Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 52.15.70.0
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/function_base.pyi
import sys
from collections.abc import Sequence, Iterator, Callable, Iterable
from typing import (
    Literal as L,
    Any,
    TypeVar,
    overload,
    Protocol,
    SupportsIndex,
    SupportsInt,
)

if sys.version_info >= (3, 10):
    from typing import TypeGuard
else:
    from typing_extensions import TypeGuard

from numpy import (
    vectorize as vectorize,
    ufunc,
    generic,
    floating,
    complexfloating,
    intp,
    float64,
    complex128,
    timedelta64,
    datetime64,
    object_,
    _OrderKACF,
)

from numpy._typing import (
    NDArray,
    ArrayLike,
    DTypeLike,
    _ShapeLike,
    _ScalarLike_co,
    _DTypeLike,
    _ArrayLike,
    _ArrayLikeInt_co,
    _ArrayLikeFloat_co,
    _ArrayLikeComplex_co,
    _ArrayLikeTD64_co,
    _ArrayLikeDT64_co,
    _ArrayLikeObject_co,
    _FloatLike_co,
    _ComplexLike_co,
)

from numpy.core.function_base import (
    add_newdoc as add_newdoc,
)

from numpy.core.multiarray import (
    add_docstring as add_docstring,
    bincount as bincount,
)

from numpy.core.umath import _add_newdoc_ufunc

_T = TypeVar("_T")
_T_co = TypeVar("_T_co", covariant=True)
_SCT = TypeVar("_SCT", bound=generic)
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])

_2Tuple = tuple[_T, _T]

class _TrimZerosSequence(Protocol[_T_co]):
    def __len__(self) -> int: ...
    def __getitem__(self, key: slice, /) -> _T_co: ...
    def __iter__(self) -> Iterator[Any]: ...

class _SupportsWriteFlush(Protocol):
    def write(self, s: str, /) -> object: ...
    def flush(self) -> object: ...

__all__: list[str]

# NOTE: This is in reality a re-export of `np.core.umath._add_newdoc_ufunc`
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None: ...

@overload
def rot90(
    m: _ArrayLike[_SCT],
    k: int = ...,
    axes: tuple[int, int] = ...,
) -> NDArray[_SCT]: ...
@overload
def rot90(
    m: ArrayLike,
    k: int = ...,
    axes: tuple[int, int] = ...,
) -> NDArray[Any]: ...

@overload
def flip(m: _SCT, axis: None = ...) -> _SCT: ...
@overload
def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ...
@overload
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
@overload
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]: ...

def iterable(y: object) -> TypeGuard[Iterable[Any]]: ...

@overload
def average(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    weights: None | _ArrayLikeFloat_co= ...,
    returned: L[False] = ...,
    keepdims: L[False] = ...,
) -> floating[Any]: ...
@overload
def average(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    weights: None | _ArrayLikeComplex_co = ...,
    returned: L[False] = ...,
    keepdims: L[False] = ...,
) -> complexfloating[Any, Any]: ...
@overload
def average(
    a: _ArrayLikeObject_co,
    axis: None = ...,
    weights: None | Any = ...,
    returned: L[False] = ...,
    keepdims: L[False] = ...,
) -> Any: ...
@overload
def average(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    weights: None | _ArrayLikeFloat_co= ...,
    returned: L[True] = ...,
    keepdims: L[False] = ...,
) -> _2Tuple[floating[Any]]: ...
@overload
def average(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    weights: None | _ArrayLikeComplex_co = ...,
    returned: L[True] = ...,
    keepdims: L[False] = ...,
) -> _2Tuple[complexfloating[Any, Any]]: ...
@overload
def average(
    a: _ArrayLikeObject_co,
    axis: None = ...,
    weights: None | Any = ...,
    returned: L[True] = ...,
    keepdims: L[False] = ...,
) -> _2Tuple[Any]: ...
@overload
def average(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    weights: None | Any = ...,
    returned: L[False] = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def average(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    weights: None | Any = ...,
    returned: L[True] = ...,
    keepdims: bool = ...,
) -> _2Tuple[Any]: ...

@overload
def asarray_chkfinite(
    a: _ArrayLike[_SCT],
    dtype: None = ...,
    order: _OrderKACF = ...,
) -> NDArray[_SCT]: ...
@overload
def asarray_chkfinite(
    a: object,
    dtype: None = ...,
    order: _OrderKACF = ...,
) -> NDArray[Any]: ...
@overload
def asarray_chkfinite(
    a: Any,
    dtype: _DTypeLike[_SCT],
    order: _OrderKACF = ...,
) -> NDArray[_SCT]: ...
@overload
def asarray_chkfinite(
    a: Any,
    dtype: DTypeLike,
    order: _OrderKACF = ...,
) -> NDArray[Any]: ...

# TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate`
# xref python/mypy#8645
@overload
def piecewise(
    x: _ArrayLike[_SCT],
    condlist: ArrayLike,
    funclist: Sequence[Any | Callable[..., Any]],
    *args: Any,
    **kw: Any,
) -> NDArray[_SCT]: ...
@overload
def piecewise(
    x: ArrayLike,
    condlist: ArrayLike,
    funclist: Sequence[Any | Callable[..., Any]],
    *args: Any,
    **kw: Any,
) -> NDArray[Any]: ...

def select(
    condlist: Sequence[ArrayLike],
    choicelist: Sequence[ArrayLike],
    default: ArrayLike = ...,
) -> NDArray[Any]: ...

@overload
def copy(
    a: _ArrayType,
    order: _OrderKACF,
    subok: L[True],
) -> _ArrayType: ...
@overload
def copy(
    a: _ArrayType,
    order: _OrderKACF = ...,
    *,
    subok: L[True],
) -> _ArrayType: ...
@overload
def copy(
    a: _ArrayLike[_SCT],
    order: _OrderKACF = ...,
    subok: L[False] = ...,
) -> NDArray[_SCT]: ...
@overload
def copy(
    a: ArrayLike,
    order: _OrderKACF = ...,
    subok: L[False] = ...,
) -> NDArray[Any]: ...

def gradient(
    f: ArrayLike,
    *varargs: ArrayLike,
    axis: None | _ShapeLike = ...,
    edge_order: L[1, 2] = ...,
) -> Any: ...

@overload
def diff(
    a: _T,
    n: L[0],
    axis: SupportsIndex = ...,
    prepend: ArrayLike = ...,
    append: ArrayLike = ...,
) -> _T: ...
@overload
def diff(
    a: ArrayLike,
    n: int = ...,
    axis: SupportsIndex = ...,
    prepend: ArrayLike = ...,
    append: ArrayLike = ...,
) -> NDArray[Any]: ...

@overload
def interp(
    x: _ArrayLikeFloat_co,
    xp: _ArrayLikeFloat_co,
    fp: _ArrayLikeFloat_co,
    left: None | _FloatLike_co = ...,
    right: None | _FloatLike_co = ...,
    period: None | _FloatLike_co = ...,
) -> NDArray[float64]: ...
@overload
def interp(
    x: _ArrayLikeFloat_co,
    xp: _ArrayLikeFloat_co,
    fp: _ArrayLikeComplex_co,
    left: None | _ComplexLike_co = ...,
    right: None | _ComplexLike_co = ...,
    period: None | _FloatLike_co = ...,
) -> NDArray[complex128]: ...

@overload
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]: ...
@overload
def angle(z: object_, deg: bool = ...) -> Any: ...
@overload
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]: ...
@overload
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ...

@overload
def unwrap(
    p: _ArrayLikeFloat_co,
    discont: None | float = ...,
    axis: int = ...,
    *,
    period: float = ...,
) -> NDArray[floating[Any]]: ...
@overload
def unwrap(
    p: _ArrayLikeObject_co,
    discont: None | float = ...,
    axis: int = ...,
    *,
    period: float = ...,
) -> NDArray[object_]: ...

def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]: ...

def trim_zeros(
    filt: _TrimZerosSequence[_T],
    trim: L["f", "b", "fb", "bf"] = ...,
) -> _T: ...

@overload
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
@overload
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ...

def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ...

def disp(
    mesg: object,
    device: None | _SupportsWriteFlush = ...,
    linefeed: bool = ...,
) -> None: ...

@overload
def cov(
    m: _ArrayLikeFloat_co,
    y: None | _ArrayLikeFloat_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: None = ...,
) -> NDArray[floating[Any]]: ...
@overload
def cov(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: None = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def cov(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: _DTypeLike[_SCT],
) -> NDArray[_SCT]: ...
@overload
def cov(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: DTypeLike,
) -> NDArray[Any]: ...

# NOTE `bias` and `ddof` have been deprecated
@overload
def corrcoef(
    m: _ArrayLikeFloat_co,
    y: None | _ArrayLikeFloat_co = ...,
    rowvar: bool = ...,
    *,
    dtype: None = ...,
) -> NDArray[floating[Any]]: ...
@overload
def corrcoef(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    *,
    dtype: None = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def corrcoef(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    *,
    dtype: _DTypeLike[_SCT],
) -> NDArray[_SCT]: ...
@overload
def corrcoef(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    *,
    dtype: DTypeLike,
) -> NDArray[Any]: ...

def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...

def kaiser(
    M: _FloatLike_co,
    beta: _FloatLike_co,
) -> NDArray[floating[Any]]: ...

@overload
def sinc(x: _FloatLike_co) -> floating[Any]: ...
@overload
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
@overload
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
@overload
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...

# NOTE: Deprecated
# def msort(a: ArrayLike) -> NDArray[Any]: ...

@overload
def median(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> floating[Any]: ...
@overload
def median(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> complexfloating[Any, Any]: ...
@overload
def median(
    a: _ArrayLikeTD64_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> timedelta64: ...
@overload
def median(
    a: _ArrayLikeObject_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> Any: ...
@overload
def median(
    a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def median(
    a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    overwrite_input: bool = ...,
    keepdims: bool = ...,
) -> _ArrayType: ...

_MethodKind = L[
    "inverted_cdf",
    "averaged_inverted_cdf",
    "closest_observation",
    "interpolated_inverted_cdf",
    "hazen",
    "weibull",
    "linear",
    "median_unbiased",
    "normal_unbiased",
    "lower",
    "higher",
    "midpoint",
    "nearest",
]

@overload
def percentile(
    a: _ArrayLikeFloat_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> floating[Any]: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> complexfloating[Any, Any]: ...
@overload
def percentile(
    a: _ArrayLikeTD64_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> timedelta64: ...
@overload
def percentile(
    a: _ArrayLikeDT64_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> datetime64: ...
@overload
def percentile(
    a: _ArrayLikeObject_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> Any: ...
@overload
def percentile(
    a: _ArrayLikeFloat_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[floating[Any]]: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def percentile(
    a: _ArrayLikeTD64_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[timedelta64]: ...
@overload
def percentile(
    a: _ArrayLikeDT64_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[datetime64]: ...
@overload
def percentile(
    a: _ArrayLikeObject_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[object_]: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    q: _ArrayLikeFloat_co,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    q: _ArrayLikeFloat_co,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: bool = ...,
) -> _ArrayType: ...

# NOTE: Not an alias, but they do have identical signatures
# (that we can reuse)
quantile = percentile

# TODO: Returns a scalar for <= 1D array-likes; returns an ndarray otherwise
def trapz(
    y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ...,
    dx: float = ...,
    axis: SupportsIndex = ...,
) -> Any: ...

def meshgrid(
    *xi: ArrayLike,
    copy: bool = ...,
    sparse: bool = ...,
    indexing: L["xy", "ij"] = ...,
) -> list[NDArray[Any]]: ...

@overload
def delete(
    arr: _ArrayLike[_SCT],
    obj: slice | _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def delete(
    arr: ArrayLike,
    obj: slice | _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

@overload
def insert(
    arr: _ArrayLike[_SCT],
    obj: slice | _ArrayLikeInt_co,
    values: ArrayLike,
    axis: None | SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def insert(
    arr: ArrayLike,
    obj: slice | _ArrayLikeInt_co,
    values: ArrayLike,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

def append(
    arr: ArrayLike,
    values: ArrayLike,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

@overload
def digitize(
    x: _FloatLike_co,
    bins: _ArrayLikeFloat_co,
    right: bool = ...,
) -> intp: ...
@overload
def digitize(
    x: _ArrayLikeFloat_co,
    bins: _ArrayLikeFloat_co,
    right: bool = ...,
) -> NDArray[intp]: ...

Youez - 2016 - github.com/yon3zu
LinuXploit