Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.223.43.151
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/hc_python/lib/python3.8/site-packages/greenlet/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/hc_python/lib/python3.8/site-packages/greenlet//greenlet_refs.hpp
#ifndef GREENLET_REFS_HPP
#define GREENLET_REFS_HPP

#define PY_SSIZE_T_CLEAN
#include <Python.h>

#include <string>

//#include "greenlet_internal.hpp"
#include "greenlet_compiler_compat.hpp"
#include "greenlet_cpython_compat.hpp"
#include "greenlet_exceptions.hpp"

struct _greenlet;
struct _PyMainGreenlet;

typedef struct _greenlet PyGreenlet;
extern PyTypeObject PyGreenlet_Type;


#ifdef  GREENLET_USE_STDIO
#include <iostream>
using std::cerr;
using std::endl;
#endif

namespace greenlet
{
    class Greenlet;

    namespace refs
    {
        // Type checkers throw a TypeError if the argument is not
        // null, and isn't of the required Python type.
        // (We can't use most of the defined type checkers
        // like PyList_Check, etc, directly, because they are
        // implemented as macros.)
        typedef void (*TypeChecker)(void*);

        void
        NoOpChecker(void*)
        {
            return;
        }

        void
        GreenletChecker(void *p)
        {
            if (!p) {
                return;
            }

            PyTypeObject* typ = Py_TYPE(p);
            // fast, common path. (PyObject_TypeCheck is a macro or
            // static inline function, and it also does a
            // direct comparison of the type pointers, but its fast
            // path only handles one type)
            if (typ == &PyGreenlet_Type) {
                return;
            }

            if (!PyObject_TypeCheck(p, &PyGreenlet_Type)) {
                std::string err("GreenletChecker: Expected any type of greenlet, not ");
                err += Py_TYPE(p)->tp_name;
                throw TypeError(err);
            }
        }

        void
        MainGreenletExactChecker(void *p);

        template <typename T, TypeChecker>
        class PyObjectPointer;

        template<typename T, TypeChecker>
        class OwnedReference;


        template<typename T, TypeChecker>
        class BorrowedReference;

        typedef BorrowedReference<PyObject, NoOpChecker> BorrowedObject;
        typedef OwnedReference<PyObject, NoOpChecker> OwnedObject;

        class ImmortalObject;
        class ImmortalString;

        template<typename T, TypeChecker TC>
        class _OwnedGreenlet;

        typedef _OwnedGreenlet<PyGreenlet, GreenletChecker> OwnedGreenlet;
        typedef _OwnedGreenlet<PyGreenlet, MainGreenletExactChecker> OwnedMainGreenlet;

        template<typename T, TypeChecker TC>
        class _BorrowedGreenlet;

        typedef _BorrowedGreenlet<PyGreenlet, GreenletChecker> BorrowedGreenlet;

        void
        ContextExactChecker(void *p)
        {
            if (!p) {
                return;
            }
            if (!PyContext_CheckExact(p)) {
                throw TypeError(
                    "greenlet context must be a contextvars.Context or None"
                );
            }
        }

        typedef OwnedReference<PyObject, ContextExactChecker> OwnedContext;
    }
}

namespace greenlet {


    namespace refs {
    // A set of classes to make reference counting rules in python
    // code explicit.
    //
    // Rules of use:
    // (1) Functions returning a new reference that the caller of the
    // function is expected to dispose of should return a
    // ``OwnedObject`` object. This object automatically releases its
    // reference when it goes out of scope. It works like a ``std::shared_ptr``
    // and can be copied or used as a function parameter (but don't do
    // that). Note that constructing a ``OwnedObject`` from a
    // PyObject* steals the reference.
    // (2) Parameters to functions should be either a
    // ``OwnedObject&``, or, more generally, a ``PyObjectPointer&``.
    // If the function needs to create its own new reference, it can
    // do so by copying to a local ``OwnedObject``.
    // (3) Functions returning an existing pointer that is NOT
    // incref'd, and which the caller MUST NOT decref,
    // should return a ``BorrowedObject``.

    // XXX: The following two paragraphs do not hold for all platforms.
    // Notably, 32-bit PPC Linux passes structs by reference, not by
    // value, so this actually doesn't work. (Although that's the only
    // platform that doesn't work on.) DO NOT ATTEMPT IT. The
    // unfortunate consequence of that is that the slots which we
    // *know* are already type safe will wind up calling the type
    // checker function (when we had the slots accepting
    // BorrowedGreenlet, this was bypassed), so this slows us down.
    // TODO: Optimize this again.

    // For a class with a single pointer member, whose constructor
    // does nothing but copy a pointer parameter into the member, and
    // which can then be converted back to the pointer type, compilers
    // generate code that's the same as just passing the pointer.
    // That is, func(BorrowedObject x) called like ``PyObject* p =
    // ...; f(p)`` has 0 overhead. Similarly, they "unpack" to the
    // pointer type with 0 overhead.
    //
    // If there are no virtual functions, no complex inheritance (maybe?) and
    // no destructor, these can be directly used as parameters in
    // Python callbacks like tp_init: the layout is the same as a
    // single pointer. Only subclasses with trivial constructors that
    // do nothing but set the single pointer member are safe to use
    // that way.


    // This is the base class for things that can be done with a
    // PyObject pointer. It assumes nothing about memory management.
    // NOTE: Nothing is virtual, so subclasses shouldn't add new
    // storage fields or try to override these methods.
    template <typename T=PyObject, TypeChecker TC=NoOpChecker>
    class PyObjectPointer
    {
    public:
        typedef T PyType;
    protected:
        T* p;
    public:
        PyObjectPointer(T* it=nullptr) : p(it)
        {
            TC(p);
        }

        // We don't allow automatic casting to PyObject* at this
        // level, because then we could be passed to Py_DECREF/INCREF,
        // but we want nothing to do with memory management. If you
        // know better, then you can use the get() method, like on a
        // std::shared_ptr. Except we name it borrow() to clarify that
        // if this is a reference-tracked object, the pointer you get
        // back will go away when the object does.
        // TODO: This should probably not exist here, but be moved
        // down to relevant sub-types.

        T* borrow() const noexcept
        {
            return this->p;
        }

        PyObject* borrow_o() const noexcept
        {
            return reinterpret_cast<PyObject*>(this->p);
        }

         T* operator->() const noexcept
        {
            return this->p;
        }

        bool is_None() const noexcept
        {
            return this->p == Py_None;
        }

        PyObject* acquire_or_None() const noexcept
        {
            PyObject* result = this->p ? reinterpret_cast<PyObject*>(this->p) : Py_None;
            Py_INCREF(result);
            return result;
        }

        explicit operator bool() const noexcept
        {
            return this->p != nullptr;
        }

        bool operator!() const noexcept
        {
            return this->p == nullptr;
        }

        Py_ssize_t REFCNT() const noexcept
        {
            return p ? Py_REFCNT(p) : -42;
        }

        PyTypeObject* TYPE() const noexcept
        {
            return p ? Py_TYPE(p) : nullptr;
        }

        inline OwnedObject PyStr() const noexcept;
        inline const std::string as_str() const noexcept;
        inline OwnedObject PyGetAttr(const ImmortalObject& name) const noexcept;
        inline OwnedObject PyRequireAttr(const char* const name) const;
        inline OwnedObject PyRequireAttr(const ImmortalString& name) const;
        inline OwnedObject PyCall(const BorrowedObject& arg) const;
        inline OwnedObject PyCall(PyGreenlet* arg) const ;
        inline OwnedObject PyCall(PyObject* arg) const ;
        // PyObject_Call(this, args, kwargs);
        inline OwnedObject PyCall(const BorrowedObject args,
                                  const BorrowedObject kwargs) const;
        inline OwnedObject PyCall(const OwnedObject& args,
                                  const OwnedObject& kwargs) const;

    protected:
        void _set_raw_pointer(void* t)
        {
            TC(t);
            p = reinterpret_cast<T*>(t);
        }
        void* _get_raw_pointer() const
        {
            return p;
        }
    };

#ifdef GREENLET_USE_STDIO
        template<typename T, TypeChecker TC>
        std::ostream& operator<<(std::ostream& os, const PyObjectPointer<T, TC>& s)
        {
            const std::type_info& t = typeid(s);
            os << t.name()
               << "(addr=" << s.borrow()
               << ", refcnt=" << s.REFCNT()
               << ", value=" << s.as_str()
               << ")";

            return os;
        }
#endif

    template<typename T, TypeChecker TC>
    inline bool operator==(const PyObjectPointer<T, TC>& lhs, const PyObject* const rhs) noexcept
    {
        return static_cast<const void*>(lhs.borrow_o()) == static_cast<const void*>(rhs);
    }

    template<typename T, TypeChecker TC, typename X, TypeChecker XC>
    inline bool operator==(const PyObjectPointer<T, TC>& lhs, const PyObjectPointer<X, XC>& rhs) noexcept
    {
        return lhs.borrow_o() == rhs.borrow_o();
    }

    template<typename T, TypeChecker TC, typename X, TypeChecker XC>
    inline bool operator!=(const PyObjectPointer<T, TC>& lhs,
                           const PyObjectPointer<X, XC>& rhs) noexcept
    {
        return lhs.borrow_o() != rhs.borrow_o();
    }

    template<typename T=PyObject, TypeChecker TC=NoOpChecker>
    class OwnedReference : public PyObjectPointer<T, TC>
    {
    private:
        friend class OwnedList;

    protected:
        explicit OwnedReference(T* it) : PyObjectPointer<T, TC>(it)
        {
        }

    public:

        // Constructors

        static OwnedReference<T, TC> consuming(PyObject* p)
        {
            return OwnedReference<T, TC>(reinterpret_cast<T*>(p));
        }

        static OwnedReference<T, TC> owning(T* p)
        {
            OwnedReference<T, TC> result(p);
            Py_XINCREF(result.p);
            return result;
        }

        OwnedReference() : PyObjectPointer<T, TC>(nullptr)
        {}

        explicit OwnedReference(const PyObjectPointer<>& other)
            : PyObjectPointer<T, TC>(nullptr)
        {
            T* op = other.borrow();
            TC(op);
            this->p = other.borrow();
            Py_XINCREF(this->p);
        }

        // It would be good to make use of the C++11 distinction
        // between move and copy operations, e.g., constructing from a
        // pointer should be a move operation.
        // In the common case of ``OwnedObject x = Py_SomeFunction()``,
        // the call to the copy constructor will be elided completely.
        OwnedReference(const OwnedReference<T, TC>& other)
            : PyObjectPointer<T, TC>(other.p)
        {
            Py_XINCREF(this->p);
        }

        static OwnedReference<PyObject> None()
        {
            Py_INCREF(Py_None);
            return OwnedReference<PyObject>(Py_None);
        }

        // We can assign from exactly our type without any extra checking
        OwnedReference<T, TC>& operator=(const OwnedReference<T, TC>& other)
        {
            Py_XINCREF(other.p);
            const T* tmp = this->p;
            this->p = other.p;
            Py_XDECREF(tmp);
            return *this;
        }

        OwnedReference<T, TC>& operator=(const BorrowedReference<T, TC> other)
        {
            return this->operator=(other.borrow());
        }

        OwnedReference<T, TC>& operator=(T* const other)
        {
            TC(other);
            Py_XINCREF(other);
            T* tmp = this->p;
            this->p = other;
            Py_XDECREF(tmp);
            return *this;
        }

        // We can assign from an arbitrary reference type
        // if it passes our check.
        template<typename X, TypeChecker XC>
        OwnedReference<T, TC>& operator=(const OwnedReference<X, XC>& other)
        {
            X* op = other.borrow();
            TC(op);
            return this->operator=(reinterpret_cast<T*>(op));
        }

        inline void steal(T* other)
        {
            assert(this->p == nullptr);
            TC(other);
            this->p = other;
        }

        T* relinquish_ownership()
        {
            T* result = this->p;
            this->p = nullptr;
            return result;
        }

        T* acquire() const
        {
            // Return a new reference.
            // TODO: This may go away when we have reference objects
            // throughout the code.
            Py_XINCREF(this->p);
            return this->p;
        }

        // Nothing else declares a destructor, we're the leaf, so we
        // should be able to get away without virtual.
        ~OwnedReference()
        {
            Py_CLEAR(this->p);
        }

        void CLEAR()
        {
            Py_CLEAR(this->p);
            assert(this->p == nullptr);
        }
    };

    static inline
    void operator<<=(PyObject*& target, OwnedObject& o)
    {
        target = o.relinquish_ownership();
    }


    class NewReference : public OwnedObject
    {
    private:
        G_NO_COPIES_OF_CLS(NewReference);
    public:
        // Consumes the reference. Only use this
        // for API return values.
        NewReference(PyObject* it) : OwnedObject(it)
        {
        }
    };

    class NewDictReference : public NewReference
    {
    private:
        G_NO_COPIES_OF_CLS(NewDictReference);
    public:
        NewDictReference() : NewReference(PyDict_New())
        {
            if (!this->p) {
                throw PyErrOccurred();
            }
        }

        void SetItem(const char* const key, PyObject* value)
        {
            Require(PyDict_SetItemString(this->p, key, value));
        }

        void SetItem(const PyObjectPointer<>& key, PyObject* value)
        {
            Require(PyDict_SetItem(this->p, key.borrow_o(), value));
        }
    };

    template<typename T=PyGreenlet, TypeChecker TC=GreenletChecker>
    class _OwnedGreenlet: public OwnedReference<T, TC>
    {
    private:
    protected:
        _OwnedGreenlet(T* it) : OwnedReference<T, TC>(it)
        {}

    public:
        _OwnedGreenlet() : OwnedReference<T, TC>()
        {}

        _OwnedGreenlet(const _OwnedGreenlet<T, TC>& other) : OwnedReference<T, TC>(other)
        {
        }
        _OwnedGreenlet(OwnedMainGreenlet& other) :
            OwnedReference<T, TC>(reinterpret_cast<T*>(other.acquire()))
        {
        }
        _OwnedGreenlet(const BorrowedGreenlet& other);
        // Steals a reference.
        static _OwnedGreenlet<T, TC> consuming(PyGreenlet* it)
        {
            return _OwnedGreenlet<T, TC>(reinterpret_cast<T*>(it));
        }

        inline _OwnedGreenlet<T, TC>& operator=(const OwnedGreenlet& other)
        {
            return this->operator=(other.borrow());
        }

        inline _OwnedGreenlet<T, TC>& operator=(const BorrowedGreenlet& other);

        _OwnedGreenlet<T, TC>& operator=(const OwnedMainGreenlet& other)
        {
            PyGreenlet* owned = other.acquire();
            Py_XDECREF(this->p);
            this->p = reinterpret_cast<T*>(owned);
            return *this;
        }

        _OwnedGreenlet<T, TC>& operator=(T* const other)
        {
            OwnedReference<T, TC>::operator=(other);
            return *this;
        }

        T* relinquish_ownership()
        {
            T* result = this->p;
            this->p = nullptr;
            return result;
        }

        PyObject* relinquish_ownership_o()
        {
            return reinterpret_cast<PyObject*>(relinquish_ownership());
        }

        inline Greenlet* operator->() const noexcept;
        inline operator Greenlet*() const noexcept;
    };

    template <typename T=PyObject, TypeChecker TC=NoOpChecker>
    class BorrowedReference : public PyObjectPointer<T, TC>
    {
    public:
        // Allow implicit creation from PyObject* pointers as we
        // transition to using these classes. Also allow automatic
        // conversion to PyObject* for passing to C API calls and even
        // for Py_INCREF/DECREF, because we ourselves do no memory management.
        BorrowedReference(T* it) : PyObjectPointer<T, TC>(it)
        {}

        BorrowedReference(const PyObjectPointer<T>& ref) : PyObjectPointer<T, TC>(ref.borrow())
        {}

        BorrowedReference() : PyObjectPointer<T, TC>(nullptr)
        {}

        operator T*() const
        {
            return this->p;
        }
    };

    typedef BorrowedReference<PyObject> BorrowedObject;
    //typedef BorrowedReference<PyGreenlet> BorrowedGreenlet;

    template<typename T=PyGreenlet, TypeChecker TC=GreenletChecker>
    class _BorrowedGreenlet : public BorrowedReference<T, TC>
    {
    public:
        _BorrowedGreenlet() :
            BorrowedReference<T, TC>(nullptr)
        {}

        _BorrowedGreenlet(T* it) :
            BorrowedReference<T, TC>(it)
        {}

        _BorrowedGreenlet(const BorrowedObject& it);

        _BorrowedGreenlet(const OwnedGreenlet& it) :
            BorrowedReference<T, TC>(it.borrow())
        {}

        _BorrowedGreenlet<T, TC>& operator=(const BorrowedObject& other);

        // We get one of these for PyGreenlet, but one for PyObject
        // is handy as well
        operator PyObject*() const
        {
            return reinterpret_cast<PyObject*>(this->p);
        }
        Greenlet* operator->() const noexcept;
        operator Greenlet*() const noexcept;
    };

    typedef _BorrowedGreenlet<PyGreenlet> BorrowedGreenlet;

    template<typename T, TypeChecker TC>
    _OwnedGreenlet<T, TC>::_OwnedGreenlet(const BorrowedGreenlet& other)
        : OwnedReference<T, TC>(reinterpret_cast<T*>(other.borrow()))
    {
        Py_XINCREF(this->p);
    }


     class BorrowedMainGreenlet
            : public _BorrowedGreenlet<PyGreenlet, MainGreenletExactChecker>
    {
    public:
        BorrowedMainGreenlet(const OwnedMainGreenlet& it) :
            _BorrowedGreenlet<PyGreenlet, MainGreenletExactChecker>(it.borrow())
        {}
        BorrowedMainGreenlet(PyGreenlet* it=nullptr)
            : _BorrowedGreenlet<PyGreenlet, MainGreenletExactChecker>(it)
        {}
    };

    template<typename T, TypeChecker TC>
    _OwnedGreenlet<T, TC>& _OwnedGreenlet<T, TC>::operator=(const BorrowedGreenlet& other)
    {
        return this->operator=(other.borrow());
    }


    class ImmortalObject : public PyObjectPointer<>
    {
    private:
        G_NO_ASSIGNMENT_OF_CLS(ImmortalObject);
    public:
        explicit ImmortalObject(PyObject* it) : PyObjectPointer<>(it)
        {
        }

        ImmortalObject(const ImmortalObject& other)
            : PyObjectPointer<>(other.p)
        {

        }

        /**
         * Become the new owner of the object. Does not change the
         * reference count.
         */
        ImmortalObject& operator=(PyObject* it)
        {
            assert(this->p == nullptr);
            this->p = it;
            return *this;
        }

        static ImmortalObject consuming(PyObject* it)
        {
            return ImmortalObject(it);
        }

        inline operator PyObject*() const
        {
            return this->p;
        }
    };

    class ImmortalString : public ImmortalObject
    {
    private:
        G_NO_COPIES_OF_CLS(ImmortalString);
        const char* str;
    public:
        ImmortalString(const char* const str) :
            ImmortalObject(str ? Require(PyUnicode_InternFromString(str)) : nullptr)
        {
            this->str = str;
        }

        inline ImmortalString& operator=(const char* const str)
        {
            if (!this->p) {
                this->p = Require(PyUnicode_InternFromString(str));
                this->str = str;
            }
            else {
                assert(this->str == str);
            }
            return *this;
        }

        inline operator std::string() const
        {
            return this->str;
        }

    };

    class ImmortalEventName : public ImmortalString
    {
    private:
        G_NO_COPIES_OF_CLS(ImmortalEventName);
    public:
        ImmortalEventName(const char* const str) : ImmortalString(str)
        {}
    };

    class ImmortalException : public ImmortalObject
    {
    private:
        G_NO_COPIES_OF_CLS(ImmortalException);
    public:
        ImmortalException(const char* const name, PyObject* base=nullptr) :
            ImmortalObject(name
                           // Python 2.7 isn't const correct
                           ? Require(PyErr_NewException((char*)name, base, nullptr))
                           : nullptr)
        {}

        inline bool PyExceptionMatches() const
        {
            return PyErr_ExceptionMatches(this->p) > 0;
        }

    };

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyStr() const noexcept
    {
        if (!this->p) {
            return OwnedObject();
        }
        return OwnedObject::consuming(PyObject_Str(reinterpret_cast<PyObject*>(this->p)));
    }

    template<typename T, TypeChecker TC>
    inline const std::string PyObjectPointer<T, TC>::as_str() const noexcept
    {
        // NOTE: This is not Python exception safe.
        if (this->p) {
            // The Python APIs return a cached char* value that's only valid
            // as long as the original object stays around, and we're
            // about to (probably) toss it. Hence the copy to std::string.
            OwnedObject py_str = this->PyStr();
            if (!py_str) {
                return "(nil)";
            }
            return PyUnicode_AsUTF8(py_str.borrow());
        }
        return "(nil)";
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyGetAttr(const ImmortalObject& name) const noexcept
    {
        assert(this->p);
        return OwnedObject::consuming(PyObject_GetAttr(reinterpret_cast<PyObject*>(this->p), name));
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyRequireAttr(const char* const name) const
    {
        assert(this->p);
        return OwnedObject::consuming(Require(PyObject_GetAttrString(this->p, name), name));
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyRequireAttr(const ImmortalString& name) const
    {
        assert(this->p);
        return OwnedObject::consuming(Require(
                   PyObject_GetAttr(
                      reinterpret_cast<PyObject*>(this->p),
                      name
                   ),
                   name
               ));
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyCall(const BorrowedObject& arg) const
    {
        return this->PyCall(arg.borrow());
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyCall(PyGreenlet* arg) const
    {
        return this->PyCall(reinterpret_cast<PyObject*>(arg));
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyCall(PyObject* arg) const
    {
        assert(this->p);
        return OwnedObject::consuming(PyObject_CallFunctionObjArgs(this->p, arg, NULL));
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyCall(const BorrowedObject args,
                                                  const BorrowedObject kwargs) const
    {
        assert(this->p);
        return OwnedObject::consuming(PyObject_Call(this->p, args, kwargs));
    }

    template<typename T, TypeChecker TC>
    inline OwnedObject PyObjectPointer<T, TC>::PyCall(const OwnedObject& args,
                                                  const OwnedObject& kwargs) const
    {
        assert(this->p);
        return OwnedObject::consuming(PyObject_Call(this->p, args.borrow(), kwargs.borrow()));
    }

    inline void
    ListChecker(void * p)
    {
        if (!p) {
            return;
        }
        if (!PyList_Check(p)) {
            throw TypeError("Expected a list");
        }
    }

    class OwnedList : public OwnedReference<PyObject, ListChecker>
    {
    private:
        G_NO_ASSIGNMENT_OF_CLS(OwnedList);
    public:
        // TODO: Would like to use move.
        explicit OwnedList(const OwnedObject& other)
            : OwnedReference<PyObject, ListChecker>(other)
        {
        }

        OwnedList& operator=(const OwnedObject& other)
        {
            if (other && PyList_Check(other.p)) {
                // Valid list. Own a new reference to it, discard the
                // reference to what we did own.
                PyObject* new_ptr = other.p;
                Py_INCREF(new_ptr);
                Py_XDECREF(this->p);
                this->p = new_ptr;
            }
            else {
                // Either the other object was NULL (an error) or it
                // wasn't a list. Either way, we're now invalidated.
                Py_XDECREF(this->p);
                this->p = nullptr;
            }
            return *this;
        }

        inline bool empty() const
        {
            return PyList_GET_SIZE(p) == 0;
        }

        inline Py_ssize_t size() const
        {
            return PyList_GET_SIZE(p);
        }

        inline BorrowedObject at(const Py_ssize_t index) const
        {
            return PyList_GET_ITEM(p, index);
        }

        inline void clear()
        {
            PyList_SetSlice(p, 0, PyList_GET_SIZE(p), NULL);
        }
    };

    // Use this to represent the module object used at module init
    // time.
    // This could either be a borrowed (Py2) or new (Py3) reference;
    // either way, we don't want to do any memory management
    // on it here, Python itself will handle that.
    // XXX: Actually, that's not quite right. On Python 3, if an
    // exception occurs before we return to the interpreter, this will
    // leak; but all previous versions also had that problem.
    class CreatedModule : public PyObjectPointer<>
    {
    private:
        G_NO_COPIES_OF_CLS(CreatedModule);
    public:
        CreatedModule(PyModuleDef& mod_def) : PyObjectPointer<>(
            Require(PyModule_Create(&mod_def)))
        {
        }

        // PyAddObject(): Add a reference to the object to the module.
        // On return, the reference count of the object is unchanged.
        //
        // The docs warn that PyModule_AddObject only steals the
        // reference on success, so if it fails after we've incref'd
        // or allocated, we're responsible for the decref.
        void PyAddObject(const char* name, const long new_bool)
        {
            OwnedObject p = OwnedObject::consuming(Require(PyBool_FromLong(new_bool)));
            this->PyAddObject(name, p);
        }

        void PyAddObject(const char* name, const OwnedObject& new_object)
        {
            // The caller already owns a reference they will decref
            // when their variable goes out of scope, we still need to
            // incref/decref.
            this->PyAddObject(name, new_object.borrow());
        }

        void PyAddObject(const char* name, const ImmortalObject& new_object)
        {
            this->PyAddObject(name, new_object.borrow());
        }

        void PyAddObject(const char* name, PyTypeObject& type)
        {
            this->PyAddObject(name, reinterpret_cast<PyObject*>(&type));
        }

        void PyAddObject(const char* name, PyObject* new_object)
        {
            Py_INCREF(new_object);
            try {
                Require(PyModule_AddObject(this->p, name, new_object));
            }
            catch (const PyErrOccurred&) {
                Py_DECREF(p);
                throw;
            }
        }
    };

    class PyErrFetchParam : public PyObjectPointer<>
    {
        // Not an owned object, because we can't be initialized with
        // one, and we only sometimes acquire ownership.
    private:
        G_NO_COPIES_OF_CLS(PyErrFetchParam);
    public:
        // To allow declaring these and passing them to
        // PyErr_Fetch we implement the empty constructor,
        // and the address operator.
        PyErrFetchParam() : PyObjectPointer<>(nullptr)
        {
        }

        PyObject** operator&()
        {
            return &this->p;
        }

        // This allows us to pass one directly without the &,
        // BUT it has higher precedence than the bool operator
        // if it's not explicit.
        operator PyObject**()
        {
            return &this->p;
        }

        // We don't want to be able to pass these to Py_DECREF and
        // such so we don't have the implicit PyObject* conversion.

        inline PyObject* relinquish_ownership()
        {
            PyObject* result = this->p;
            this->p = nullptr;
            return result;
        }

        ~PyErrFetchParam()
        {
            Py_XDECREF(p);
        }
    };

    class OwnedErrPiece : public OwnedObject
    {
    private:

    public:
        // Unlike OwnedObject, this increments the refcount.
        OwnedErrPiece(PyObject* p=nullptr) : OwnedObject(p)
        {
            this->acquire();
        }

        PyObject** operator&()
        {
            return &this->p;
        }

        inline operator PyObject*() const
        {
            return this->p;
        }

        operator PyTypeObject*() const
        {
            return reinterpret_cast<PyTypeObject*>(this->p);
        }
    };

    class PyErrPieces
    {
    private:
        OwnedErrPiece type;
        OwnedErrPiece instance;
        OwnedErrPiece traceback;
        bool restored;
    public:
        // Takes new references; if we're destroyed before
        // restoring the error, we drop the references.
        PyErrPieces(PyObject* t, PyObject* v, PyObject* tb) :
            type(t),
            instance(v),
            traceback(tb),
            restored(0)
        {
            this->normalize();
        }

        PyErrPieces() :
            restored(0)
        {
            // PyErr_Fetch transfers ownership to us, so
            // we don't actually need to INCREF; but we *do*
            // need to DECREF if we're not restored.
            PyErrFetchParam t, v, tb;
            PyErr_Fetch(&t, &v, &tb);
            type.steal(t.relinquish_ownership());
            instance.steal(v.relinquish_ownership());
            traceback.steal(tb.relinquish_ownership());
        }

        void PyErrRestore()
        {
            // can only do this once
            assert(!this->restored);
            this->restored = true;
            PyErr_Restore(
                this->type.relinquish_ownership(),
                this->instance.relinquish_ownership(),
                this->traceback.relinquish_ownership());
            assert(!this->type && !this->instance && !this->traceback);
        }

    private:
        void normalize()
        {
            // First, check the traceback argument, replacing None,
            // with NULL
            if (traceback.is_None()) {
                traceback = nullptr;
            }

            if (traceback && !PyTraceBack_Check(traceback.borrow())) {
                throw PyErrOccurred(PyExc_TypeError,
                                    "throw() third argument must be a traceback object");
            }

            if (PyExceptionClass_Check(type)) {
                // If we just had a type, we'll now have a type and
                // instance.
                // The type's refcount will have gone up by one
                // because of the instance and the instance will have
                // a refcount of one. Either way, we owned, and still
                // do own, exactly one reference.
                PyErr_NormalizeException(&type, &instance, &traceback);

            }
            else if (PyExceptionInstance_Check(type)) {
                /* Raising an instance --- usually that means an
                   object that is a subclass of BaseException, but on
                   Python 2, that can also mean an arbitrary old-style
                   object. The value should be a dummy. */
                if (instance && !instance.is_None()) {
                    throw PyErrOccurred(
                                    PyExc_TypeError,
                                    "instance exception may not have a separate value");
                }
                /* Normalize to raise <class>, <instance> */
                this->instance = this->type;
                this->type = PyExceptionInstance_Class(instance.borrow());

                /*
                  It would be tempting to do this:

                Py_ssize_t type_count = Py_REFCNT(Py_TYPE(instance.borrow()));
                this->type = PyExceptionInstance_Class(instance.borrow());
                assert(this->type.REFCNT() == type_count + 1);

                But that doesn't work on Python 2 in the case of
                old-style instances: The result of Py_TYPE is going to
                be the global shared <type instance> that all
                old-style classes have, while the return of Instance_Class()
                will be the Python-level class object. The two are unrelated.
                */
            }
            else {
                /* Not something you can raise. throw() fails. */
                PyErr_Format(PyExc_TypeError,
                     "exceptions must be classes, or instances, not %s",
                             Py_TYPE(type.borrow())->tp_name);
                throw PyErrOccurred();
            }
        }
    };

    // PyArg_Parse's O argument returns a borrowed reference.
    class PyArgParseParam : public BorrowedObject
    {
    private:
        G_NO_COPIES_OF_CLS(PyArgParseParam);
    public:
        explicit PyArgParseParam(PyObject* p=nullptr) : BorrowedObject(p)
        {
        }

        inline PyObject** operator&()
        {
            return &this->p;
        }
    };

};};

#endif

Youez - 2016 - github.com/yon3zu
LinuXploit