Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.117.72.244
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api//linalg.py
from __future__ import annotations

from ._dtypes import (
    _floating_dtypes,
    _numeric_dtypes,
    float32,
    float64,
    complex64,
    complex128
)
from ._manipulation_functions import reshape
from ._array_object import Array

from ..core.numeric import normalize_axis_tuple

from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype

from typing import NamedTuple

import numpy.linalg
import numpy as np

class EighResult(NamedTuple):
    eigenvalues: Array
    eigenvectors: Array

class QRResult(NamedTuple):
    Q: Array
    R: Array

class SlogdetResult(NamedTuple):
    sign: Array
    logabsdet: Array

class SVDResult(NamedTuple):
    U: Array
    S: Array
    Vh: Array

# Note: the inclusion of the upper keyword is different from
# np.linalg.cholesky, which does not have it.
def cholesky(x: Array, /, *, upper: bool = False) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.cholesky.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in cholesky')
    L = np.linalg.cholesky(x._array)
    if upper:
        return Array._new(L).mT
    return Array._new(L)

# Note: cross is the numpy top-level namespace, not np.linalg
def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.

    See its docstring for more information.
    """
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in cross')
    # Note: this is different from np.cross(), which broadcasts
    if x1.shape != x2.shape:
        raise ValueError('x1 and x2 must have the same shape')
    if x1.ndim == 0:
        raise ValueError('cross() requires arrays of dimension at least 1')
    # Note: this is different from np.cross(), which allows dimension 2
    if x1.shape[axis] != 3:
        raise ValueError('cross() dimension must equal 3')
    return Array._new(np.cross(x1._array, x2._array, axis=axis))

def det(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.det.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in det')
    return Array._new(np.linalg.det(x._array))

# Note: diagonal is the numpy top-level namespace, not np.linalg
def diagonal(x: Array, /, *, offset: int = 0) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.

    See its docstring for more information.
    """
    # Note: diagonal always operates on the last two axes, whereas np.diagonal
    # operates on the first two axes by default
    return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))


def eigh(x: Array, /) -> EighResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.eigh.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in eigh')

    # Note: the return type here is a namedtuple, which is different from
    # np.eigh, which only returns a tuple.
    return EighResult(*map(Array._new, np.linalg.eigh(x._array)))


def eigvalsh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.eigvalsh.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in eigvalsh')

    return Array._new(np.linalg.eigvalsh(x._array))

def inv(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.inv.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in inv')

    return Array._new(np.linalg.inv(x._array))


# Note: matmul is the numpy top-level namespace but not in np.linalg
def matmul(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.

    See its docstring for more information.
    """
    # Note: the restriction to numeric dtypes only is different from
    # np.matmul.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in matmul')

    return Array._new(np.matmul(x1._array, x2._array))


# Note: the name here is different from norm(). The array API norm is split
# into matrix_norm and vector_norm().

# The type for ord should be Optional[Union[int, float, Literal[np.inf,
# -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
# literals.
def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.norm.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in matrix_norm')

    return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))


def matrix_power(x: Array, n: int, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.matrix_power.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')

    # np.matrix_power already checks if n is an integer
    return Array._new(np.linalg.matrix_power(x._array, n))

# Note: the keyword argument name rtol is different from np.linalg.matrix_rank
def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.

    See its docstring for more information.
    """
    # Note: this is different from np.linalg.matrix_rank, which supports 1
    # dimensional arrays.
    if x.ndim < 2:
        raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
    S = np.linalg.svd(x._array, compute_uv=False)
    if rtol is None:
        tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
    else:
        if isinstance(rtol, Array):
            rtol = rtol._array
        # Note: this is different from np.linalg.matrix_rank, which does not multiply
        # the tolerance by the largest singular value.
        tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
    return Array._new(np.count_nonzero(S > tol, axis=-1))


# Note: this function is new in the array API spec. Unlike transpose, it only
# transposes the last two axes.
def matrix_transpose(x: Array, /) -> Array:
    if x.ndim < 2:
        raise ValueError("x must be at least 2-dimensional for matrix_transpose")
    return Array._new(np.swapaxes(x._array, -1, -2))

# Note: outer is the numpy top-level namespace, not np.linalg
def outer(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.

    See its docstring for more information.
    """
    # Note: the restriction to numeric dtypes only is different from
    # np.outer.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in outer')

    # Note: the restriction to only 1-dim arrays is different from np.outer
    if x1.ndim != 1 or x2.ndim != 1:
        raise ValueError('The input arrays to outer must be 1-dimensional')

    return Array._new(np.outer(x1._array, x2._array))

# Note: the keyword argument name rtol is different from np.linalg.pinv
def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.pinv.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in pinv')

    # Note: this is different from np.linalg.pinv, which does not multiply the
    # default tolerance by max(M, N).
    if rtol is None:
        rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
    return Array._new(np.linalg.pinv(x._array, rcond=rtol))

def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.qr.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in qr')

    # Note: the return type here is a namedtuple, which is different from
    # np.linalg.qr, which only returns a tuple.
    return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))

def slogdet(x: Array, /) -> SlogdetResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.slogdet.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in slogdet')

    # Note: the return type here is a namedtuple, which is different from
    # np.linalg.slogdet, which only returns a tuple.
    return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))

# Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
# vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
# of matrices. The np.linalg.solve behavior of allowing stacks of both
# matrices and vectors is ambiguous c.f.
# https://github.com/numpy/numpy/issues/15349 and
# https://github.com/data-apis/array-api/issues/285.

# To workaround this, the below is the code from np.linalg.solve except
# only calling solve1 in the exactly 1D case.
def _solve(a, b):
    from ..linalg.linalg import (_makearray, _assert_stacked_2d,
                                 _assert_stacked_square, _commonType,
                                 isComplexType, get_linalg_error_extobj,
                                 _raise_linalgerror_singular)
    from ..linalg import _umath_linalg

    a, _ = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    b, wrap = _makearray(b)
    t, result_t = _commonType(a, b)

    # This part is different from np.linalg.solve
    if b.ndim == 1:
        gufunc = _umath_linalg.solve1
    else:
        gufunc = _umath_linalg.solve

    # This does nothing currently but is left in because it will be relevant
    # when complex dtype support is added to the spec in 2022.
    signature = 'DD->D' if isComplexType(t) else 'dd->d'
    extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
    r = gufunc(a, b, signature=signature, extobj=extobj)

    return wrap(r.astype(result_t, copy=False))

def solve(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.solve.
    if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in solve')

    return Array._new(_solve(x1._array, x2._array))

def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.svd.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in svd')

    # Note: the return type here is a namedtuple, which is different from
    # np.svd, which only returns a tuple.
    return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))

# Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
# np.linalg.svd(compute_uv=False).
def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in svdvals')
    return Array._new(np.linalg.svd(x._array, compute_uv=False))

# Note: tensordot is the numpy top-level namespace but not in np.linalg

# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
    # Note: the restriction to numeric dtypes only is different from
    # np.tensordot.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in tensordot')

    return Array._new(np.tensordot(x1._array, x2._array, axes=axes))

# Note: trace is the numpy top-level namespace, not np.linalg
def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in trace')

    # Note: trace() works the same as sum() and prod() (see
    # _statistical_functions.py)
    if dtype is None:
        if x.dtype == float32:
            dtype = float64
        elif x.dtype == complex64:
            dtype = complex128
    # Note: trace always operates on the last two axes, whereas np.trace
    # operates on the first two axes by default
    return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype)))

# Note: vecdot is not in NumPy
def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in vecdot')
    ndim = max(x1.ndim, x2.ndim)
    x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
    x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
    if x1_shape[axis] != x2_shape[axis]:
        raise ValueError("x1 and x2 must have the same size along the given axis")

    x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
    x1_ = np.moveaxis(x1_, axis, -1)
    x2_ = np.moveaxis(x2_, axis, -1)

    res = x1_[..., None, :] @ x2_[..., None]
    return Array._new(res[..., 0, 0])


# Note: the name here is different from norm(). The array API norm is split
# into matrix_norm and vector_norm().

# The type for ord should be Optional[Union[int, float, Literal[np.inf,
# -np.inf]]] but Literal does not support floating-point literals.
def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.norm.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in norm')

    # np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
    # when axis=None and the input is 2-D, so to force a vector norm, we make
    # it so the input is 1-D (for axis=None), or reshape so that norm is done
    # on a single dimension.
    a = x._array
    if axis is None:
        # Note: np.linalg.norm() doesn't handle 0-D arrays
        a = a.ravel()
        _axis = 0
    elif isinstance(axis, tuple):
        # Note: The axis argument supports any number of axes, whereas
        # np.linalg.norm() only supports a single axis for vector norm.
        normalized_axis = normalize_axis_tuple(axis, x.ndim)
        rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
        newshape = axis + rest
        a = np.transpose(a, newshape).reshape(
            (np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
        _axis = 0
    else:
        _axis = axis

    res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))

    if keepdims:
        # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
        # above to avoid matrix norm logic.
        shape = list(x.shape)
        _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
        for i in _axis:
            shape[i] = 1
        res = reshape(res, tuple(shape))

    return res

__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']

Youez - 2016 - github.com/yon3zu
LinuXploit