Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 52.14.116.234
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/random/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/random//mtrand.pyi
from collections.abc import Callable
from typing import Any, Union, overload, Literal

from numpy import (
    bool_,
    dtype,
    float32,
    float64,
    int8,
    int16,
    int32,
    int64,
    int_,
    ndarray,
    uint,
    uint8,
    uint16,
    uint32,
    uint64,
)
from numpy.random.bit_generator import BitGenerator
from numpy._typing import (
    ArrayLike,
    _ArrayLikeFloat_co,
    _ArrayLikeInt_co,
    _DoubleCodes,
    _DTypeLikeBool,
    _DTypeLikeInt,
    _DTypeLikeUInt,
    _Float32Codes,
    _Float64Codes,
    _Int8Codes,
    _Int16Codes,
    _Int32Codes,
    _Int64Codes,
    _IntCodes,
    _ShapeLike,
    _SingleCodes,
    _SupportsDType,
    _UInt8Codes,
    _UInt16Codes,
    _UInt32Codes,
    _UInt64Codes,
    _UIntCodes,
)

_DTypeLikeFloat32 = Union[
    dtype[float32],
    _SupportsDType[dtype[float32]],
    type[float32],
    _Float32Codes,
    _SingleCodes,
]

_DTypeLikeFloat64 = Union[
    dtype[float64],
    _SupportsDType[dtype[float64]],
    type[float],
    type[float64],
    _Float64Codes,
    _DoubleCodes,
]

class RandomState:
    _bit_generator: BitGenerator
    def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
    def __repr__(self) -> str: ...
    def __str__(self) -> str: ...
    def __getstate__(self) -> dict[str, Any]: ...
    def __setstate__(self, state: dict[str, Any]) -> None: ...
    def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
    def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
    @overload
    def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
    @overload
    def get_state(
        self, legacy: Literal[True] = ...
    ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
    def set_state(
        self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
    ) -> None: ...
    @overload
    def random_sample(self, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def random(self, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def beta(self, a: float, b: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def beta(
        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def exponential(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def exponential(
        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def standard_exponential(self, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def tomaxint(self, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: int,
        high: None | int = ...,
    ) -> int: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: int,
        high: None | int = ...,
        size: None = ...,
        dtype: _DTypeLikeBool = ...,
    ) -> bool: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: int,
        high: None | int = ...,
        size: None = ...,
        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
    ) -> int: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: _DTypeLikeBool = ...,
    ) -> ndarray[Any, dtype[bool_]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
    ) -> ndarray[Any, dtype[int8]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
    ) -> ndarray[Any, dtype[int16]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
    ) -> ndarray[Any, dtype[int32]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
    ) -> ndarray[Any, dtype[int64]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
    ) -> ndarray[Any, dtype[uint8]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
    ) -> ndarray[Any, dtype[uint16]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
    ) -> ndarray[Any, dtype[uint32]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
    ) -> ndarray[Any, dtype[uint64]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def randint(  # type: ignore[misc]
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
    ) -> ndarray[Any, dtype[uint]]: ...
    def bytes(self, length: int) -> bytes: ...
    @overload
    def choice(
        self,
        a: int,
        size: None = ...,
        replace: bool = ...,
        p: None | _ArrayLikeFloat_co = ...,
    ) -> int: ...
    @overload
    def choice(
        self,
        a: int,
        size: _ShapeLike = ...,
        replace: bool = ...,
        p: None | _ArrayLikeFloat_co = ...,
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def choice(
        self,
        a: ArrayLike,
        size: None = ...,
        replace: bool = ...,
        p: None | _ArrayLikeFloat_co = ...,
    ) -> Any: ...
    @overload
    def choice(
        self,
        a: ArrayLike,
        size: _ShapeLike = ...,
        replace: bool = ...,
        p: None | _ArrayLikeFloat_co = ...,
    ) -> ndarray[Any, Any]: ...
    @overload
    def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def uniform(
        self,
        low: _ArrayLikeFloat_co = ...,
        high: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def rand(self) -> float: ...
    @overload
    def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def randn(self) -> float: ...
    @overload
    def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def random_integers(
        self,
        low: _ArrayLikeInt_co,
        high: None | _ArrayLikeInt_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def standard_normal(self, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def standard_normal(  # type: ignore[misc]
        self, size: _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def normal(
        self,
        loc: _ArrayLikeFloat_co = ...,
        scale: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def standard_gamma(  # type: ignore[misc]
        self,
        shape: float,
        size: None = ...,
    ) -> float: ...
    @overload
    def standard_gamma(
        self,
        shape: _ArrayLikeFloat_co,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def gamma(
        self,
        shape: _ArrayLikeFloat_co,
        scale: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def f(
        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def noncentral_f(
        self,
        dfnum: _ArrayLikeFloat_co,
        dfden: _ArrayLikeFloat_co,
        nonc: _ArrayLikeFloat_co,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def chisquare(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def chisquare(
        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def noncentral_chisquare(
        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def standard_t(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def standard_t(
        self, df: _ArrayLikeFloat_co, size: None = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def standard_t(
        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def vonmises(
        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def pareto(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def pareto(
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def weibull(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def weibull(
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def power(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def power(
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def laplace(
        self,
        loc: _ArrayLikeFloat_co = ...,
        scale: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def gumbel(
        self,
        loc: _ArrayLikeFloat_co = ...,
        scale: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def logistic(
        self,
        loc: _ArrayLikeFloat_co = ...,
        scale: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def lognormal(
        self,
        mean: _ArrayLikeFloat_co = ...,
        sigma: _ArrayLikeFloat_co = ...,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def rayleigh(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def rayleigh(
        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def wald(self, mean: float, scale: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def wald(
        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ...  # type: ignore[misc]
    @overload
    def triangular(
        self,
        left: _ArrayLikeFloat_co,
        mode: _ArrayLikeFloat_co,
        right: _ArrayLikeFloat_co,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    @overload
    def binomial(self, n: int, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def binomial(
        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def negative_binomial(
        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def poisson(self, lam: float = ..., size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def poisson(
        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def zipf(self, a: float, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def zipf(
        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def geometric(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def geometric(
        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def hypergeometric(
        self,
        ngood: _ArrayLikeInt_co,
        nbad: _ArrayLikeInt_co,
        nsample: _ArrayLikeInt_co,
        size: None | _ShapeLike = ...,
    ) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def logseries(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
    @overload
    def logseries(
        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    def multivariate_normal(
        self,
        mean: _ArrayLikeFloat_co,
        cov: _ArrayLikeFloat_co,
        size: None | _ShapeLike = ...,
        check_valid: Literal["warn", "raise", "ignore"] = ...,
        tol: float = ...,
    ) -> ndarray[Any, dtype[float64]]: ...
    def multinomial(
        self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[int_]]: ...
    def dirichlet(
        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
    ) -> ndarray[Any, dtype[float64]]: ...
    def shuffle(self, x: ArrayLike) -> None: ...
    @overload
    def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
    @overload
    def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...

_rand: RandomState

beta = _rand.beta
binomial = _rand.binomial
bytes = _rand.bytes
chisquare = _rand.chisquare
choice = _rand.choice
dirichlet = _rand.dirichlet
exponential = _rand.exponential
f = _rand.f
gamma = _rand.gamma
get_state = _rand.get_state
geometric = _rand.geometric
gumbel = _rand.gumbel
hypergeometric = _rand.hypergeometric
laplace = _rand.laplace
logistic = _rand.logistic
lognormal = _rand.lognormal
logseries = _rand.logseries
multinomial = _rand.multinomial
multivariate_normal = _rand.multivariate_normal
negative_binomial = _rand.negative_binomial
noncentral_chisquare = _rand.noncentral_chisquare
noncentral_f = _rand.noncentral_f
normal = _rand.normal
pareto = _rand.pareto
permutation = _rand.permutation
poisson = _rand.poisson
power = _rand.power
rand = _rand.rand
randint = _rand.randint
randn = _rand.randn
random = _rand.random
random_integers = _rand.random_integers
random_sample = _rand.random_sample
rayleigh = _rand.rayleigh
seed = _rand.seed
set_state = _rand.set_state
shuffle = _rand.shuffle
standard_cauchy = _rand.standard_cauchy
standard_exponential = _rand.standard_exponential
standard_gamma = _rand.standard_gamma
standard_normal = _rand.standard_normal
standard_t = _rand.standard_t
triangular = _rand.triangular
uniform = _rand.uniform
vonmises = _rand.vonmises
wald = _rand.wald
weibull = _rand.weibull
zipf = _rand.zipf
# Two legacy that are trivial wrappers around random_sample
sample = _rand.random_sample
ranf = _rand.random_sample

def set_bit_generator(bitgen: BitGenerator) -> None:
    ...

def get_bit_generator() -> BitGenerator:
    ...

Youez - 2016 - github.com/yon3zu
LinuXploit