Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.144.119.149
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/imunify360/venv/lib/python3.11/site-packages/Crypto/PublicKey/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/imunify360/venv/lib/python3.11/site-packages/Crypto/PublicKey//ECC.py
# ===================================================================
#
# Copyright (c) 2015, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

from __future__ import print_function

import re
import struct
import binascii
from collections import namedtuple

from Crypto.Util.py3compat import bord, tobytes, tostr, bchr, is_string
from Crypto.Util.number import bytes_to_long, long_to_bytes

from Crypto.Math.Numbers import Integer
from Crypto.Util.asn1 import (DerObjectId, DerOctetString, DerSequence,
                              DerBitString)

from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
                                  SmartPointer, c_size_t, c_uint8_ptr,
                                  c_ulonglong, null_pointer)

from Crypto.PublicKey import (_expand_subject_public_key_info,
                              _create_subject_public_key_info,
                              _extract_subject_public_key_info)

from Crypto.Hash import SHA512, SHAKE256

from Crypto.Random import get_random_bytes
from Crypto.Random.random import getrandbits


_ec_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ec_ws", """
typedef void EcContext;
typedef void EcPoint;
int ec_ws_new_context(EcContext **pec_ctx,
                      const uint8_t *modulus,
                      const uint8_t *b,
                      const uint8_t *order,
                      size_t len,
                      uint64_t seed);
void ec_free_context(EcContext *ec_ctx);
int ec_ws_new_point(EcPoint **pecp,
                    const uint8_t *x,
                    const uint8_t *y,
                    size_t len,
                    const EcContext *ec_ctx);
void ec_ws_free_point(EcPoint *ecp);
int ec_ws_get_xy(uint8_t *x,
                 uint8_t *y,
                 size_t len,
                 const EcPoint *ecp);
int ec_ws_double(EcPoint *p);
int ec_ws_add(EcPoint *ecpa, EcPoint *ecpb);
int ec_ws_scalar(EcPoint *ecp,
                 const uint8_t *k,
                 size_t len,
                 uint64_t seed);
int ec_ws_clone(EcPoint **pecp2, const EcPoint *ecp);
int ec_ws_cmp(const EcPoint *ecp1, const EcPoint *ecp2);
int ec_ws_neg(EcPoint *p);
""")

_ed25519_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed25519", """
typedef void Point;
int ed25519_new_point(Point **out,
                      const uint8_t x[32],
                      const uint8_t y[32],
                      size_t modsize,
                      const void *context);
int ed25519_clone(Point **P, const Point *Q);
void ed25519_free_point(Point *p);
int ed25519_cmp(const Point *p1, const Point *p2);
int ed25519_neg(Point *p);
int ed25519_get_xy(uint8_t *xb, uint8_t *yb, size_t modsize, Point *p);
int ed25519_double(Point *p);
int ed25519_add(Point *P1, const Point *P2);
int ed25519_scalar(Point *P, const uint8_t *scalar, size_t scalar_len, uint64_t seed);
""")

_ed448_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed448", """
typedef void EcContext;
typedef void PointEd448;
int ed448_new_context(EcContext **pec_ctx);
void ed448_context(EcContext *ec_ctx);
void ed448_free_context(EcContext *ec_ctx);
int ed448_new_point(PointEd448 **out,
                    const uint8_t x[56],
                    const uint8_t y[56],
                    size_t len,
                    const EcContext *context);
int ed448_clone(PointEd448 **P, const PointEd448 *Q);
void ed448_free_point(PointEd448 *p);
int ed448_cmp(const PointEd448 *p1, const PointEd448 *p2);
int ed448_neg(PointEd448 *p);
int ed448_get_xy(uint8_t *xb, uint8_t *yb, size_t len, const PointEd448 *p);
int ed448_double(PointEd448 *p);
int ed448_add(PointEd448 *P1, const PointEd448 *P2);
int ed448_scalar(PointEd448 *P, const uint8_t *scalar, size_t scalar_len, uint64_t seed);
""")


def lib_func(ecc_obj, func_name):
    if ecc_obj._curve.desc == "Ed25519":
        result = getattr(_ed25519_lib, "ed25519_" + func_name)
    elif ecc_obj._curve.desc == "Ed448":
        result = getattr(_ed448_lib, "ed448_" + func_name)
    else:
        result = getattr(_ec_lib, "ec_ws_" + func_name)
    return result

#
# _curves is a database of curve parameters. Items are indexed by their
# human-friendly name, suchas "P-256". Each item has the following fields:
# - p:              the prime number that defines the finite field for all modulo operations
# - b:              the constant in the Short Weierstrass curve equation
# - order:          the number of elements in the group with the generator below
# - Gx              the affine coordinate X of the generator point
# - Gy              the affine coordinate Y of the generator point
# - G               the generator, as an EccPoint object
# - modulus_bits    the minimum number of bits for encoding the modulus p
# - oid             an ASCII string with the registered ASN.1 Object ID
# - context         a raw pointer to memory holding a context for all curve operations (can be NULL)
# - desc            an ASCII string describing the curve
# - openssh         the ASCII string used in OpenSSH id files for public keys on this curve
# - name            the ASCII string which is also a valid key in _curves


_Curve = namedtuple("_Curve", "p b order Gx Gy G modulus_bits oid context desc openssh name")
_curves = {}


p192_names = ["p192", "NIST P-192", "P-192", "prime192v1", "secp192r1",
              "nistp192"]


def init_p192():
    p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff
    b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
    order = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831
    Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
    Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

    p192_modulus = long_to_bytes(p, 24)
    p192_b = long_to_bytes(b, 24)
    p192_order = long_to_bytes(order, 24)

    ec_p192_context = VoidPointer()
    result = _ec_lib.ec_ws_new_context(ec_p192_context.address_of(),
                                       c_uint8_ptr(p192_modulus),
                                       c_uint8_ptr(p192_b),
                                       c_uint8_ptr(p192_order),
                                       c_size_t(len(p192_modulus)),
                                       c_ulonglong(getrandbits(64))
                                       )
    if result:
        raise ImportError("Error %d initializing P-192 context" % result)

    context = SmartPointer(ec_p192_context.get(), _ec_lib.ec_free_context)
    p192 = _Curve(Integer(p),
                  Integer(b),
                  Integer(order),
                  Integer(Gx),
                  Integer(Gy),
                  None,
                  192,
                  "1.2.840.10045.3.1.1",    # ANSI X9.62 / SEC2
                  context,
                  "NIST P-192",
                  "ecdsa-sha2-nistp192",
                  "p192")
    global p192_names
    _curves.update(dict.fromkeys(p192_names, p192))


init_p192()
del init_p192


p224_names = ["p224", "NIST P-224", "P-224", "prime224v1", "secp224r1",
              "nistp224"]


def init_p224():
    p = 0xffffffffffffffffffffffffffffffff000000000000000000000001
    b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
    order = 0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3d
    Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21
    Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34

    p224_modulus = long_to_bytes(p, 28)
    p224_b = long_to_bytes(b, 28)
    p224_order = long_to_bytes(order, 28)

    ec_p224_context = VoidPointer()
    result = _ec_lib.ec_ws_new_context(ec_p224_context.address_of(),
                                       c_uint8_ptr(p224_modulus),
                                       c_uint8_ptr(p224_b),
                                       c_uint8_ptr(p224_order),
                                       c_size_t(len(p224_modulus)),
                                       c_ulonglong(getrandbits(64))
                                       )
    if result:
        raise ImportError("Error %d initializing P-224 context" % result)

    context = SmartPointer(ec_p224_context.get(), _ec_lib.ec_free_context)
    p224 = _Curve(Integer(p),
                  Integer(b),
                  Integer(order),
                  Integer(Gx),
                  Integer(Gy),
                  None,
                  224,
                  "1.3.132.0.33",    # SEC 2
                  context,
                  "NIST P-224",
                  "ecdsa-sha2-nistp224",
                  "p224")
    global p224_names
    _curves.update(dict.fromkeys(p224_names, p224))


init_p224()
del init_p224


p256_names = ["p256", "NIST P-256", "P-256", "prime256v1", "secp256r1",
              "nistp256"]


def init_p256():
    p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff
    b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
    order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
    Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
    Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5

    p256_modulus = long_to_bytes(p, 32)
    p256_b = long_to_bytes(b, 32)
    p256_order = long_to_bytes(order, 32)

    ec_p256_context = VoidPointer()
    result = _ec_lib.ec_ws_new_context(ec_p256_context.address_of(),
                                       c_uint8_ptr(p256_modulus),
                                       c_uint8_ptr(p256_b),
                                       c_uint8_ptr(p256_order),
                                       c_size_t(len(p256_modulus)),
                                       c_ulonglong(getrandbits(64))
                                       )
    if result:
        raise ImportError("Error %d initializing P-256 context" % result)

    context = SmartPointer(ec_p256_context.get(), _ec_lib.ec_free_context)
    p256 = _Curve(Integer(p),
                  Integer(b),
                  Integer(order),
                  Integer(Gx),
                  Integer(Gy),
                  None,
                  256,
                  "1.2.840.10045.3.1.7",    # ANSI X9.62 / SEC2
                  context,
                  "NIST P-256",
                  "ecdsa-sha2-nistp256",
                  "p256")
    global p256_names
    _curves.update(dict.fromkeys(p256_names, p256))


init_p256()
del init_p256


p384_names = ["p384", "NIST P-384", "P-384", "prime384v1", "secp384r1",
              "nistp384"]


def init_p384():
    p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff
    b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
    order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
    Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760aB7
    Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5F

    p384_modulus = long_to_bytes(p, 48)
    p384_b = long_to_bytes(b, 48)
    p384_order = long_to_bytes(order, 48)

    ec_p384_context = VoidPointer()
    result = _ec_lib.ec_ws_new_context(ec_p384_context.address_of(),
                                       c_uint8_ptr(p384_modulus),
                                       c_uint8_ptr(p384_b),
                                       c_uint8_ptr(p384_order),
                                       c_size_t(len(p384_modulus)),
                                       c_ulonglong(getrandbits(64))
                                       )
    if result:
        raise ImportError("Error %d initializing P-384 context" % result)

    context = SmartPointer(ec_p384_context.get(), _ec_lib.ec_free_context)
    p384 = _Curve(Integer(p),
                  Integer(b),
                  Integer(order),
                  Integer(Gx),
                  Integer(Gy),
                  None,
                  384,
                  "1.3.132.0.34",   # SEC 2
                  context,
                  "NIST P-384",
                  "ecdsa-sha2-nistp384",
                  "p384")
    global p384_names
    _curves.update(dict.fromkeys(p384_names, p384))


init_p384()
del init_p384


p521_names = ["p521", "NIST P-521", "P-521", "prime521v1", "secp521r1",
              "nistp521"]


def init_p521():
    p = 0x000001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
    b = 0x00000051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00
    order = 0x000001fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
    Gx = 0x000000c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66
    Gy = 0x0000011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650

    p521_modulus = long_to_bytes(p, 66)
    p521_b = long_to_bytes(b, 66)
    p521_order = long_to_bytes(order, 66)

    ec_p521_context = VoidPointer()
    result = _ec_lib.ec_ws_new_context(ec_p521_context.address_of(),
                                       c_uint8_ptr(p521_modulus),
                                       c_uint8_ptr(p521_b),
                                       c_uint8_ptr(p521_order),
                                       c_size_t(len(p521_modulus)),
                                       c_ulonglong(getrandbits(64))
                                       )
    if result:
        raise ImportError("Error %d initializing P-521 context" % result)

    context = SmartPointer(ec_p521_context.get(), _ec_lib.ec_free_context)
    p521 = _Curve(Integer(p),
                  Integer(b),
                  Integer(order),
                  Integer(Gx),
                  Integer(Gy),
                  None,
                  521,
                  "1.3.132.0.35",   # SEC 2
                  context,
                  "NIST P-521",
                  "ecdsa-sha2-nistp521",
                  "p521")
    global p521_names
    _curves.update(dict.fromkeys(p521_names, p521))


init_p521()
del init_p521


ed25519_names = ["ed25519", "Ed25519"]


def init_ed25519():
    p = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed  # 2**255 - 19
    order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
    Gx = 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a
    Gy = 0x6666666666666666666666666666666666666666666666666666666666666658

    ed25519 = _Curve(Integer(p),
                     None,
                     Integer(order),
                     Integer(Gx),
                     Integer(Gy),
                     None,
                     255,
                     "1.3.101.112",     # RFC8410
                     None,
                     "Ed25519",         # Used throughout; do not change
                     "ssh-ed25519",
                     "ed25519")
    global ed25519_names
    _curves.update(dict.fromkeys(ed25519_names, ed25519))


init_ed25519()
del init_ed25519


ed448_names = ["ed448", "Ed448"]


def init_ed448():
    p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff  # 2**448 - 2**224 - 1
    order = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3
    Gx = 0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e
    Gy = 0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14

    ed448_context = VoidPointer()
    result = _ed448_lib.ed448_new_context(ed448_context.address_of())
    if result:
        raise ImportError("Error %d initializing Ed448 context" % result)

    context = SmartPointer(ed448_context.get(), _ed448_lib.ed448_free_context)

    ed448 = _Curve(Integer(p),
                   None,
                   Integer(order),
                   Integer(Gx),
                   Integer(Gy),
                   None,
                   448,
                   "1.3.101.113",       # RFC8410
                   context,
                   "Ed448",             # Used throughout; do not change
                   None,
                   "ed448")
    global ed448_names
    _curves.update(dict.fromkeys(ed448_names, ed448))


init_ed448()
del init_ed448


class UnsupportedEccFeature(ValueError):
    pass


class EccPoint(object):
    """A class to model a point on an Elliptic Curve.

    The class supports operators for:

    * Adding two points: ``R = S + T``
    * In-place addition: ``S += T``
    * Negating a point: ``R = -T``
    * Comparing two points: ``if S == T: ...`` or ``if S != T: ...``
    * Multiplying a point by a scalar: ``R = S*k``
    * In-place multiplication by a scalar: ``T *= k``

    :ivar x: The affine X-coordinate of the ECC point
    :vartype x: integer

    :ivar y: The affine Y-coordinate of the ECC point
    :vartype y: integer

    :ivar xy: The tuple with affine X- and Y- coordinates
    """

    def __init__(self, x, y, curve="p256"):

        try:
            self._curve = _curves[curve]
        except KeyError:
            raise ValueError("Unknown curve name %s" % str(curve))
        self._curve_name = curve

        modulus_bytes = self.size_in_bytes()

        xb = long_to_bytes(x, modulus_bytes)
        yb = long_to_bytes(y, modulus_bytes)
        if len(xb) != modulus_bytes or len(yb) != modulus_bytes:
            raise ValueError("Incorrect coordinate length")

        new_point = lib_func(self, "new_point")
        free_func = lib_func(self, "free_point")

        self._point = VoidPointer()
        try:
            context = self._curve.context.get()
        except AttributeError:
            context = null_pointer
        result = new_point(self._point.address_of(),
                           c_uint8_ptr(xb),
                           c_uint8_ptr(yb),
                           c_size_t(modulus_bytes),
                           context)

        if result:
            if result == 15:
                raise ValueError("The EC point does not belong to the curve")
            raise ValueError("Error %d while instantiating an EC point" % result)

        # Ensure that object disposal of this Python object will (eventually)
        # free the memory allocated by the raw library for the EC point
        self._point = SmartPointer(self._point.get(), free_func)

    def set(self, point):
        clone = lib_func(self, "clone")
        free_func = lib_func(self, "free_point")

        self._point = VoidPointer()
        result = clone(self._point.address_of(),
                       point._point.get())

        if result:
            raise ValueError("Error %d while cloning an EC point" % result)

        self._point = SmartPointer(self._point.get(), free_func)
        return self

    def __eq__(self, point):
        if not isinstance(point, EccPoint):
            return False

        cmp_func = lib_func(self, "cmp")
        return 0 == cmp_func(self._point.get(), point._point.get())

    # Only needed for Python 2
    def __ne__(self, point):
        return not self == point

    def __neg__(self):
        neg_func = lib_func(self, "neg")
        np = self.copy()
        result = neg_func(np._point.get())
        if result:
            raise ValueError("Error %d while inverting an EC point" % result)
        return np

    def copy(self):
        """Return a copy of this point."""
        x, y = self.xy
        np = EccPoint(x, y, self._curve_name)
        return np

    def _is_eddsa(self):
        return self._curve.name in ("ed25519", "ed448")

    def is_point_at_infinity(self):
        """``True`` if this is the *point-at-infinity*."""

        if self._is_eddsa():
            return self.x == 0
        else:
            return self.xy == (0, 0)

    def point_at_infinity(self):
        """Return the *point-at-infinity* for the curve."""

        if self._is_eddsa():
            return EccPoint(0, 1, self._curve_name)
        else:
            return EccPoint(0, 0, self._curve_name)

    @property
    def x(self):
        return self.xy[0]

    @property
    def y(self):
        return self.xy[1]

    @property
    def xy(self):
        modulus_bytes = self.size_in_bytes()
        xb = bytearray(modulus_bytes)
        yb = bytearray(modulus_bytes)
        get_xy = lib_func(self, "get_xy")
        result = get_xy(c_uint8_ptr(xb),
                        c_uint8_ptr(yb),
                        c_size_t(modulus_bytes),
                        self._point.get())
        if result:
            raise ValueError("Error %d while encoding an EC point" % result)

        return (Integer(bytes_to_long(xb)), Integer(bytes_to_long(yb)))

    def size_in_bytes(self):
        """Size of each coordinate, in bytes."""
        return (self.size_in_bits() + 7) // 8

    def size_in_bits(self):
        """Size of each coordinate, in bits."""
        return self._curve.modulus_bits

    def double(self):
        """Double this point (in-place operation).

        Returns:
            This same object (to enable chaining).
        """

        double_func = lib_func(self, "double")
        result = double_func(self._point.get())
        if result:
            raise ValueError("Error %d while doubling an EC point" % result)
        return self

    def __iadd__(self, point):
        """Add a second point to this one"""

        add_func = lib_func(self, "add")
        result = add_func(self._point.get(), point._point.get())
        if result:
            if result == 16:
                raise ValueError("EC points are not on the same curve")
            raise ValueError("Error %d while adding two EC points" % result)
        return self

    def __add__(self, point):
        """Return a new point, the addition of this one and another"""

        np = self.copy()
        np += point
        return np

    def __imul__(self, scalar):
        """Multiply this point by a scalar"""

        scalar_func = lib_func(self, "scalar")
        if scalar < 0:
            raise ValueError("Scalar multiplication is only defined for non-negative integers")
        sb = long_to_bytes(scalar)
        result = scalar_func(self._point.get(),
                             c_uint8_ptr(sb),
                             c_size_t(len(sb)),
                             c_ulonglong(getrandbits(64)))
        if result:
            raise ValueError("Error %d during scalar multiplication" % result)
        return self

    def __mul__(self, scalar):
        """Return a new point, the scalar product of this one"""

        np = self.copy()
        np *= scalar
        return np

    def __rmul__(self, left_hand):
        return self.__mul__(left_hand)


# Last piece of initialization
p192_G = EccPoint(_curves['p192'].Gx, _curves['p192'].Gy, "p192")
p192 = _curves['p192']._replace(G=p192_G)
_curves.update(dict.fromkeys(p192_names, p192))
del p192_G, p192, p192_names

p224_G = EccPoint(_curves['p224'].Gx, _curves['p224'].Gy, "p224")
p224 = _curves['p224']._replace(G=p224_G)
_curves.update(dict.fromkeys(p224_names, p224))
del p224_G, p224, p224_names

p256_G = EccPoint(_curves['p256'].Gx, _curves['p256'].Gy, "p256")
p256 = _curves['p256']._replace(G=p256_G)
_curves.update(dict.fromkeys(p256_names, p256))
del p256_G, p256, p256_names

p384_G = EccPoint(_curves['p384'].Gx, _curves['p384'].Gy, "p384")
p384 = _curves['p384']._replace(G=p384_G)
_curves.update(dict.fromkeys(p384_names, p384))
del p384_G, p384, p384_names

p521_G = EccPoint(_curves['p521'].Gx, _curves['p521'].Gy, "p521")
p521 = _curves['p521']._replace(G=p521_G)
_curves.update(dict.fromkeys(p521_names, p521))
del p521_G, p521, p521_names

ed25519_G = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, "Ed25519")
ed25519 = _curves['Ed25519']._replace(G=ed25519_G)
_curves.update(dict.fromkeys(ed25519_names, ed25519))
del ed25519_G, ed25519, ed25519_names

ed448_G = EccPoint(_curves['Ed448'].Gx, _curves['Ed448'].Gy, "Ed448")
ed448 = _curves['Ed448']._replace(G=ed448_G)
_curves.update(dict.fromkeys(ed448_names, ed448))
del ed448_G, ed448, ed448_names


class EccKey(object):
    r"""Class defining an ECC key.
    Do not instantiate directly.
    Use :func:`generate`, :func:`construct` or :func:`import_key` instead.

    :ivar curve: The name of the curve as defined in the `ECC table`_.
    :vartype curve: string

    :ivar pointQ: an ECC point representating the public component.
    :vartype pointQ: :class:`EccPoint`

    :ivar d: A scalar that represents the private component
             in NIST P curves. It is smaller than the
             order of the generator point.
    :vartype d: integer

    :ivar seed: A seed that representats the private component
                in EdDSA curves
                (Ed25519, 32 bytes; Ed448, 57 bytes).
    :vartype seed: bytes
    """

    def __init__(self, **kwargs):
        """Create a new ECC key

        Keywords:
          curve : string
            The name of the curve.
          d : integer
            Mandatory for a private key one NIST P curves.
            It must be in the range ``[1..order-1]``.
          seed : bytes
            Mandatory for a private key on the Ed25519 (32 bytes)
            or Ed448 (57 bytes) curve.
          point : EccPoint
            Mandatory for a public key. If provided for a private key,
            the implementation will NOT check whether it matches ``d``.

        Only one parameter among ``d``, ``seed`` or ``point`` may be used.
        """

        kwargs_ = dict(kwargs)
        curve_name = kwargs_.pop("curve", None)
        self._d = kwargs_.pop("d", None)
        self._seed = kwargs_.pop("seed", None)
        self._point = kwargs_.pop("point", None)
        if curve_name is None and self._point:
            curve_name = self._point._curve_name
        if kwargs_:
            raise TypeError("Unknown parameters: " + str(kwargs_))

        if curve_name not in _curves:
            raise ValueError("Unsupported curve (%s)" % curve_name)
        self._curve = _curves[curve_name]
        self.curve = self._curve.desc

        count = int(self._d is not None) + int(self._seed is not None)

        if count == 0:
            if self._point is None:
                raise ValueError("At lest one between parameters 'point', 'd' or 'seed' must be specified")
            return

        if count == 2:
            raise ValueError("Parameters d and seed are mutually exclusive")

        # NIST P curves work with d, EdDSA works with seed

        if not self._is_eddsa():
            if self._seed is not None:
                raise ValueError("Parameter 'seed' can only be used with Ed25519 or Ed448")
            self._d = Integer(self._d)
            if not 1 <= self._d < self._curve.order:
                raise ValueError("Parameter d must be an integer smaller than the curve order")
        else:
            if self._d is not None:
                raise ValueError("Parameter d can only be used with NIST P curves")
            # RFC 8032, 5.1.5
            if self._curve.name == "ed25519":
                if len(self._seed) != 32:
                    raise ValueError("Parameter seed must be 32 bytes long for Ed25519")
                seed_hash = SHA512.new(self._seed).digest()   # h
                self._prefix = seed_hash[32:]
                tmp = bytearray(seed_hash[:32])
                tmp[0] &= 0xF8
                tmp[31] = (tmp[31] & 0x7F) | 0x40
            # RFC 8032, 5.2.5
            elif self._curve.name == "ed448":
                if len(self._seed) != 57:
                    raise ValueError("Parameter seed must be 57 bytes long for Ed448")
                seed_hash = SHAKE256.new(self._seed).read(114)  # h
                self._prefix = seed_hash[57:]
                tmp = bytearray(seed_hash[:57])
                tmp[0] &= 0xFC
                tmp[55] |= 0x80
                tmp[56] = 0
            self._d = Integer.from_bytes(tmp, byteorder='little')

    def _is_eddsa(self):
        return self._curve.desc in ("Ed25519", "Ed448")

    def __eq__(self, other):
        if not isinstance(other, EccKey):
            return False

        if other.has_private() != self.has_private():
            return False

        return other.pointQ == self.pointQ

    def __repr__(self):
        if self.has_private():
            if self._is_eddsa():
                extra = ", seed=%s" % tostr(binascii.hexlify(self._seed))
            else:
                extra = ", d=%d" % int(self._d)
        else:
            extra = ""
        x, y = self.pointQ.xy
        return "EccKey(curve='%s', point_x=%d, point_y=%d%s)" % (self._curve.desc, x, y, extra)

    def has_private(self):
        """``True`` if this key can be used for making signatures or decrypting data."""

        return self._d is not None

    # ECDSA
    def _sign(self, z, k):
        assert 0 < k < self._curve.order

        order = self._curve.order
        blind = Integer.random_range(min_inclusive=1,
                                     max_exclusive=order)

        blind_d = self._d * blind
        inv_blind_k = (blind * k).inverse(order)

        r = (self._curve.G * k).x % order
        s = inv_blind_k * (blind * z + blind_d * r) % order
        return (r, s)

    # ECDSA
    def _verify(self, z, rs):
        order = self._curve.order
        sinv = rs[1].inverse(order)
        point1 = self._curve.G * ((sinv * z) % order)
        point2 = self.pointQ * ((sinv * rs[0]) % order)
        return (point1 + point2).x == rs[0]

    @property
    def d(self):
        if not self.has_private():
            raise ValueError("This is not a private ECC key")
        return self._d

    @property
    def seed(self):
        if not self.has_private():
            raise ValueError("This is not a private ECC key")
        return self._seed

    @property
    def pointQ(self):
        if self._point is None:
            self._point = self._curve.G * self._d
        return self._point

    def public_key(self):
        """A matching ECC public key.

        Returns:
            a new :class:`EccKey` object
        """

        return EccKey(curve=self._curve.desc, point=self.pointQ)

    def _export_SEC1(self, compress):
        if self._is_eddsa():
            raise ValueError("SEC1 format is unsupported for EdDSA curves")

        # See 2.2 in RFC5480 and 2.3.3 in SEC1
        #
        # The first byte is:
        # - 0x02:   compressed, only X-coordinate, Y-coordinate is even
        # - 0x03:   compressed, only X-coordinate, Y-coordinate is odd
        # - 0x04:   uncompressed, X-coordinate is followed by Y-coordinate
        #
        # PAI is in theory encoded as 0x00.

        modulus_bytes = self.pointQ.size_in_bytes()

        if compress:
            if self.pointQ.y.is_odd():
                first_byte = b'\x03'
            else:
                first_byte = b'\x02'
            public_key = (first_byte +
                          self.pointQ.x.to_bytes(modulus_bytes))
        else:
            public_key = (b'\x04' +
                          self.pointQ.x.to_bytes(modulus_bytes) +
                          self.pointQ.y.to_bytes(modulus_bytes))
        return public_key

    def _export_eddsa(self):
        x, y = self.pointQ.xy
        if self._curve.name == "ed25519":
            result = bytearray(y.to_bytes(32, byteorder='little'))
            result[31] = ((x & 1) << 7) | result[31]
        elif self._curve.name == "ed448":
            result = bytearray(y.to_bytes(57, byteorder='little'))
            result[56] = (x & 1) << 7
        else:
            raise ValueError("Not an EdDSA key to export")
        return bytes(result)

    def _export_subjectPublicKeyInfo(self, compress):
        if self._is_eddsa():
            oid = self._curve.oid
            public_key = self._export_eddsa()
            params = None
        else:
            oid = "1.2.840.10045.2.1"   # unrestricted
            public_key = self._export_SEC1(compress)
            params = DerObjectId(self._curve.oid)

        return _create_subject_public_key_info(oid,
                                               public_key,
                                               params)

    def _export_rfc5915_private_der(self, include_ec_params=True):

        assert self.has_private()

        # ECPrivateKey ::= SEQUENCE {
        #           version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
        #           privateKey     OCTET STRING,
        #           parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
        #           publicKey  [1] BIT STRING OPTIONAL
        #    }

        # Public key - uncompressed form
        modulus_bytes = self.pointQ.size_in_bytes()
        public_key = (b'\x04' +
                      self.pointQ.x.to_bytes(modulus_bytes) +
                      self.pointQ.y.to_bytes(modulus_bytes))

        seq = [1,
               DerOctetString(self.d.to_bytes(modulus_bytes)),
               DerObjectId(self._curve.oid, explicit=0),
               DerBitString(public_key, explicit=1)]

        if not include_ec_params:
            del seq[2]

        return DerSequence(seq).encode()

    def _export_pkcs8(self, **kwargs):
        from Crypto.IO import PKCS8

        if kwargs.get('passphrase', None) is not None and 'protection' not in kwargs:
            raise ValueError("At least the 'protection' parameter should be present")

        if self._is_eddsa():
            oid = self._curve.oid
            private_key = DerOctetString(self._seed).encode()
            params = None
        else:
            oid = "1.2.840.10045.2.1"  # unrestricted
            private_key = self._export_rfc5915_private_der(include_ec_params=False)
            params = DerObjectId(self._curve.oid)

        result = PKCS8.wrap(private_key,
                            oid,
                            key_params=params,
                            **kwargs)
        return result

    def _export_public_pem(self, compress):
        from Crypto.IO import PEM

        encoded_der = self._export_subjectPublicKeyInfo(compress)
        return PEM.encode(encoded_der, "PUBLIC KEY")

    def _export_private_pem(self, passphrase, **kwargs):
        from Crypto.IO import PEM

        encoded_der = self._export_rfc5915_private_der()
        return PEM.encode(encoded_der, "EC PRIVATE KEY", passphrase, **kwargs)

    def _export_private_clear_pkcs8_in_clear_pem(self):
        from Crypto.IO import PEM

        encoded_der = self._export_pkcs8()
        return PEM.encode(encoded_der, "PRIVATE KEY")

    def _export_private_encrypted_pkcs8_in_clear_pem(self, passphrase, **kwargs):
        from Crypto.IO import PEM

        assert passphrase
        if 'protection' not in kwargs:
            raise ValueError("At least the 'protection' parameter should be present")
        encoded_der = self._export_pkcs8(passphrase=passphrase, **kwargs)
        return PEM.encode(encoded_der, "ENCRYPTED PRIVATE KEY")

    def _export_openssh(self, compress):
        if self.has_private():
            raise ValueError("Cannot export OpenSSH private keys")

        desc = self._curve.openssh

        if desc is None:
            raise ValueError("Cannot export %s keys as OpenSSH" % self._curve.name)
        elif desc == "ssh-ed25519":
            public_key = self._export_eddsa()
            comps = (tobytes(desc), tobytes(public_key))
        else:
            modulus_bytes = self.pointQ.size_in_bytes()

            if compress:
                first_byte = 2 + self.pointQ.y.is_odd()
                public_key = (bchr(first_byte) +
                              self.pointQ.x.to_bytes(modulus_bytes))
            else:
                public_key = (b'\x04' +
                              self.pointQ.x.to_bytes(modulus_bytes) +
                              self.pointQ.y.to_bytes(modulus_bytes))

            middle = desc.split("-")[2]
            comps = (tobytes(desc), tobytes(middle), public_key)

        blob = b"".join([struct.pack(">I", len(x)) + x for x in comps])
        return desc + " " + tostr(binascii.b2a_base64(blob))

    def export_key(self, **kwargs):
        """Export this ECC key.

        Args:
          format (string):
            The format to use for encoding the key:

            - ``'DER'``. The key will be encoded in ASN.1 DER format (binary).
              For a public key, the ASN.1 ``subjectPublicKeyInfo`` structure
              defined in `RFC5480`_ will be used.
              For a private key, the ASN.1 ``ECPrivateKey`` structure defined
              in `RFC5915`_ is used instead (possibly within a PKCS#8 envelope,
              see the ``use_pkcs8`` flag below).
            - ``'PEM'``. The key will be encoded in a PEM_ envelope (ASCII).
            - ``'OpenSSH'``. The key will be encoded in the OpenSSH_ format
              (ASCII, public keys only).
            - ``'SEC1'``. The public key (i.e., the EC point) will be encoded
              into ``bytes`` according to Section 2.3.3 of `SEC1`_
              (which is a subset of the older X9.62 ITU standard).
              Only for NIST P-curves.
            - ``'raw'``. The public key will be encoded as ``bytes``,
              without any metadata.

              * For NIST P-curves: equivalent to ``'SEC1'``.
              * For EdDSA curves: ``bytes`` in the format defined in `RFC8032`_.

          passphrase (byte string or string):
            The passphrase to use for protecting the private key.

          use_pkcs8 (boolean):
            Only relevant for private keys.

            If ``True`` (default and recommended), the `PKCS#8`_ representation
            will be used. It must be ``True`` for EdDSA curves.

          protection (string):
            When a private key is exported with password-protection
            and PKCS#8 (both ``DER`` and ``PEM`` formats), this parameter MUST be
            present and be a valid algorithm supported by :mod:`Crypto.IO.PKCS8`.
            It is recommended to use ``PBKDF2WithHMAC-SHA1AndAES128-CBC``.

          compress (boolean):
            If ``True``, the method returns a more compact representation
            of the public key, with the X-coordinate only.

            If ``False`` (default), the method returns the full public key.

            This parameter is ignored for EdDSA curves, as compression is
            mandatory.

        .. warning::
            If you don't provide a passphrase, the private key will be
            exported in the clear!

        .. note::
            When exporting a private key with password-protection and `PKCS#8`_
            (both ``DER`` and ``PEM`` formats), any extra parameters
            to ``export_key()`` will be passed to :mod:`Crypto.IO.PKCS8`.

        .. _PEM:        http://www.ietf.org/rfc/rfc1421.txt
        .. _`PEM encryption`: http://www.ietf.org/rfc/rfc1423.txt
        .. _OpenSSH:    http://www.openssh.com/txt/rfc5656.txt
        .. _RFC5480:    https://tools.ietf.org/html/rfc5480
        .. _SEC1:       https://www.secg.org/sec1-v2.pdf

        Returns:
            A multi-line string (for ``'PEM'`` and ``'OpenSSH'``) or
            ``bytes`` (for ``'DER'``, ``'SEC1'``, and ``'raw'``) with the encoded key.
        """

        args = kwargs.copy()
        ext_format = args.pop("format")
        if ext_format not in ("PEM", "DER", "OpenSSH", "SEC1", "raw"):
            raise ValueError("Unknown format '%s'" % ext_format)

        compress = args.pop("compress", False)

        if self.has_private():
            passphrase = args.pop("passphrase", None)
            if is_string(passphrase):
                passphrase = tobytes(passphrase)
                if not passphrase:
                    raise ValueError("Empty passphrase")
            use_pkcs8 = args.pop("use_pkcs8", True)

            if not use_pkcs8 and self._is_eddsa():
                raise ValueError("'pkcs8' must be True for EdDSA curves")

            if ext_format == "PEM":
                if use_pkcs8:
                    if passphrase:
                        return self._export_private_encrypted_pkcs8_in_clear_pem(passphrase, **args)
                    else:
                        return self._export_private_clear_pkcs8_in_clear_pem()
                else:
                    return self._export_private_pem(passphrase, **args)
            elif ext_format == "DER":
                # DER
                if passphrase and not use_pkcs8:
                    raise ValueError("Private keys can only be encrpyted with DER using PKCS#8")
                if use_pkcs8:
                    return self._export_pkcs8(passphrase=passphrase, **args)
                else:
                    return self._export_rfc5915_private_der()
            else:
                raise ValueError("Private keys cannot be exported "
                                 "in the '%s' format" % ext_format)
        else:  # Public key
            if args:
                raise ValueError("Unexpected parameters: '%s'" % args)
            if ext_format == "PEM":
                return self._export_public_pem(compress)
            elif ext_format == "DER":
                return self._export_subjectPublicKeyInfo(compress)
            elif ext_format == "SEC1":
                return self._export_SEC1(compress)
            elif ext_format == "raw":
                if self._curve.name in ('ed25519', 'ed448'):
                    return self._export_eddsa()
                else:
                    return self._export_SEC1(compress)
            else:
                return self._export_openssh(compress)


def generate(**kwargs):
    """Generate a new private key on the given curve.

    Args:

      curve (string):
        Mandatory. It must be a curve name defined in the `ECC table`_.

      randfunc (callable):
        Optional. The RNG to read randomness from.
        If ``None``, :func:`Crypto.Random.get_random_bytes` is used.
    """

    curve_name = kwargs.pop("curve")
    curve = _curves[curve_name]
    randfunc = kwargs.pop("randfunc", get_random_bytes)
    if kwargs:
        raise TypeError("Unknown parameters: " + str(kwargs))

    if _curves[curve_name].name == "ed25519":
        seed = randfunc(32)
        new_key = EccKey(curve=curve_name, seed=seed)
    elif _curves[curve_name].name == "ed448":
        seed = randfunc(57)
        new_key = EccKey(curve=curve_name, seed=seed)
    else:
        d = Integer.random_range(min_inclusive=1,
                                 max_exclusive=curve.order,
                                 randfunc=randfunc)
        new_key = EccKey(curve=curve_name, d=d)

    return new_key


def construct(**kwargs):
    """Build a new ECC key (private or public) starting
    from some base components.

    In most cases, you will already have an existing key
    which you can read in with :func:`import_key` instead
    of this function.

    Args:
      curve (string):
        Mandatory. The name of the elliptic curve, as defined in the `ECC table`_.

      d (integer):
        Mandatory for a private key and a NIST P-curve (e.g., P-256):
        the integer in the range ``[1..order-1]`` that represents the key.

      seed (bytes):
        Mandatory for a private key and an EdDSA curve.
        It must be 32 bytes for Ed25519, and 57 bytes for Ed448.

      point_x (integer):
        Mandatory for a public key: the X coordinate (affine) of the ECC point.

      point_y (integer):
        Mandatory for a public key: the Y coordinate (affine) of the ECC point.

    Returns:
      :class:`EccKey` : a new ECC key object
    """

    curve_name = kwargs["curve"]
    curve = _curves[curve_name]
    point_x = kwargs.pop("point_x", None)
    point_y = kwargs.pop("point_y", None)

    if "point" in kwargs:
        raise TypeError("Unknown keyword: point")

    if None not in (point_x, point_y):
        # ValueError is raised if the point is not on the curve
        kwargs["point"] = EccPoint(point_x, point_y, curve_name)

    new_key = EccKey(**kwargs)

    # Validate that the private key matches the public one
    # because EccKey will not do that automatically
    if new_key.has_private() and 'point' in kwargs:
        pub_key = curve.G * new_key.d
        if pub_key.xy != (point_x, point_y):
            raise ValueError("Private and public ECC keys do not match")

    return new_key


def _import_public_der(ec_point, curve_oid=None, curve_name=None):
    """Convert an encoded EC point into an EccKey object

    ec_point: byte string with the EC point (SEC1-encoded)
    curve_oid: string with the name the curve
    curve_name: string with the OID of the curve

    Either curve_id or curve_name must be specified

    """

    for _curve_name, curve in _curves.items():
        if curve_oid and curve.oid == curve_oid:
            break
        if curve_name == _curve_name:
            break
    else:
        if curve_oid:
            raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid)
        else:
            raise UnsupportedEccFeature("Unsupported ECC curve (%s)" % curve_name)

    # See 2.2 in RFC5480 and 2.3.3 in SEC1
    # The first byte is:
    # - 0x02:   compressed, only X-coordinate, Y-coordinate is even
    # - 0x03:   compressed, only X-coordinate, Y-coordinate is odd
    # - 0x04:   uncompressed, X-coordinate is followed by Y-coordinate
    #
    # PAI is in theory encoded as 0x00.

    modulus_bytes = curve.p.size_in_bytes()
    point_type = bord(ec_point[0])

    # Uncompressed point
    if point_type == 0x04:
        if len(ec_point) != (1 + 2 * modulus_bytes):
            raise ValueError("Incorrect EC point length")
        x = Integer.from_bytes(ec_point[1:modulus_bytes+1])
        y = Integer.from_bytes(ec_point[modulus_bytes+1:])
    # Compressed point
    elif point_type in (0x02, 0x03):
        if len(ec_point) != (1 + modulus_bytes):
            raise ValueError("Incorrect EC point length")
        x = Integer.from_bytes(ec_point[1:])
        # Right now, we only support Short Weierstrass curves
        y = (x**3 - x*3 + curve.b).sqrt(curve.p)
        if point_type == 0x02 and y.is_odd():
            y = curve.p - y
        if point_type == 0x03 and y.is_even():
            y = curve.p - y
    else:
        raise ValueError("Incorrect EC point encoding")

    return construct(curve=_curve_name, point_x=x, point_y=y)


def _import_subjectPublicKeyInfo(encoded, *kwargs):
    """Convert a subjectPublicKeyInfo into an EccKey object"""

    # See RFC5480

    # Parse the generic subjectPublicKeyInfo structure
    oid, ec_point, params = _expand_subject_public_key_info(encoded)

    nist_p_oids = (
        "1.2.840.10045.2.1",        # id-ecPublicKey (unrestricted)
        "1.3.132.1.12",             # id-ecDH
        "1.3.132.1.13"              # id-ecMQV
    )
    eddsa_oids = {
        "1.3.101.112": ("Ed25519", _import_ed25519_public_key),     # id-Ed25519
        "1.3.101.113": ("Ed448",   _import_ed448_public_key)        # id-Ed448
    }

    if oid in nist_p_oids:
        # See RFC5480

        # Parameters are mandatory and encoded as ECParameters
        # ECParameters ::= CHOICE {
        #   namedCurve         OBJECT IDENTIFIER
        #   -- implicitCurve   NULL
        #   -- specifiedCurve  SpecifiedECDomain
        # }
        # implicitCurve and specifiedCurve are not supported (as per RFC)
        if not params:
            raise ValueError("Missing ECC parameters for ECC OID %s" % oid)
        try:
            curve_oid = DerObjectId().decode(params).value
        except ValueError:
            raise ValueError("Error decoding namedCurve")

        # ECPoint ::= OCTET STRING
        return _import_public_der(ec_point, curve_oid=curve_oid)

    elif oid in eddsa_oids:
        # See RFC8410
        curve_name, import_eddsa_public_key = eddsa_oids[oid]

        # Parameters must be absent
        if params:
            raise ValueError("Unexpected ECC parameters for ECC OID %s" % oid)

        x, y = import_eddsa_public_key(ec_point)
        return construct(point_x=x, point_y=y, curve=curve_name)
    else:
        raise UnsupportedEccFeature("Unsupported ECC OID: %s" % oid)


def _import_rfc5915_der(encoded, passphrase, curve_oid=None):

    # See RFC5915 https://tools.ietf.org/html/rfc5915
    #
    # ECPrivateKey ::= SEQUENCE {
    #           version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
    #           privateKey     OCTET STRING,
    #           parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
    #           publicKey  [1] BIT STRING OPTIONAL
    #    }

    private_key = DerSequence().decode(encoded, nr_elements=(3, 4))
    if private_key[0] != 1:
        raise ValueError("Incorrect ECC private key version")

    try:
        parameters = DerObjectId(explicit=0).decode(private_key[2]).value
        if curve_oid is not None and parameters != curve_oid:
            raise ValueError("Curve mismatch")
        curve_oid = parameters
    except ValueError:
        pass

    if curve_oid is None:
        raise ValueError("No curve found")

    for curve_name, curve in _curves.items():
        if curve.oid == curve_oid:
            break
    else:
        raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid)

    scalar_bytes = DerOctetString().decode(private_key[1]).payload
    modulus_bytes = curve.p.size_in_bytes()
    if len(scalar_bytes) != modulus_bytes:
        raise ValueError("Private key is too small")
    d = Integer.from_bytes(scalar_bytes)

    # Decode public key (if any)
    if len(private_key) > 2:
        public_key_enc = DerBitString(explicit=1).decode(private_key[-1]).value
        public_key = _import_public_der(public_key_enc, curve_oid=curve_oid)
        point_x = public_key.pointQ.x
        point_y = public_key.pointQ.y
    else:
        point_x = point_y = None

    return construct(curve=curve_name, d=d, point_x=point_x, point_y=point_y)


def _import_pkcs8(encoded, passphrase):
    from Crypto.IO import PKCS8

    algo_oid, private_key, params = PKCS8.unwrap(encoded, passphrase)

    nist_p_oids = (
        "1.2.840.10045.2.1",        # id-ecPublicKey (unrestricted)
        "1.3.132.1.12",             # id-ecDH
        "1.3.132.1.13"              # id-ecMQV
    )
    eddsa_oids = {
        "1.3.101.112": "Ed25519",   # id-Ed25519
        "1.3.101.113": "Ed448",     # id-Ed448
    }

    if algo_oid in nist_p_oids:
        curve_oid = DerObjectId().decode(params).value
        return _import_rfc5915_der(private_key, passphrase, curve_oid)
    elif algo_oid in eddsa_oids:
        if params is not None:
            raise ValueError("EdDSA ECC private key must not have parameters")
        curve_oid = None
        seed = DerOctetString().decode(private_key).payload
        return construct(curve=eddsa_oids[algo_oid], seed=seed)
    else:
        raise UnsupportedEccFeature("Unsupported ECC purpose (OID: %s)" % algo_oid)


def _import_x509_cert(encoded, *kwargs):

    sp_info = _extract_subject_public_key_info(encoded)
    return _import_subjectPublicKeyInfo(sp_info)


def _import_der(encoded, passphrase):

    try:
        return _import_subjectPublicKeyInfo(encoded, passphrase)
    except UnsupportedEccFeature as err:
        raise err
    except (ValueError, TypeError, IndexError):
        pass

    try:
        return _import_x509_cert(encoded, passphrase)
    except UnsupportedEccFeature as err:
        raise err
    except (ValueError, TypeError, IndexError):
        pass

    try:
        return _import_rfc5915_der(encoded, passphrase)
    except UnsupportedEccFeature as err:
        raise err
    except (ValueError, TypeError, IndexError):
        pass

    try:
        return _import_pkcs8(encoded, passphrase)
    except UnsupportedEccFeature as err:
        raise err
    except (ValueError, TypeError, IndexError):
        pass

    raise ValueError("Not an ECC DER key")


def _import_openssh_public(encoded):
    parts = encoded.split(b' ')
    if len(parts) not in (2, 3):
        raise ValueError("Not an openssh public key")

    try:
        keystring = binascii.a2b_base64(parts[1])

        keyparts = []
        while len(keystring) > 4:
            lk = struct.unpack(">I", keystring[:4])[0]
            keyparts.append(keystring[4:4 + lk])
            keystring = keystring[4 + lk:]

        if parts[0] != keyparts[0]:
            raise ValueError("Mismatch in openssh public key")

        # NIST P curves
        if parts[0].startswith(b"ecdsa-sha2-"):

            for curve_name, curve in _curves.items():
                if curve.openssh is None:
                    continue
                if not curve.openssh.startswith("ecdsa-sha2"):
                    continue
                middle = tobytes(curve.openssh.split("-")[2])
                if keyparts[1] == middle:
                    break
            else:
                raise ValueError("Unsupported ECC curve: " + middle)

            ecc_key = _import_public_der(keyparts[2], curve_oid=curve.oid)

        # EdDSA
        elif parts[0] == b"ssh-ed25519":
            x, y = _import_ed25519_public_key(keyparts[1])
            ecc_key = construct(curve="Ed25519", point_x=x, point_y=y)
        else:
            raise ValueError("Unsupported SSH key type: " + parts[0])

    except (IndexError, TypeError, binascii.Error):
        raise ValueError("Error parsing SSH key type: " + parts[0])

    return ecc_key


def _import_openssh_private_ecc(data, password):

    from ._openssh import (import_openssh_private_generic,
                           read_bytes, read_string, check_padding)

    key_type, decrypted = import_openssh_private_generic(data, password)

    eddsa_keys = {
        "ssh-ed25519": ("Ed25519", _import_ed25519_public_key, 32),
    }

    # https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent-04
    if key_type.startswith("ecdsa-sha2"):

        ecdsa_curve_name, decrypted = read_string(decrypted)
        if ecdsa_curve_name not in _curves:
            raise UnsupportedEccFeature("Unsupported ECC curve %s" % ecdsa_curve_name)
        curve = _curves[ecdsa_curve_name]
        modulus_bytes = (curve.modulus_bits + 7) // 8

        public_key, decrypted = read_bytes(decrypted)

        if bord(public_key[0]) != 4:
            raise ValueError("Only uncompressed OpenSSH EC keys are supported")
        if len(public_key) != 2 * modulus_bytes + 1:
            raise ValueError("Incorrect public key length")

        point_x = Integer.from_bytes(public_key[1:1+modulus_bytes])
        point_y = Integer.from_bytes(public_key[1+modulus_bytes:])

        private_key, decrypted = read_bytes(decrypted)
        d = Integer.from_bytes(private_key)

        params = {'d': d, 'curve': ecdsa_curve_name}

    elif key_type in eddsa_keys:

        curve_name, import_eddsa_public_key, seed_len = eddsa_keys[key_type]

        public_key, decrypted = read_bytes(decrypted)
        point_x, point_y = import_eddsa_public_key(public_key)

        private_public_key, decrypted = read_bytes(decrypted)
        seed = private_public_key[:seed_len]

        params = {'seed': seed, 'curve': curve_name}
    else:
        raise ValueError("Unsupport SSH agent key type:" + key_type)

    _, padded = read_string(decrypted)  # Comment
    check_padding(padded)

    return construct(point_x=point_x, point_y=point_y, **params)


def _import_ed25519_public_key(encoded):
    """Import an Ed25519 ECC public key, encoded as raw bytes as described
    in RFC8032_.

    Args:
      encoded (bytes):
        The Ed25519 public key to import. It must be 32 bytes long.

    Returns:
      :class:`EccKey` : a new ECC key object

    Raises:
      ValueError: when the given key cannot be parsed.

    .. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032
    """

    if len(encoded) != 32:
        raise ValueError("Incorrect length. Only Ed25519 public keys are supported.")

    p = Integer(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed)  # 2**255 - 19
    d = 37095705934669439343138083508754565189542113879843219016388785533085940283555

    y = bytearray(encoded)
    x_lsb = y[31] >> 7
    y[31] &= 0x7F
    point_y = Integer.from_bytes(y, byteorder='little')
    if point_y >= p:
        raise ValueError("Invalid Ed25519 key (y)")
    if point_y == 1:
        return 0, 1

    u = (point_y**2 - 1) % p
    v = ((point_y**2 % p) * d + 1) % p
    try:
        v_inv = v.inverse(p)
        x2 = (u * v_inv) % p
        point_x = Integer._tonelli_shanks(x2, p)
        if (point_x & 1) != x_lsb:
            point_x = p - point_x
    except ValueError:
        raise ValueError("Invalid Ed25519 public key")
    return point_x, point_y


def _import_ed448_public_key(encoded):
    """Import an Ed448 ECC public key, encoded as raw bytes as described
    in RFC8032_.

    Args:
      encoded (bytes):
        The Ed448 public key to import. It must be 57 bytes long.

    Returns:
      :class:`EccKey` : a new ECC key object

    Raises:
      ValueError: when the given key cannot be parsed.

    .. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032
    """

    if len(encoded) != 57:
        raise ValueError("Incorrect length. Only Ed448 public keys are supported.")

    p = Integer(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff)  # 2**448 - 2**224 - 1
    d = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756

    y = encoded[:56]
    x_lsb = bord(encoded[56]) >> 7
    point_y = Integer.from_bytes(y, byteorder='little')
    if point_y >= p:
        raise ValueError("Invalid Ed448 key (y)")
    if point_y == 1:
        return 0, 1

    u = (point_y**2 - 1) % p
    v = ((point_y**2 % p) * d - 1) % p
    try:
        v_inv = v.inverse(p)
        x2 = (u * v_inv) % p
        point_x = Integer._tonelli_shanks(x2, p)
        if (point_x & 1) != x_lsb:
            point_x = p - point_x
    except ValueError:
        raise ValueError("Invalid Ed448 public key")
    return point_x, point_y


def import_key(encoded, passphrase=None, curve_name=None):
    """Import an ECC key (public or private).

    Args:
      encoded (bytes or multi-line string):
        The ECC key to import.
        The function will try to automatically detect the right format.

        Supported formats for an ECC **public** key:

        * X.509 certificate: binary (DER) or ASCII (PEM).
        * X.509 ``subjectPublicKeyInfo``: binary (DER) or ASCII (PEM).
        * SEC1_ (or X9.62), as ``bytes``. NIST P curves only.
          You must also provide the ``curve_name`` (with a value from the `ECC table`_)
        * OpenSSH line, defined in RFC5656_ and RFC8709_ (ASCII).
          This is normally the content of files like ``~/.ssh/id_ecdsa.pub``.

        Supported formats for an ECC **private** key:

        * A binary ``ECPrivateKey`` structure, as defined in `RFC5915`_ (DER).
          NIST P curves only.
        * A `PKCS#8`_ structure (or the more recent Asymmetric Key Package, RFC5958_): binary (DER) or ASCII (PEM).
        * `OpenSSH 6.5`_ and newer versions (ASCII).

        Private keys can be in the clear or password-protected.

        For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.

      passphrase (byte string):
        The passphrase to use for decrypting a private key.
        Encryption may be applied protected at the PEM level (not recommended)
        or at the PKCS#8 level (recommended).
        This parameter is ignored if the key in input is not encrypted.

      curve_name (string):
        For a SEC1 encoding only. This is the name of the curve,
        as defined in the `ECC table`_.

    .. note::

        To import EdDSA private and public keys, when encoded as raw ``bytes``, use:

        * :func:`Crypto.Signature.eddsa.import_public_key`, or
        * :func:`Crypto.Signature.eddsa.import_private_key`.

    Returns:
      :class:`EccKey` : a new ECC key object

    Raises:
      ValueError: when the given key cannot be parsed (possibly because
        the pass phrase is wrong).

    .. _RFC1421: https://datatracker.ietf.org/doc/html/rfc1421
    .. _RFC1423: https://datatracker.ietf.org/doc/html/rfc1423
    .. _RFC5915: https://datatracker.ietf.org/doc/html/rfc5915
    .. _RFC5656: https://datatracker.ietf.org/doc/html/rfc5656
    .. _RFC8709: https://datatracker.ietf.org/doc/html/rfc8709
    .. _RFC5958: https://datatracker.ietf.org/doc/html/rfc5958
    .. _`PKCS#8`: https://datatracker.ietf.org/doc/html/rfc5208
    .. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf
    .. _SEC1: https://www.secg.org/sec1-v2.pdf
    """

    from Crypto.IO import PEM

    encoded = tobytes(encoded)
    if passphrase is not None:
        passphrase = tobytes(passphrase)

    # PEM
    if encoded.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'):
        text_encoded = tostr(encoded)
        openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
        result = _import_openssh_private_ecc(openssh_encoded, passphrase)
        return result

    elif encoded.startswith(b'-----'):

        text_encoded = tostr(encoded)

        # Remove any EC PARAMETERS section
        # Ignore its content because the curve type must be already given in the key
        ecparams_start = "-----BEGIN EC PARAMETERS-----"
        ecparams_end = "-----END EC PARAMETERS-----"
        text_encoded = re.sub(ecparams_start + ".*?" + ecparams_end, "",
                              text_encoded,
                              flags=re.DOTALL)

        der_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
        if enc_flag:
            passphrase = None
        try:
            result = _import_der(der_encoded, passphrase)
        except UnsupportedEccFeature as uef:
            raise uef
        except ValueError:
            raise ValueError("Invalid DER encoding inside the PEM file")
        return result

    # OpenSSH
    if encoded.startswith((b'ecdsa-sha2-', b'ssh-ed25519')):
        return _import_openssh_public(encoded)

    # DER
    if len(encoded) > 0 and bord(encoded[0]) == 0x30:
        return _import_der(encoded, passphrase)

    # SEC1
    if len(encoded) > 0 and bord(encoded[0]) in b'\x02\x03\x04':
        if curve_name is None:
            raise ValueError("No curve name was provided")
        return _import_public_der(encoded, curve_name=curve_name)

    raise ValueError("ECC key format is not supported")


if __name__ == "__main__":

    import time

    d = 0xc51e4753afdec1e6b6c6a5b992f43f8dd0c7a8933072708b6522468b2ffb06fd

    point = _curves['p256'].G.copy()
    count = 3000

    start = time.time()
    for x in range(count):
        pointX = point * d
    print("(P-256 G)", (time.time() - start) / count * 1000, "ms")

    start = time.time()
    for x in range(count):
        pointX = pointX * d
    print("(P-256 arbitrary point)", (time.time() - start) / count * 1000, "ms")

Youez - 2016 - github.com/yon3zu
LinuXploit