Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.16.135.146
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib//arraysetops.pyi
from typing import (
    Literal as L,
    Any,
    TypeVar,
    overload,
    SupportsIndex,
)

from numpy import (
    generic,
    number,
    bool_,
    ushort,
    ubyte,
    uintc,
    uint,
    ulonglong,
    short,
    int8,
    byte,
    intc,
    int_,
    intp,
    longlong,
    half,
    single,
    double,
    longdouble,
    csingle,
    cdouble,
    clongdouble,
    timedelta64,
    datetime64,
    object_,
    str_,
    bytes_,
    void,
)

from numpy._typing import (
    ArrayLike,
    NDArray,
    _ArrayLike,
    _ArrayLikeBool_co,
    _ArrayLikeDT64_co,
    _ArrayLikeTD64_co,
    _ArrayLikeObject_co,
    _ArrayLikeNumber_co,
)

_SCT = TypeVar("_SCT", bound=generic)
_NumberType = TypeVar("_NumberType", bound=number[Any])

# Explicitly set all allowed values to prevent accidental castings to
# abstract dtypes (their common super-type).
#
# Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`)
# which could result in, for example, `int64` and `float64`producing a
# `number[_64Bit]` array
_SCTNoCast = TypeVar(
    "_SCTNoCast",
    bool_,
    ushort,
    ubyte,
    uintc,
    uint,
    ulonglong,
    short,
    byte,
    intc,
    int_,
    longlong,
    half,
    single,
    double,
    longdouble,
    csingle,
    cdouble,
    clongdouble,
    timedelta64,
    datetime64,
    object_,
    str_,
    bytes_,
    void,
)

__all__: list[str]

@overload
def ediff1d(
    ary: _ArrayLikeBool_co,
    to_end: None | ArrayLike = ...,
    to_begin: None | ArrayLike = ...,
) -> NDArray[int8]: ...
@overload
def ediff1d(
    ary: _ArrayLike[_NumberType],
    to_end: None | ArrayLike = ...,
    to_begin: None | ArrayLike = ...,
) -> NDArray[_NumberType]: ...
@overload
def ediff1d(
    ary: _ArrayLikeNumber_co,
    to_end: None | ArrayLike = ...,
    to_begin: None | ArrayLike = ...,
) -> NDArray[Any]: ...
@overload
def ediff1d(
    ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co,
    to_end: None | ArrayLike = ...,
    to_begin: None | ArrayLike = ...,
) -> NDArray[timedelta64]: ...
@overload
def ediff1d(
    ary: _ArrayLikeObject_co,
    to_end: None | ArrayLike = ...,
    to_begin: None | ArrayLike = ...,
) -> NDArray[object_]: ...

@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[False] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[False] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> NDArray[Any]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[True] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[True] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp]]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[False] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[False] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp]]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[False] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[False] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp]]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[True] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[True] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[False] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[True] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[True] = ...,
    return_inverse: L[False] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[False] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[False] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: _ArrayLike[_SCT],
    return_index: L[True] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ...
@overload
def unique(
    ar: ArrayLike,
    return_index: L[True] = ...,
    return_inverse: L[True] = ...,
    return_counts: L[True] = ...,
    axis: None | SupportsIndex = ...,
    *,
    equal_nan: bool = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ...

@overload
def intersect1d(
    ar1: _ArrayLike[_SCTNoCast],
    ar2: _ArrayLike[_SCTNoCast],
    assume_unique: bool = ...,
    return_indices: L[False] = ...,
) -> NDArray[_SCTNoCast]: ...
@overload
def intersect1d(
    ar1: ArrayLike,
    ar2: ArrayLike,
    assume_unique: bool = ...,
    return_indices: L[False] = ...,
) -> NDArray[Any]: ...
@overload
def intersect1d(
    ar1: _ArrayLike[_SCTNoCast],
    ar2: _ArrayLike[_SCTNoCast],
    assume_unique: bool = ...,
    return_indices: L[True] = ...,
) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ...
@overload
def intersect1d(
    ar1: ArrayLike,
    ar2: ArrayLike,
    assume_unique: bool = ...,
    return_indices: L[True] = ...,
) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ...

@overload
def setxor1d(
    ar1: _ArrayLike[_SCTNoCast],
    ar2: _ArrayLike[_SCTNoCast],
    assume_unique: bool = ...,
) -> NDArray[_SCTNoCast]: ...
@overload
def setxor1d(
    ar1: ArrayLike,
    ar2: ArrayLike,
    assume_unique: bool = ...,
) -> NDArray[Any]: ...

def in1d(
    ar1: ArrayLike,
    ar2: ArrayLike,
    assume_unique: bool = ...,
    invert: bool = ...,
) -> NDArray[bool_]: ...

def isin(
    element: ArrayLike,
    test_elements: ArrayLike,
    assume_unique: bool = ...,
    invert: bool = ...,
) -> NDArray[bool_]: ...

@overload
def union1d(
    ar1: _ArrayLike[_SCTNoCast],
    ar2: _ArrayLike[_SCTNoCast],
) -> NDArray[_SCTNoCast]: ...
@overload
def union1d(
    ar1: ArrayLike,
    ar2: ArrayLike,
) -> NDArray[Any]: ...

@overload
def setdiff1d(
    ar1: _ArrayLike[_SCTNoCast],
    ar2: _ArrayLike[_SCTNoCast],
    assume_unique: bool = ...,
) -> NDArray[_SCTNoCast]: ...
@overload
def setdiff1d(
    ar1: ArrayLike,
    ar2: ArrayLike,
    assume_unique: bool = ...,
) -> NDArray[Any]: ...

Youez - 2016 - github.com/yon3zu
LinuXploit