Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.17.165.196
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/coverage/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/coverage/parser.py
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
# For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt

"""Code parsing for coverage.py."""

from __future__ import annotations

import ast
import collections
import os
import re
import sys
import token
import tokenize

from types import CodeType
from typing import (
    cast, Any, Callable, Dict, Iterable, List, Optional, Sequence, Set, Tuple,
)

from coverage import env
from coverage.bytecode import code_objects
from coverage.debug import short_stack
from coverage.exceptions import NoSource, NotPython
from coverage.misc import join_regex, nice_pair
from coverage.phystokens import generate_tokens
from coverage.types import Protocol, TArc, TLineNo


class PythonParser:
    """Parse code to find executable lines, excluded lines, etc.

    This information is all based on static analysis: no code execution is
    involved.

    """
    def __init__(
        self,
        text: Optional[str] = None,
        filename: Optional[str] = None,
        exclude: Optional[str] = None,
    ) -> None:
        """
        Source can be provided as `text`, the text itself, or `filename`, from
        which the text will be read.  Excluded lines are those that match
        `exclude`, a regex string.

        """
        assert text or filename, "PythonParser needs either text or filename"
        self.filename = filename or "<code>"
        if text is not None:
            self.text: str = text
        else:
            from coverage.python import get_python_source
            try:
                self.text = get_python_source(self.filename)
            except OSError as err:
                raise NoSource(f"No source for code: '{self.filename}': {err}") from err

        self.exclude = exclude

        # The text lines of the parsed code.
        self.lines: List[str] = self.text.split("\n")

        # The normalized line numbers of the statements in the code. Exclusions
        # are taken into account, and statements are adjusted to their first
        # lines.
        self.statements: Set[TLineNo] = set()

        # The normalized line numbers of the excluded lines in the code,
        # adjusted to their first lines.
        self.excluded: Set[TLineNo] = set()

        # The raw_* attributes are only used in this class, and in
        # lab/parser.py to show how this class is working.

        # The line numbers that start statements, as reported by the line
        # number table in the bytecode.
        self.raw_statements: Set[TLineNo] = set()

        # The raw line numbers of excluded lines of code, as marked by pragmas.
        self.raw_excluded: Set[TLineNo] = set()

        # The line numbers of class definitions.
        self.raw_classdefs: Set[TLineNo] = set()

        # The line numbers of docstring lines.
        self.raw_docstrings: Set[TLineNo] = set()

        # Internal detail, used by lab/parser.py.
        self.show_tokens = False

        # A dict mapping line numbers to lexical statement starts for
        # multi-line statements.
        self._multiline: Dict[TLineNo, TLineNo] = {}

        # Lazily-created arc data, and missing arc descriptions.
        self._all_arcs: Optional[Set[TArc]] = None
        self._missing_arc_fragments: Optional[TArcFragments] = None

    def lines_matching(self, *regexes: str) -> Set[TLineNo]:
        """Find the lines matching one of a list of regexes.

        Returns a set of line numbers, the lines that contain a match for one
        of the regexes in `regexes`.  The entire line needn't match, just a
        part of it.

        """
        combined = join_regex(regexes)
        regex_c = re.compile(combined)
        matches = set()
        for i, ltext in enumerate(self.lines, start=1):
            if regex_c.search(ltext):
                matches.add(i)
        return matches

    def _raw_parse(self) -> None:
        """Parse the source to find the interesting facts about its lines.

        A handful of attributes are updated.

        """
        # Find lines which match an exclusion pattern.
        if self.exclude:
            self.raw_excluded = self.lines_matching(self.exclude)

        # Tokenize, to find excluded suites, to find docstrings, and to find
        # multi-line statements.
        indent = 0
        exclude_indent = 0
        excluding = False
        excluding_decorators = False
        prev_toktype = token.INDENT
        first_line = None
        empty = True
        first_on_line = True
        nesting = 0

        assert self.text is not None
        tokgen = generate_tokens(self.text)
        for toktype, ttext, (slineno, _), (elineno, _), ltext in tokgen:
            if self.show_tokens:                # pragma: debugging
                print("%10s %5s %-20r %r" % (
                    tokenize.tok_name.get(toktype, toktype),
                    nice_pair((slineno, elineno)), ttext, ltext
                ))
            if toktype == token.INDENT:
                indent += 1
            elif toktype == token.DEDENT:
                indent -= 1
            elif toktype == token.NAME:
                if ttext == "class":
                    # Class definitions look like branches in the bytecode, so
                    # we need to exclude them.  The simplest way is to note the
                    # lines with the "class" keyword.
                    self.raw_classdefs.add(slineno)
            elif toktype == token.OP:
                if ttext == ":" and nesting == 0:
                    should_exclude = (elineno in self.raw_excluded) or excluding_decorators
                    if not excluding and should_exclude:
                        # Start excluding a suite.  We trigger off of the colon
                        # token so that the #pragma comment will be recognized on
                        # the same line as the colon.
                        self.raw_excluded.add(elineno)
                        exclude_indent = indent
                        excluding = True
                        excluding_decorators = False
                elif ttext == "@" and first_on_line:
                    # A decorator.
                    if elineno in self.raw_excluded:
                        excluding_decorators = True
                    if excluding_decorators:
                        self.raw_excluded.add(elineno)
                elif ttext in "([{":
                    nesting += 1
                elif ttext in ")]}":
                    nesting -= 1
            elif toktype == token.STRING and prev_toktype == token.INDENT:
                # Strings that are first on an indented line are docstrings.
                # (a trick from trace.py in the stdlib.) This works for
                # 99.9999% of cases.  For the rest (!) see:
                # http://stackoverflow.com/questions/1769332/x/1769794#1769794
                self.raw_docstrings.update(range(slineno, elineno+1))
            elif toktype == token.NEWLINE:
                if first_line is not None and elineno != first_line:    # type: ignore[unreachable]
                    # We're at the end of a line, and we've ended on a
                    # different line than the first line of the statement,
                    # so record a multi-line range.
                    for l in range(first_line, elineno+1):              # type: ignore[unreachable]
                        self._multiline[l] = first_line
                first_line = None
                first_on_line = True

            if ttext.strip() and toktype != tokenize.COMMENT:
                # A non-white-space token.
                empty = False
                if first_line is None:
                    # The token is not white space, and is the first in a statement.
                    first_line = slineno
                    # Check whether to end an excluded suite.
                    if excluding and indent <= exclude_indent:
                        excluding = False
                    if excluding:
                        self.raw_excluded.add(elineno)
                    first_on_line = False

            prev_toktype = toktype

        # Find the starts of the executable statements.
        if not empty:
            byte_parser = ByteParser(self.text, filename=self.filename)
            self.raw_statements.update(byte_parser._find_statements())

        # The first line of modules can lie and say 1 always, even if the first
        # line of code is later. If so, map 1 to the actual first line of the
        # module.
        if env.PYBEHAVIOR.module_firstline_1 and self._multiline:
            self._multiline[1] = min(self.raw_statements)

    def first_line(self, lineno: TLineNo) -> TLineNo:
        """Return the first line number of the statement including `lineno`."""
        if lineno < 0:
            lineno = -self._multiline.get(-lineno, -lineno)
        else:
            lineno = self._multiline.get(lineno, lineno)
        return lineno

    def first_lines(self, linenos: Iterable[TLineNo]) -> Set[TLineNo]:
        """Map the line numbers in `linenos` to the correct first line of the
        statement.

        Returns a set of the first lines.

        """
        return {self.first_line(l) for l in linenos}

    def translate_lines(self, lines: Iterable[TLineNo]) -> Set[TLineNo]:
        """Implement `FileReporter.translate_lines`."""
        return self.first_lines(lines)

    def translate_arcs(self, arcs: Iterable[TArc]) -> Set[TArc]:
        """Implement `FileReporter.translate_arcs`."""
        return {(self.first_line(a), self.first_line(b)) for (a, b) in arcs}

    def parse_source(self) -> None:
        """Parse source text to find executable lines, excluded lines, etc.

        Sets the .excluded and .statements attributes, normalized to the first
        line of multi-line statements.

        """
        try:
            self._raw_parse()
        except (tokenize.TokenError, IndentationError, SyntaxError) as err:
            if hasattr(err, "lineno"):
                lineno = err.lineno         # IndentationError
            else:
                lineno = err.args[1][0]     # TokenError
            raise NotPython(
                f"Couldn't parse '{self.filename}' as Python source: " +
                f"{err.args[0]!r} at line {lineno}"
            ) from err

        self.excluded = self.first_lines(self.raw_excluded)

        ignore = self.excluded | self.raw_docstrings
        starts = self.raw_statements - ignore
        self.statements = self.first_lines(starts) - ignore

    def arcs(self) -> Set[TArc]:
        """Get information about the arcs available in the code.

        Returns a set of line number pairs.  Line numbers have been normalized
        to the first line of multi-line statements.

        """
        if self._all_arcs is None:
            self._analyze_ast()
        assert self._all_arcs is not None
        return self._all_arcs

    def _analyze_ast(self) -> None:
        """Run the AstArcAnalyzer and save its results.

        `_all_arcs` is the set of arcs in the code.

        """
        aaa = AstArcAnalyzer(self.text, self.raw_statements, self._multiline)
        aaa.analyze()

        self._all_arcs = set()
        for l1, l2 in aaa.arcs:
            fl1 = self.first_line(l1)
            fl2 = self.first_line(l2)
            if fl1 != fl2:
                self._all_arcs.add((fl1, fl2))

        self._missing_arc_fragments = aaa.missing_arc_fragments

    def exit_counts(self) -> Dict[TLineNo, int]:
        """Get a count of exits from that each line.

        Excluded lines are excluded.

        """
        exit_counts: Dict[TLineNo, int] = collections.defaultdict(int)
        for l1, l2 in self.arcs():
            if l1 < 0:
                # Don't ever report -1 as a line number
                continue
            if l1 in self.excluded:
                # Don't report excluded lines as line numbers.
                continue
            if l2 in self.excluded:
                # Arcs to excluded lines shouldn't count.
                continue
            exit_counts[l1] += 1

        # Class definitions have one extra exit, so remove one for each:
        for l in self.raw_classdefs:
            # Ensure key is there: class definitions can include excluded lines.
            if l in exit_counts:
                exit_counts[l] -= 1

        return exit_counts

    def missing_arc_description(
        self,
        start: TLineNo,
        end: TLineNo,
        executed_arcs: Optional[Iterable[TArc]] = None,
    ) -> str:
        """Provide an English sentence describing a missing arc."""
        if self._missing_arc_fragments is None:
            self._analyze_ast()
            assert self._missing_arc_fragments is not None

        actual_start = start

        if (
            executed_arcs and
            end < 0 and end == -start and
            (end, start) not in executed_arcs and
            (end, start) in self._missing_arc_fragments
        ):
            # It's a one-line callable, and we never even started it,
            # and we have a message about not starting it.
            start, end = end, start

        fragment_pairs = self._missing_arc_fragments.get((start, end), [(None, None)])

        msgs = []
        for smsg, emsg in fragment_pairs:
            if emsg is None:
                if end < 0:
                    # Hmm, maybe we have a one-line callable, let's check.
                    if (-end, end) in self._missing_arc_fragments:
                        return self.missing_arc_description(-end, end)
                    emsg = "didn't jump to the function exit"
                else:
                    emsg = "didn't jump to line {lineno}"
            emsg = emsg.format(lineno=end)

            msg = f"line {actual_start} {emsg}"
            if smsg is not None:
                msg += f", because {smsg.format(lineno=actual_start)}"

            msgs.append(msg)

        return " or ".join(msgs)


class ByteParser:
    """Parse bytecode to understand the structure of code."""

    def __init__(
        self,
        text: str,
        code: Optional[CodeType] = None,
        filename: Optional[str] = None,
    ) -> None:
        self.text = text
        if code is not None:
            self.code = code
        else:
            assert filename is not None
            try:
                self.code = compile(text, filename, "exec", dont_inherit=True)
            except SyntaxError as synerr:
                raise NotPython(
                    "Couldn't parse '%s' as Python source: '%s' at line %d" % (
                        filename, synerr.msg, synerr.lineno or 0
                    )
                ) from synerr

    def child_parsers(self) -> Iterable[ByteParser]:
        """Iterate over all the code objects nested within this one.

        The iteration includes `self` as its first value.

        """
        return (ByteParser(self.text, code=c) for c in code_objects(self.code))

    def _line_numbers(self) -> Iterable[TLineNo]:
        """Yield the line numbers possible in this code object.

        Uses co_lnotab described in Python/compile.c to find the
        line numbers.  Produces a sequence: l0, l1, ...
        """
        if hasattr(self.code, "co_lines"):
            for _, _, line in self.code.co_lines():
                if line:
                    yield line
        else:
            # Adapted from dis.py in the standard library.
            byte_increments = self.code.co_lnotab[0::2]
            line_increments = self.code.co_lnotab[1::2]

            last_line_num = None
            line_num = self.code.co_firstlineno
            byte_num = 0
            for byte_incr, line_incr in zip(byte_increments, line_increments):
                if byte_incr:
                    if line_num != last_line_num:
                        yield line_num
                        last_line_num = line_num
                    byte_num += byte_incr
                if env.PYBEHAVIOR.negative_lnotab and line_incr >= 0x80:
                    line_incr -= 0x100
                line_num += line_incr
            if line_num != last_line_num:
                yield line_num

    def _find_statements(self) -> Iterable[TLineNo]:
        """Find the statements in `self.code`.

        Produce a sequence of line numbers that start statements.  Recurses
        into all code objects reachable from `self.code`.

        """
        for bp in self.child_parsers():
            # Get all of the lineno information from this code.
            yield from bp._line_numbers()


#
# AST analysis
#

class ArcStart(collections.namedtuple("Arc", "lineno, cause")):
    """The information needed to start an arc.

    `lineno` is the line number the arc starts from.

    `cause` is an English text fragment used as the `startmsg` for
    AstArcAnalyzer.missing_arc_fragments.  It will be used to describe why an
    arc wasn't executed, so should fit well into a sentence of the form,
    "Line 17 didn't run because {cause}."  The fragment can include "{lineno}"
    to have `lineno` interpolated into it.

    """
    def __new__(cls, lineno: TLineNo, cause: Optional[str] = None) -> ArcStart:
        return super().__new__(cls, lineno, cause)


class TAddArcFn(Protocol):
    """The type for AstArcAnalyzer.add_arc()."""
    def __call__(
        self,
        start: TLineNo,
        end: TLineNo,
        smsg: Optional[str] = None,
        emsg: Optional[str] = None,
    ) -> None:
        ...

TArcFragments = Dict[TArc, List[Tuple[Optional[str], Optional[str]]]]

class Block:
    """
    Blocks need to handle various exiting statements in their own ways.

    All of these methods take a list of exits, and a callable `add_arc`
    function that they can use to add arcs if needed.  They return True if the
    exits are handled, or False if the search should continue up the block
    stack.
    """
    # pylint: disable=unused-argument
    def process_break_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        """Process break exits."""
        # Because break can only appear in loops, and most subclasses
        # implement process_break_exits, this function is never reached.
        raise AssertionError

    def process_continue_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        """Process continue exits."""
        # Because continue can only appear in loops, and most subclasses
        # implement process_continue_exits, this function is never reached.
        raise AssertionError

    def process_raise_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        """Process raise exits."""
        return False

    def process_return_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        """Process return exits."""
        return False


class LoopBlock(Block):
    """A block on the block stack representing a `for` or `while` loop."""
    def __init__(self, start: TLineNo) -> None:
        # The line number where the loop starts.
        self.start = start
        # A set of ArcStarts, the arcs from break statements exiting this loop.
        self.break_exits: Set[ArcStart] = set()

    def process_break_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        self.break_exits.update(exits)
        return True

    def process_continue_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        for xit in exits:
            add_arc(xit.lineno, self.start, xit.cause)
        return True


class FunctionBlock(Block):
    """A block on the block stack representing a function definition."""
    def __init__(self, start: TLineNo, name: str) -> None:
        # The line number where the function starts.
        self.start = start
        # The name of the function.
        self.name = name

    def process_raise_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        for xit in exits:
            add_arc(
                xit.lineno, -self.start, xit.cause,
                f"didn't except from function {self.name!r}",
            )
        return True

    def process_return_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        for xit in exits:
            add_arc(
                xit.lineno, -self.start, xit.cause,
                f"didn't return from function {self.name!r}",
            )
        return True


class TryBlock(Block):
    """A block on the block stack representing a `try` block."""
    def __init__(self, handler_start: Optional[TLineNo], final_start: Optional[TLineNo]) -> None:
        # The line number of the first "except" handler, if any.
        self.handler_start = handler_start
        # The line number of the "finally:" clause, if any.
        self.final_start = final_start

        # The ArcStarts for breaks/continues/returns/raises inside the "try:"
        # that need to route through the "finally:" clause.
        self.break_from: Set[ArcStart] = set()
        self.continue_from: Set[ArcStart] = set()
        self.raise_from: Set[ArcStart] = set()
        self.return_from: Set[ArcStart] = set()

    def process_break_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        if self.final_start is not None:
            self.break_from.update(exits)
            return True
        return False

    def process_continue_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        if self.final_start is not None:
            self.continue_from.update(exits)
            return True
        return False

    def process_raise_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        if self.handler_start is not None:
            for xit in exits:
                add_arc(xit.lineno, self.handler_start, xit.cause)
        else:
            assert self.final_start is not None
            self.raise_from.update(exits)
        return True

    def process_return_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        if self.final_start is not None:
            self.return_from.update(exits)
            return True
        return False


class WithBlock(Block):
    """A block on the block stack representing a `with` block."""
    def __init__(self, start: TLineNo) -> None:
        # We only ever use this block if it is needed, so that we don't have to
        # check this setting in all the methods.
        assert env.PYBEHAVIOR.exit_through_with

        # The line number of the with statement.
        self.start = start

        # The ArcStarts for breaks/continues/returns/raises inside the "with:"
        # that need to go through the with-statement while exiting.
        self.break_from: Set[ArcStart] = set()
        self.continue_from: Set[ArcStart] = set()
        self.return_from: Set[ArcStart] = set()

    def _process_exits(
        self,
        exits: Set[ArcStart],
        add_arc: TAddArcFn,
        from_set: Optional[Set[ArcStart]] = None,
    ) -> bool:
        """Helper to process the four kinds of exits."""
        for xit in exits:
            add_arc(xit.lineno, self.start, xit.cause)
        if from_set is not None:
            from_set.update(exits)
        return True

    def process_break_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        return self._process_exits(exits, add_arc, self.break_from)

    def process_continue_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        return self._process_exits(exits, add_arc, self.continue_from)

    def process_raise_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        return self._process_exits(exits, add_arc)

    def process_return_exits(self, exits: Set[ArcStart], add_arc: TAddArcFn) -> bool:
        return self._process_exits(exits, add_arc, self.return_from)


class NodeList(ast.AST):
    """A synthetic fictitious node, containing a sequence of nodes.

    This is used when collapsing optimized if-statements, to represent the
    unconditional execution of one of the clauses.

    """
    def __init__(self, body: Sequence[ast.AST]) -> None:
        self.body = body
        self.lineno = body[0].lineno

# TODO: some add_arcs methods here don't add arcs, they return them. Rename them.
# TODO: the cause messages have too many commas.
# TODO: Shouldn't the cause messages join with "and" instead of "or"?

def _make_expression_code_method(noun: str) -> Callable[[AstArcAnalyzer, ast.AST], None]:
    """A function to make methods for expression-based callable _code_object__ methods."""
    def _code_object__expression_callable(self: AstArcAnalyzer, node: ast.AST) -> None:
        start = self.line_for_node(node)
        self.add_arc(-start, start, None, f"didn't run the {noun} on line {start}")
        self.add_arc(start, -start, None, f"didn't finish the {noun} on line {start}")
    return _code_object__expression_callable


class AstArcAnalyzer:
    """Analyze source text with an AST to find executable code paths."""

    def __init__(
        self,
        text: str,
        statements: Set[TLineNo],
        multiline: Dict[TLineNo, TLineNo],
    ) -> None:
        self.root_node = ast.parse(text)
        # TODO: I think this is happening in too many places.
        self.statements = {multiline.get(l, l) for l in statements}
        self.multiline = multiline

        # Turn on AST dumps with an environment variable.
        # $set_env.py: COVERAGE_AST_DUMP - Dump the AST nodes when parsing code.
        dump_ast = bool(int(os.environ.get("COVERAGE_AST_DUMP", 0)))

        if dump_ast:                                # pragma: debugging
            # Dump the AST so that failing tests have helpful output.
            print(f"Statements: {self.statements}")
            print(f"Multiline map: {self.multiline}")
            ast_dump(self.root_node)

        self.arcs: Set[TArc] = set()

        # A map from arc pairs to a list of pairs of sentence fragments:
        #   { (start, end): [(startmsg, endmsg), ...], }
        #
        # For an arc from line 17, they should be usable like:
        #    "Line 17 {endmsg}, because {startmsg}"
        self.missing_arc_fragments: TArcFragments = collections.defaultdict(list)
        self.block_stack: List[Block] = []

        # $set_env.py: COVERAGE_TRACK_ARCS - Trace possible arcs added while parsing code.
        self.debug = bool(int(os.environ.get("COVERAGE_TRACK_ARCS", 0)))

    def analyze(self) -> None:
        """Examine the AST tree from `root_node` to determine possible arcs.

        This sets the `arcs` attribute to be a set of (from, to) line number
        pairs.

        """
        for node in ast.walk(self.root_node):
            node_name = node.__class__.__name__
            code_object_handler = getattr(self, "_code_object__" + node_name, None)
            if code_object_handler is not None:
                code_object_handler(node)

    def add_arc(
        self,
        start: TLineNo,
        end: TLineNo,
        smsg: Optional[str] = None,
        emsg: Optional[str] = None,
    ) -> None:
        """Add an arc, including message fragments to use if it is missing."""
        if self.debug:                      # pragma: debugging
            print(f"\nAdding possible arc: ({start}, {end}): {smsg!r}, {emsg!r}")
            print(short_stack(limit=10))
        self.arcs.add((start, end))

        if smsg is not None or emsg is not None:
            self.missing_arc_fragments[(start, end)].append((smsg, emsg))

    def nearest_blocks(self) -> Iterable[Block]:
        """Yield the blocks in nearest-to-farthest order."""
        return reversed(self.block_stack)

    def line_for_node(self, node: ast.AST) -> TLineNo:
        """What is the right line number to use for this node?

        This dispatches to _line__Node functions where needed.

        """
        node_name = node.__class__.__name__
        handler = cast(
            Optional[Callable[[ast.AST], TLineNo]],
            getattr(self, "_line__" + node_name, None)
        )
        if handler is not None:
            return handler(node)
        else:
            return node.lineno

    def _line_decorated(self, node: ast.FunctionDef) -> TLineNo:
        """Compute first line number for things that can be decorated (classes and functions)."""
        lineno = node.lineno
        if env.PYBEHAVIOR.trace_decorated_def or env.PYBEHAVIOR.def_ast_no_decorator:
            if node.decorator_list:
                lineno = node.decorator_list[0].lineno
        return lineno

    def _line__Assign(self, node: ast.Assign) -> TLineNo:
        return self.line_for_node(node.value)

    _line__ClassDef = _line_decorated

    def _line__Dict(self, node: ast.Dict) -> TLineNo:
        if node.keys:
            if node.keys[0] is not None:
                return node.keys[0].lineno
            else:
                # Unpacked dict literals `{**{"a":1}}` have None as the key,
                # use the value in that case.
                return node.values[0].lineno
        else:
            return node.lineno

    _line__FunctionDef = _line_decorated
    _line__AsyncFunctionDef = _line_decorated

    def _line__List(self, node: ast.List) -> TLineNo:
        if node.elts:
            return self.line_for_node(node.elts[0])
        else:
            return node.lineno

    def _line__Module(self, node: ast.Module) -> TLineNo:
        if env.PYBEHAVIOR.module_firstline_1:
            return 1
        elif node.body:
            return self.line_for_node(node.body[0])
        else:
            # Empty modules have no line number, they always start at 1.
            return 1

    # The node types that just flow to the next node with no complications.
    OK_TO_DEFAULT = {
        "AnnAssign", "Assign", "Assert", "AugAssign", "Delete", "Expr", "Global",
        "Import", "ImportFrom", "Nonlocal", "Pass",
    }

    def add_arcs(self, node: ast.AST) -> Set[ArcStart]:
        """Add the arcs for `node`.

        Return a set of ArcStarts, exits from this node to the next. Because a
        node represents an entire sub-tree (including its children), the exits
        from a node can be arbitrarily complex::

            if something(1):
                if other(2):
                    doit(3)
                else:
                    doit(5)

        There are two exits from line 1: they start at line 3 and line 5.

        """
        node_name = node.__class__.__name__
        handler = cast(
            Optional[Callable[[ast.AST], Set[ArcStart]]],
            getattr(self, "_handle__" + node_name, None)
        )
        if handler is not None:
            return handler(node)
        else:
            # No handler: either it's something that's ok to default (a simple
            # statement), or it's something we overlooked.
            if env.TESTING:
                if node_name not in self.OK_TO_DEFAULT:
                    raise RuntimeError(f"*** Unhandled: {node}")        # pragma: only failure

            # Default for simple statements: one exit from this node.
            return {ArcStart(self.line_for_node(node))}

    def add_body_arcs(
        self,
        body: Sequence[ast.AST],
        from_start: Optional[ArcStart] = None,
        prev_starts: Optional[Set[ArcStart]] = None
    ) -> Set[ArcStart]:
        """Add arcs for the body of a compound statement.

        `body` is the body node.  `from_start` is a single `ArcStart` that can
        be the previous line in flow before this body.  `prev_starts` is a set
        of ArcStarts that can be the previous line.  Only one of them should be
        given.

        Returns a set of ArcStarts, the exits from this body.

        """
        if prev_starts is None:
            assert from_start is not None
            prev_starts = {from_start}
        for body_node in body:
            lineno = self.line_for_node(body_node)
            first_line = self.multiline.get(lineno, lineno)
            if first_line not in self.statements:
                maybe_body_node = self.find_non_missing_node(body_node)
                if maybe_body_node is None:
                    continue
                body_node = maybe_body_node
                lineno = self.line_for_node(body_node)
            for prev_start in prev_starts:
                self.add_arc(prev_start.lineno, lineno, prev_start.cause)
            prev_starts = self.add_arcs(body_node)
        return prev_starts

    def find_non_missing_node(self, node: ast.AST) -> Optional[ast.AST]:
        """Search `node` looking for a child that has not been optimized away.

        This might return the node you started with, or it will work recursively
        to find a child node in self.statements.

        Returns a node, or None if none of the node remains.

        """
        # This repeats work just done in add_body_arcs, but this duplication
        # means we can avoid a function call in the 99.9999% case of not
        # optimizing away statements.
        lineno = self.line_for_node(node)
        first_line = self.multiline.get(lineno, lineno)
        if first_line in self.statements:
            return node

        missing_fn = cast(
            Optional[Callable[[ast.AST], Optional[ast.AST]]],
            getattr(self, "_missing__" + node.__class__.__name__, None)
        )
        if missing_fn is not None:
            ret_node = missing_fn(node)
        else:
            ret_node = None
        return ret_node

    # Missing nodes: _missing__*
    #
    # Entire statements can be optimized away by Python. They will appear in
    # the AST, but not the bytecode.  These functions are called (by
    # find_non_missing_node) to find a node to use instead of the missing
    # node.  They can return None if the node should truly be gone.

    def _missing__If(self, node: ast.If) -> Optional[ast.AST]:
        # If the if-node is missing, then one of its children might still be
        # here, but not both. So return the first of the two that isn't missing.
        # Use a NodeList to hold the clauses as a single node.
        non_missing = self.find_non_missing_node(NodeList(node.body))
        if non_missing:
            return non_missing
        if node.orelse:
            return self.find_non_missing_node(NodeList(node.orelse))
        return None

    def _missing__NodeList(self, node: NodeList) -> Optional[ast.AST]:
        # A NodeList might be a mixture of missing and present nodes. Find the
        # ones that are present.
        non_missing_children = []
        for child in node.body:
            maybe_child = self.find_non_missing_node(child)
            if maybe_child is not None:
                non_missing_children.append(maybe_child)

        # Return the simplest representation of the present children.
        if not non_missing_children:
            return None
        if len(non_missing_children) == 1:
            return non_missing_children[0]
        return NodeList(non_missing_children)

    def _missing__While(self, node: ast.While) -> Optional[ast.AST]:
        body_nodes = self.find_non_missing_node(NodeList(node.body))
        if not body_nodes:
            return None
        # Make a synthetic While-true node.
        new_while = ast.While()
        new_while.lineno = body_nodes.lineno
        new_while.test = ast.Name()
        new_while.test.lineno = body_nodes.lineno
        new_while.test.id = "True"
        assert hasattr(body_nodes, "body")
        new_while.body = body_nodes.body
        new_while.orelse = []
        return new_while

    def is_constant_expr(self, node: ast.AST) -> Optional[str]:
        """Is this a compile-time constant?"""
        node_name = node.__class__.__name__
        if node_name in ["Constant", "NameConstant", "Num"]:
            return "Num"
        elif isinstance(node, ast.Name):
            if node.id in ["True", "False", "None", "__debug__"]:
                return "Name"
        return None

    # In the fullness of time, these might be good tests to write:
    #   while EXPR:
    #   while False:
    #   listcomps hidden deep in other expressions
    #   listcomps hidden in lists: x = [[i for i in range(10)]]
    #   nested function definitions

    # Exit processing: process_*_exits
    #
    # These functions process the four kinds of jump exits: break, continue,
    # raise, and return.  To figure out where an exit goes, we have to look at
    # the block stack context.  For example, a break will jump to the nearest
    # enclosing loop block, or the nearest enclosing finally block, whichever
    # is nearer.

    def process_break_exits(self, exits: Set[ArcStart]) -> None:
        """Add arcs due to jumps from `exits` being breaks."""
        for block in self.nearest_blocks():                         # pragma: always breaks
            if block.process_break_exits(exits, self.add_arc):
                break

    def process_continue_exits(self, exits: Set[ArcStart]) -> None:
        """Add arcs due to jumps from `exits` being continues."""
        for block in self.nearest_blocks():                         # pragma: always breaks
            if block.process_continue_exits(exits, self.add_arc):
                break

    def process_raise_exits(self, exits: Set[ArcStart]) -> None:
        """Add arcs due to jumps from `exits` being raises."""
        for block in self.nearest_blocks():
            if block.process_raise_exits(exits, self.add_arc):
                break

    def process_return_exits(self, exits: Set[ArcStart]) -> None:
        """Add arcs due to jumps from `exits` being returns."""
        for block in self.nearest_blocks():                         # pragma: always breaks
            if block.process_return_exits(exits, self.add_arc):
                break

    # Handlers: _handle__*
    #
    # Each handler deals with a specific AST node type, dispatched from
    # add_arcs.  Handlers return the set of exits from that node, and can
    # also call self.add_arc to record arcs they find.  These functions mirror
    # the Python semantics of each syntactic construct.  See the docstring
    # for add_arcs to understand the concept of exits from a node.
    #
    # Every node type that represents a statement should have a handler, or it
    # should be listed in OK_TO_DEFAULT.

    def _handle__Break(self, node: ast.Break) -> Set[ArcStart]:
        here = self.line_for_node(node)
        break_start = ArcStart(here, cause="the break on line {lineno} wasn't executed")
        self.process_break_exits({break_start})
        return set()

    def _handle_decorated(self, node: ast.FunctionDef) -> Set[ArcStart]:
        """Add arcs for things that can be decorated (classes and functions)."""
        main_line: TLineNo = node.lineno
        last: Optional[TLineNo] = node.lineno
        decs = node.decorator_list
        if decs:
            if env.PYBEHAVIOR.trace_decorated_def or env.PYBEHAVIOR.def_ast_no_decorator:
                last = None
            for dec_node in decs:
                dec_start = self.line_for_node(dec_node)
                if last is not None and dec_start != last:
                    self.add_arc(last, dec_start)
                last = dec_start
            assert last is not None
            if env.PYBEHAVIOR.trace_decorated_def:
                self.add_arc(last, main_line)
                last = main_line
            if env.PYBEHAVIOR.trace_decorator_line_again:
                for top, bot in zip(decs, decs[1:]):
                    self.add_arc(self.line_for_node(bot), self.line_for_node(top))
                self.add_arc(self.line_for_node(decs[0]), main_line)
                self.add_arc(main_line, self.line_for_node(decs[-1]))
            # The definition line may have been missed, but we should have it
            # in `self.statements`.  For some constructs, `line_for_node` is
            # not what we'd think of as the first line in the statement, so map
            # it to the first one.
            if node.body:
                body_start = self.line_for_node(node.body[0])
                body_start = self.multiline.get(body_start, body_start)
                for lineno in range(last+1, body_start):
                    if lineno in self.statements:
                        self.add_arc(last, lineno)
                        last = lineno
        # The body is handled in collect_arcs.
        assert last is not None
        return {ArcStart(last)}

    _handle__ClassDef = _handle_decorated

    def _handle__Continue(self, node: ast.Continue) -> Set[ArcStart]:
        here = self.line_for_node(node)
        continue_start = ArcStart(here, cause="the continue on line {lineno} wasn't executed")
        self.process_continue_exits({continue_start})
        return set()

    def _handle__For(self, node: ast.For) -> Set[ArcStart]:
        start = self.line_for_node(node.iter)
        self.block_stack.append(LoopBlock(start=start))
        from_start = ArcStart(start, cause="the loop on line {lineno} never started")
        exits = self.add_body_arcs(node.body, from_start=from_start)
        # Any exit from the body will go back to the top of the loop.
        for xit in exits:
            self.add_arc(xit.lineno, start, xit.cause)
        my_block = self.block_stack.pop()
        assert isinstance(my_block, LoopBlock)
        exits = my_block.break_exits
        from_start = ArcStart(start, cause="the loop on line {lineno} didn't complete")
        if node.orelse:
            else_exits = self.add_body_arcs(node.orelse, from_start=from_start)
            exits |= else_exits
        else:
            # No else clause: exit from the for line.
            exits.add(from_start)
        return exits

    _handle__AsyncFor = _handle__For

    _handle__FunctionDef = _handle_decorated
    _handle__AsyncFunctionDef = _handle_decorated

    def _handle__If(self, node: ast.If) -> Set[ArcStart]:
        start = self.line_for_node(node.test)
        from_start = ArcStart(start, cause="the condition on line {lineno} was never true")
        exits = self.add_body_arcs(node.body, from_start=from_start)
        from_start = ArcStart(start, cause="the condition on line {lineno} was never false")
        exits |= self.add_body_arcs(node.orelse, from_start=from_start)
        return exits

    if sys.version_info >= (3, 10):
        def _handle__Match(self, node: ast.Match) -> Set[ArcStart]:
            start = self.line_for_node(node)
            last_start = start
            exits = set()
            had_wildcard = False
            for case in node.cases:
                case_start = self.line_for_node(case.pattern)
                pattern = case.pattern
                while isinstance(pattern, ast.MatchOr):
                    pattern = pattern.patterns[-1]
                if isinstance(pattern, ast.MatchAs):
                    had_wildcard = True
                self.add_arc(last_start, case_start, "the pattern on line {lineno} always matched")
                from_start = ArcStart(
                    case_start,
                    cause="the pattern on line {lineno} never matched",
                )
                exits |= self.add_body_arcs(case.body, from_start=from_start)
                last_start = case_start
            if not had_wildcard:
                exits.add(from_start)
            return exits

    def _handle__NodeList(self, node: NodeList) -> Set[ArcStart]:
        start = self.line_for_node(node)
        exits = self.add_body_arcs(node.body, from_start=ArcStart(start))
        return exits

    def _handle__Raise(self, node: ast.Raise) -> Set[ArcStart]:
        here = self.line_for_node(node)
        raise_start = ArcStart(here, cause="the raise on line {lineno} wasn't executed")
        self.process_raise_exits({raise_start})
        # `raise` statement jumps away, no exits from here.
        return set()

    def _handle__Return(self, node: ast.Return) -> Set[ArcStart]:
        here = self.line_for_node(node)
        return_start = ArcStart(here, cause="the return on line {lineno} wasn't executed")
        self.process_return_exits({return_start})
        # `return` statement jumps away, no exits from here.
        return set()

    def _handle__Try(self, node: ast.Try) -> Set[ArcStart]:
        if node.handlers:
            handler_start = self.line_for_node(node.handlers[0])
        else:
            handler_start = None

        if node.finalbody:
            final_start = self.line_for_node(node.finalbody[0])
        else:
            final_start = None

        # This is true by virtue of Python syntax: have to have either except
        # or finally, or both.
        assert handler_start is not None or final_start is not None
        try_block = TryBlock(handler_start, final_start)
        self.block_stack.append(try_block)

        start = self.line_for_node(node)
        exits = self.add_body_arcs(node.body, from_start=ArcStart(start))

        # We're done with the `try` body, so this block no longer handles
        # exceptions. We keep the block so the `finally` clause can pick up
        # flows from the handlers and `else` clause.
        if node.finalbody:
            try_block.handler_start = None
            if node.handlers:
                # If there are `except` clauses, then raises in the try body
                # will already jump to them.  Start this set over for raises in
                # `except` and `else`.
                try_block.raise_from = set()
        else:
            self.block_stack.pop()

        handler_exits: Set[ArcStart] = set()

        if node.handlers:
            last_handler_start: Optional[TLineNo] = None
            for handler_node in node.handlers:
                handler_start = self.line_for_node(handler_node)
                if last_handler_start is not None:
                    self.add_arc(last_handler_start, handler_start)
                last_handler_start = handler_start
                from_cause = "the exception caught by line {lineno} didn't happen"
                from_start = ArcStart(handler_start, cause=from_cause)
                handler_exits |= self.add_body_arcs(handler_node.body, from_start=from_start)

        if node.orelse:
            exits = self.add_body_arcs(node.orelse, prev_starts=exits)

        exits |= handler_exits

        if node.finalbody:
            self.block_stack.pop()
            final_from = (                  # You can get to the `finally` clause from:
                exits |                         # the exits of the body or `else` clause,
                try_block.break_from |          # or a `break`,
                try_block.continue_from |       # or a `continue`,
                try_block.raise_from |          # or a `raise`,
                try_block.return_from           # or a `return`.
            )

            final_exits = self.add_body_arcs(node.finalbody, prev_starts=final_from)

            if try_block.break_from:
                if env.PYBEHAVIOR.finally_jumps_back:
                    for break_line in try_block.break_from:
                        lineno = break_line.lineno
                        cause = break_line.cause.format(lineno=lineno)
                        for final_exit in final_exits:
                            self.add_arc(final_exit.lineno, lineno, cause)
                    breaks = try_block.break_from
                else:
                    breaks = self._combine_finally_starts(try_block.break_from, final_exits)
                self.process_break_exits(breaks)

            if try_block.continue_from:
                if env.PYBEHAVIOR.finally_jumps_back:
                    for continue_line in try_block.continue_from:
                        lineno = continue_line.lineno
                        cause = continue_line.cause.format(lineno=lineno)
                        for final_exit in final_exits:
                            self.add_arc(final_exit.lineno, lineno, cause)
                    continues = try_block.continue_from
                else:
                    continues = self._combine_finally_starts(try_block.continue_from, final_exits)
                self.process_continue_exits(continues)

            if try_block.raise_from:
                self.process_raise_exits(
                    self._combine_finally_starts(try_block.raise_from, final_exits)
                )

            if try_block.return_from:
                if env.PYBEHAVIOR.finally_jumps_back:
                    for return_line in try_block.return_from:
                        lineno = return_line.lineno
                        cause = return_line.cause.format(lineno=lineno)
                        for final_exit in final_exits:
                            self.add_arc(final_exit.lineno, lineno, cause)
                    returns = try_block.return_from
                else:
                    returns = self._combine_finally_starts(try_block.return_from, final_exits)
                self.process_return_exits(returns)

            if exits:
                # The finally clause's exits are only exits for the try block
                # as a whole if the try block had some exits to begin with.
                exits = final_exits

        return exits

    def _combine_finally_starts(self, starts: Set[ArcStart], exits: Set[ArcStart]) -> Set[ArcStart]:
        """Helper for building the cause of `finally` branches.

        "finally" clauses might not execute their exits, and the causes could
        be due to a failure to execute any of the exits in the try block. So
        we use the causes from `starts` as the causes for `exits`.
        """
        causes = []
        for start in sorted(starts):
            if start.cause is not None:
                causes.append(start.cause.format(lineno=start.lineno))
        cause = " or ".join(causes)
        exits = {ArcStart(xit.lineno, cause) for xit in exits}
        return exits

    def _handle__While(self, node: ast.While) -> Set[ArcStart]:
        start = to_top = self.line_for_node(node.test)
        constant_test = self.is_constant_expr(node.test)
        top_is_body0 = False
        if constant_test:
            top_is_body0 = True
        if env.PYBEHAVIOR.keep_constant_test:
            top_is_body0 = False
        if top_is_body0:
            to_top = self.line_for_node(node.body[0])
        self.block_stack.append(LoopBlock(start=to_top))
        from_start = ArcStart(start, cause="the condition on line {lineno} was never true")
        exits = self.add_body_arcs(node.body, from_start=from_start)
        for xit in exits:
            self.add_arc(xit.lineno, to_top, xit.cause)
        exits = set()
        my_block = self.block_stack.pop()
        assert isinstance(my_block, LoopBlock)
        exits.update(my_block.break_exits)
        from_start = ArcStart(start, cause="the condition on line {lineno} was never false")
        if node.orelse:
            else_exits = self.add_body_arcs(node.orelse, from_start=from_start)
            exits |= else_exits
        else:
            # No `else` clause: you can exit from the start.
            if not constant_test:
                exits.add(from_start)
        return exits

    def _handle__With(self, node: ast.With) -> Set[ArcStart]:
        start = self.line_for_node(node)
        if env.PYBEHAVIOR.exit_through_with:
            self.block_stack.append(WithBlock(start=start))
        exits = self.add_body_arcs(node.body, from_start=ArcStart(start))
        if env.PYBEHAVIOR.exit_through_with:
            with_block = self.block_stack.pop()
            assert isinstance(with_block, WithBlock)
            with_exit = {ArcStart(start)}
            if exits:
                for xit in exits:
                    self.add_arc(xit.lineno, start)
                exits = with_exit
            if with_block.break_from:
                self.process_break_exits(
                    self._combine_finally_starts(with_block.break_from, with_exit)
                )
            if with_block.continue_from:
                self.process_continue_exits(
                    self._combine_finally_starts(with_block.continue_from, with_exit)
                )
            if with_block.return_from:
                self.process_return_exits(
                    self._combine_finally_starts(with_block.return_from, with_exit)
                )
        return exits

    _handle__AsyncWith = _handle__With

    # Code object dispatchers: _code_object__*
    #
    # These methods are used by analyze() as the start of the analysis.
    # There is one for each construct with a code object.

    def _code_object__Module(self, node: ast.Module) -> None:
        start = self.line_for_node(node)
        if node.body:
            exits = self.add_body_arcs(node.body, from_start=ArcStart(-start))
            for xit in exits:
                self.add_arc(xit.lineno, -start, xit.cause, "didn't exit the module")
        else:
            # Empty module.
            self.add_arc(-start, start)
            self.add_arc(start, -start)

    def _code_object__FunctionDef(self, node: ast.FunctionDef) -> None:
        start = self.line_for_node(node)
        self.block_stack.append(FunctionBlock(start=start, name=node.name))
        exits = self.add_body_arcs(node.body, from_start=ArcStart(-start))
        self.process_return_exits(exits)
        self.block_stack.pop()

    _code_object__AsyncFunctionDef = _code_object__FunctionDef

    def _code_object__ClassDef(self, node: ast.ClassDef) -> None:
        start = self.line_for_node(node)
        self.add_arc(-start, start)
        exits = self.add_body_arcs(node.body, from_start=ArcStart(start))
        for xit in exits:
            self.add_arc(
                xit.lineno, -start, xit.cause,
                f"didn't exit the body of class {node.name!r}",
            )

    _code_object__Lambda = _make_expression_code_method("lambda")
    _code_object__GeneratorExp = _make_expression_code_method("generator expression")
    if env.PYBEHAVIOR.comprehensions_are_functions:
        _code_object__DictComp = _make_expression_code_method("dictionary comprehension")
        _code_object__SetComp = _make_expression_code_method("set comprehension")
        _code_object__ListComp = _make_expression_code_method("list comprehension")


# Code only used when dumping the AST for debugging.

SKIP_DUMP_FIELDS = ["ctx"]

def _is_simple_value(value: Any) -> bool:
    """Is `value` simple enough to be displayed on a single line?"""
    return (
        value in [None, [], (), {}, set(), frozenset(), Ellipsis] or
        isinstance(value, (bytes, int, float, str))
    )

def ast_dump(
    node: ast.AST,
    depth: int = 0,
    print: Callable[[str], None] = print,   # pylint: disable=redefined-builtin
) -> None:
    """Dump the AST for `node`.

    This recursively walks the AST, printing a readable version.

    """
    indent = " " * depth
    lineno = getattr(node, "lineno", None)
    if lineno is not None:
        linemark = f" @ {node.lineno},{node.col_offset}"
        if hasattr(node, "end_lineno"):
            assert hasattr(node, "end_col_offset")
            linemark += ":"
            if node.end_lineno != node.lineno:
                linemark += f"{node.end_lineno},"
            linemark += f"{node.end_col_offset}"
    else:
        linemark = ""
    head = f"{indent}<{node.__class__.__name__}{linemark}"

    named_fields = [
        (name, value)
        for name, value in ast.iter_fields(node)
        if name not in SKIP_DUMP_FIELDS
    ]
    if not named_fields:
        print(f"{head}>")
    elif len(named_fields) == 1 and _is_simple_value(named_fields[0][1]):
        field_name, value = named_fields[0]
        print(f"{head} {field_name}: {value!r}>")
    else:
        print(head)
        if 0:
            print("{}# mro: {}".format(     # type: ignore[unreachable]
                indent, ", ".join(c.__name__ for c in node.__class__.__mro__[1:]),
            ))
        next_indent = indent + "    "
        for field_name, value in named_fields:
            prefix = f"{next_indent}{field_name}:"
            if _is_simple_value(value):
                print(f"{prefix} {value!r}")
            elif isinstance(value, list):
                print(f"{prefix} [")
                for n in value:
                    if _is_simple_value(n):
                        print(f"{next_indent}    {n!r}")
                    else:
                        ast_dump(n, depth + 8, print=print)
                print(f"{next_indent}]")
            else:
                print(prefix)
                ast_dump(value, depth + 8, print=print)

        print(f"{indent}>")

Youez - 2016 - github.com/yon3zu
LinuXploit