
        $loc = clone $numRoots;

        $numErasures = (null !== $erasures ? count($erasures) : 0);

        // Form the Syndromes; i.e., evaluate data(x) at roots of g(x)
        $syndromes = SplFixedArray::fromArray(array_fill(0, $this->numRoots, $data[0]), false);

        for ($i = 1; $i < $this->blockSize - $this->padding; ++$i) {
            for ($j = 0; $j < $this->numRoots; ++$j) {
                if ($syndromes[$j] === 0) {
                    $syndromes[$j] = $data[$i];
                } else {
                    $syndromes[$j] = $data[$i] ^ $this->alphaTo[
                        $this->modNn($this->indexOf[$syndromes[$j]] + ($this->firstRoot + $j) * $this->primitive)
                    ];
                }
            }
        }

        // Convert syndromes to index form, checking for nonzero conditions
        $syndromeError = 0;

        for ($i = 0; $i < $this->numRoots; ++$i) {
            $syndromeError |= $syndromes[$i];
            $syndromes[$i] = $this->indexOf[$syndromes[$i]];
        }

        if (! $syndromeError) {
            // If syndrome is zero, data[] is a codeword and there are no errors to correct, so return data[]
            // unmodified.
            return 0;
        }

        $lambda[0] = 1;

        if ($numErasures > 0) {
            // Init lambda to be the erasure locator polynomial
            $lambda[1] = $this->alphaTo[$this->modNn($this->primitive * ($this->blockSize - 1 - $erasures[0]))];

            for ($i = 1; $i < $numErasures; ++$i) {
                $u = $this->modNn($this->primitive * ($this->blockSize - 1 - $erasures[$i]));

                for ($j = $i + 1; $j > 0; --$j) {
                    $tmp = $this->indexOf[$lambda[$j - 1]];

                    if ($tmp !== $this->blockSize) {
                        $lambda[$j] = $lambda[$j] ^ $this->alphaTo[$this->modNn($u + $tmp)];
                    }
                }
            }
        }

        for ($i = 0; $i <= $this->numRoots; ++$i) {
            $b[$i] = $this->indexOf[$lambda[$i]];
        }

        // Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial
        $r  = $numErasures;
        $el = $numErasures;

        while (++$r <= $this->numRoots) {
            // Compute discrepancy at the r-th step in poly form
            $discrepancyR = 0;

            for ($i = 0; $i < $r; ++$i) {
                if ($lambda[$i] !== 0 && $syndromes[$r - $i - 1] !== $this->blockSize) {
                    $discrepancyR ^= $this->alphaTo[
                        $this->modNn($this->indexOf[$lambda[$i]] + $syndromes[$r - $i - 1])
                    ];
                }
            }

            $discrepancyR = $this->indexOf[$discrepancyR];

            if ($discrepancyR === $this->blockSize) {
                $tmp = $b->toArray();
                array_unshift($tmp, $this->blockSize);
                array_pop($tmp);
                $b = SplFixedArray::fromArray($tmp, false);
                continue;
            }

            $t[0] = $lambda[0];

            for ($i = 0; $i < $this->numRoots; ++$i) {
                if ($b[$i] !== $this->blockSize) {
                    $t[$i + 1] = $lambda[$i + 1] ^ $this->alphaTo[$this->modNn($discrepancyR + $b[$i])];
                } else {
                    $t[$i + 1] = $lambda[$i + 1];
                }
            }

            if (2 * $el <= $r + $numErasures - 1) {
                $el = $r + $numErasures - $el;

                for ($i = 0; $i <= $this->numRoots; ++$i) {
                    $b[$i] = (
                        $lambda[$i] === 0
                        ? $this->blockSize
                        : $this->modNn($this->indexOf[$lambda[$i]] - $discrepancyR + $this->blockSize)
                    );
                }
            } else {
                $tmp = $b->toArray();
                array_unshift($tmp, $this->blockSize);
                array_pop($tmp);
                $b = SplFixedArray::fromArray($tmp, false);
            }

            $lambda = clone $t;
        }

        // Convert lambda to index form and compute deg(lambda(x))
        $degLambda = 0;

        for ($i = 0; $i <= $this->numRoots; ++$i) {
            $lambda[$i] = $this->indexOf[$lambda[$i]];

            if ($lambda[$i] !== $this->blockSize) {
                $degLambda = $i;
            }
        }

        // Find roots of the error+erasure locator polynomial by Chien search.
        $reg = clone $lambda;
        $reg[0] = 0;
        $count = 0;
        $i = 1;

        for ($k = $this->iPrimitive - 1; $i <= $this->blockSize; ++$i, $k = $this->modNn($k + $this->iPrimitive)) {
            $q = 1;

            for ($j = $degLambda; $j > 0; $j--) {
                if ($reg[$j] !== $this->blockSize) {
                    $reg[$j] = $this->modNn($reg[$j] + $j);
                    $q ^= $this->alphaTo[$reg[$j]];
                }
            }

            if ($q !== 0) {
                // Not a root
                continue;
            }

            // Store root (index-form) and error location number
            $root[$count] = $i;
            $loc[$count] = $k;

            if (++$count === $degLambda) {
                break;
            }
        }

        if ($degLambda !== $count) {
            // deg(lambda) unequal to number of roots: uncorrectable error detected
            return null;
        }

        // Compute err+eras evaluate poly omega(x) = s(x)*lambda(x) (modulo x**numRoots). In index form. Also find
        // deg(omega).
        $degOmega = $degLambda - 1;

        for ($i = 0; $i <= $degOmega; ++$i) {
            $tmp = 0;

            for ($j = $i; $j >= 0; --$j) {
                if ($syndromes[$i - $j] !== $this->blockSize && $lambda[$j] !== $this->blockSize) {
                    $tmp ^= $this->alphaTo[$this->modNn($syndromes[$i - $j] + $lambda[$j])];
                }
            }

            $omega[$i] = $this->indexOf[$tmp];
        }

        // Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(firstRoot-1) and
        // den = lambda_pr(inv(X(l))) all in poly form.
        for ($j = $count - 1; $j >= 0; --$j) {
            $num1 = 0;

            for ($i = $degOmega; $i >= 0; $i--) {
                if ($omega[$i] !== $this->blockSize) {
                    $num1 ^= $this->alphaTo[$this->modNn($omega[$i] + $i * $root[$j])];
                }
            }

            $num2 = $this->alphaTo[$this->modNn($root[$j] * ($this->firstRoot - 1) + $this->blockSize)];
            $den  = 0;

            // lambda[i+1] for i even is the formal derivativelambda_pr of lambda[i]
            for ($i = min($degLambda, $this->numRoots - 1) & ~1; $i >= 0; $i -= 2) {
                if ($lambda[$i + 1] !== $this->blockSize) {
                    $den ^= $this->alphaTo[$this->modNn($lambda[$i + 1] + $i * $root[$j])];
                }
            }

            // Apply error to data
            if ($num1 !== 0 && $loc[$j] >= $this->padding) {
                $data[$loc[$j] - $this->padding] = $data[$loc[$j] - $this->padding] ^ (
                    $this->alphaTo[
                        $this->modNn(
                            $this->indexOf[$num1] + $this->indexOf[$num2] + $this->blockSize - $this->indexOf[$den]
                        )
                    ]
                );
            }
        }

        if (null !== $erasures) {
            if (count($erasures) < $count) {
                $erasures->setSize($count);
            }

            for ($i = 0; $i < $count; $i++) {
                $erasures[$i] = $loc[$i];
            }
        }

        return $count;
    }

    /**
     * Computes $x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1, without a slow divide.
     */
    private function modNn(int $x) : int
    {
        while ($x >= $this->blockSize) {
            $x -= $this->blockSize;
            $x = ($x >> $this->symbolSize) + ($x & $this->blockSize);
        }

        return $x;
    }
}

Youez - 2016 - github.com/yon3zu
LinuXploit