Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.140.188.174
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/thread-self/root/proc/self/root/lib64/python2.7/Demo/classes/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/thread-self/root/proc/self/root/lib64/python2.7/Demo/classes/Complex.py
# Complex numbers
# ---------------

# [Now that Python has a complex data type built-in, this is not very
# useful, but it's still a nice example class]

# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part).  In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
#                 if z is a tuple(re, im) it will also be converted
# PolarToComplex([r [,phi [,fullcircle]]]) ->
#       the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
#       (r and phi default to 0)
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
#            the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# The cmath modules should be used instead.
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar   for *,/,pow

import math
import sys

twopi = math.pi*2.0
halfpi = math.pi/2.0

def IsComplex(obj):
    return hasattr(obj, 're') and hasattr(obj, 'im')

def ToComplex(obj):
    if IsComplex(obj):
        return obj
    elif isinstance(obj, tuple):
        return Complex(*obj)
    else:
        return Complex(obj)

def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
    phi = phi * (twopi / fullcircle)
    return Complex(math.cos(phi)*r, math.sin(phi)*r)

def Re(obj):
    if IsComplex(obj):
        return obj.re
    return obj

def Im(obj):
    if IsComplex(obj):
        return obj.im
    return 0

class Complex:

    def __init__(self, re=0, im=0):
        _re = 0
        _im = 0
        if IsComplex(re):
            _re = re.re
            _im = re.im
        else:
            _re = re
        if IsComplex(im):
            _re = _re - im.im
            _im = _im + im.re
        else:
            _im = _im + im
        # this class is immutable, so setting self.re directly is
        # not possible.
        self.__dict__['re'] = _re
        self.__dict__['im'] = _im

    def __setattr__(self, name, value):
        raise TypeError, 'Complex numbers are immutable'

    def __hash__(self):
        if not self.im:
            return hash(self.re)
        return hash((self.re, self.im))

    def __repr__(self):
        if not self.im:
            return 'Complex(%r)' % (self.re,)
        else:
            return 'Complex(%r, %r)' % (self.re, self.im)

    def __str__(self):
        if not self.im:
            return repr(self.re)
        else:
            return 'Complex(%r, %r)' % (self.re, self.im)

    def __neg__(self):
        return Complex(-self.re, -self.im)

    def __pos__(self):
        return self

    def __abs__(self):
        return math.hypot(self.re, self.im)

    def __int__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to int"
        return int(self.re)

    def __long__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to long"
        return long(self.re)

    def __float__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to float"
        return float(self.re)

    def __cmp__(self, other):
        other = ToComplex(other)
        return cmp((self.re, self.im), (other.re, other.im))

    def __rcmp__(self, other):
        other = ToComplex(other)
        return cmp(other, self)

    def __nonzero__(self):
        return not (self.re == self.im == 0)

    abs = radius = __abs__

    def angle(self, fullcircle = twopi):
        return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)

    phi = angle

    def __add__(self, other):
        other = ToComplex(other)
        return Complex(self.re + other.re, self.im + other.im)

    __radd__ = __add__

    def __sub__(self, other):
        other = ToComplex(other)
        return Complex(self.re - other.re, self.im - other.im)

    def __rsub__(self, other):
        other = ToComplex(other)
        return other - self

    def __mul__(self, other):
        other = ToComplex(other)
        return Complex(self.re*other.re - self.im*other.im,
                       self.re*other.im + self.im*other.re)

    __rmul__ = __mul__

    def __div__(self, other):
        other = ToComplex(other)
        d = float(other.re*other.re + other.im*other.im)
        if not d: raise ZeroDivisionError, 'Complex division'
        return Complex((self.re*other.re + self.im*other.im) / d,
                       (self.im*other.re - self.re*other.im) / d)

    def __rdiv__(self, other):
        other = ToComplex(other)
        return other / self

    def __pow__(self, n, z=None):
        if z is not None:
            raise TypeError, 'Complex does not support ternary pow()'
        if IsComplex(n):
            if n.im:
                if self.im: raise TypeError, 'Complex to the Complex power'
                else: return exp(math.log(self.re)*n)
            n = n.re
        r = pow(self.abs(), n)
        phi = n*self.angle()
        return Complex(math.cos(phi)*r, math.sin(phi)*r)

    def __rpow__(self, base):
        base = ToComplex(base)
        return pow(base, self)

def exp(z):
    r = math.exp(z.re)
    return Complex(math.cos(z.im)*r,math.sin(z.im)*r)


def checkop(expr, a, b, value, fuzz = 1e-6):
    print '       ', a, 'and', b,
    try:
        result = eval(expr)
    except:
        result = sys.exc_type
    print '->', result
    if isinstance(result, str) or isinstance(value, str):
        ok = (result == value)
    else:
        ok = abs(result - value) <= fuzz
    if not ok:
        print '!!\t!!\t!! should be', value, 'diff', abs(result - value)

def test():
    print 'test constructors'
    constructor_test = (
        # "expect" is an array [re,im] "got" the Complex.
            ( (0,0), Complex() ),
            ( (0,0), Complex() ),
            ( (1,0), Complex(1) ),
            ( (0,1), Complex(0,1) ),
            ( (1,2), Complex(Complex(1,2)) ),
            ( (1,3), Complex(Complex(1,2),1) ),
            ( (0,0), Complex(0,Complex(0,0)) ),
            ( (3,4), Complex(3,Complex(4)) ),
            ( (-1,3), Complex(1,Complex(3,2)) ),
            ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
    cnt = [0,0]
    for t in constructor_test:
        cnt[0] += 1
        if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
            print "        expected", t[0], "got", t[1]
            cnt[1] += 1
    print "  ", cnt[1], "of", cnt[0], "tests failed"
    # test operators
    testsuite = {
            'a+b': [
                    (1, 10, 11),
                    (1, Complex(0,10), Complex(1,10)),
                    (Complex(0,10), 1, Complex(1,10)),
                    (Complex(0,10), Complex(1), Complex(1,10)),
                    (Complex(1), Complex(0,10), Complex(1,10)),
            ],
            'a-b': [
                    (1, 10, -9),
                    (1, Complex(0,10), Complex(1,-10)),
                    (Complex(0,10), 1, Complex(-1,10)),
                    (Complex(0,10), Complex(1), Complex(-1,10)),
                    (Complex(1), Complex(0,10), Complex(1,-10)),
            ],
            'a*b': [
                    (1, 10, 10),
                    (1, Complex(0,10), Complex(0, 10)),
                    (Complex(0,10), 1, Complex(0,10)),
                    (Complex(0,10), Complex(1), Complex(0,10)),
                    (Complex(1), Complex(0,10), Complex(0,10)),
            ],
            'a/b': [
                    (1., 10, 0.1),
                    (1, Complex(0,10), Complex(0, -0.1)),
                    (Complex(0, 10), 1, Complex(0, 10)),
                    (Complex(0, 10), Complex(1), Complex(0, 10)),
                    (Complex(1), Complex(0,10), Complex(0, -0.1)),
            ],
            'pow(a,b)': [
                    (1, 10, 1),
                    (1, Complex(0,10), 1),
                    (Complex(0,10), 1, Complex(0,10)),
                    (Complex(0,10), Complex(1), Complex(0,10)),
                    (Complex(1), Complex(0,10), 1),
                    (2, Complex(4,0), 16),
            ],
            'cmp(a,b)': [
                    (1, 10, -1),
                    (1, Complex(0,10), 1),
                    (Complex(0,10), 1, -1),
                    (Complex(0,10), Complex(1), -1),
                    (Complex(1), Complex(0,10), 1),
            ],
    }
    for expr in sorted(testsuite):
        print expr + ':'
        t = (expr,)
        for item in testsuite[expr]:
            checkop(*(t+item))


if __name__ == '__main__':
    test()

Youez - 2016 - github.com/yon3zu
LinuXploit