Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.144.89.0
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/alt/ruby32/share/gems/gems/bigdecimal-3.1.3/lib/bigdecimal/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/alt/ruby32/share/gems/gems/bigdecimal-3.1.3/lib/bigdecimal/math.rb
# frozen_string_literal: false
require 'bigdecimal'

#
#--
# Contents:
#   sqrt(x, prec)
#   sin (x, prec)
#   cos (x, prec)
#   atan(x, prec)  Note: |x|<1, x=0.9999 may not converge.
#   PI  (prec)
#   E   (prec) == exp(1.0,prec)
#
# where:
#   x    ... BigDecimal number to be computed.
#            |x| must be small enough to get convergence.
#   prec ... Number of digits to be obtained.
#++
#
# Provides mathematical functions.
#
# Example:
#
#   require "bigdecimal/math"
#
#   include BigMath
#
#   a = BigDecimal((PI(100)/2).to_s)
#   puts sin(a,100) # => 0.99999999999999999999......e0
#
module BigMath
  module_function

  # call-seq:
  #   sqrt(decimal, numeric) -> BigDecimal
  #
  # Computes the square root of +decimal+ to the specified number of digits of
  # precision, +numeric+.
  #
  #   BigMath.sqrt(BigDecimal('2'), 16).to_s
  #   #=> "0.1414213562373095048801688724e1"
  #
  def sqrt(x, prec)
    x.sqrt(prec)
  end

  # call-seq:
  #   sin(decimal, numeric) -> BigDecimal
  #
  # Computes the sine of +decimal+ to the specified number of digits of
  # precision, +numeric+.
  #
  # If +decimal+ is Infinity or NaN, returns NaN.
  #
  #   BigMath.sin(BigMath.PI(5)/4, 5).to_s
  #   #=> "0.70710678118654752440082036563292800375e0"
  #
  def sin(x, prec)
    raise ArgumentError, "Zero or negative precision for sin" if prec <= 0
    return BigDecimal("NaN") if x.infinite? || x.nan?
    n    = prec + BigDecimal.double_fig
    one  = BigDecimal("1")
    two  = BigDecimal("2")
    x = -x if neg = x < 0
    if x > (twopi = two * BigMath.PI(prec))
      if x > 30
        x %= twopi
      else
        x -= twopi while x > twopi
      end
    end
    x1   = x
    x2   = x.mult(x,n)
    sign = 1
    y    = x
    d    = y
    i    = one
    z    = one
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      sign = -sign
      x1  = x2.mult(x1,n)
      i  += two
      z  *= (i-one) * i
      d   = sign * x1.div(z,m)
      y  += d
    end
    neg ? -y : y
  end

  # call-seq:
  #   cos(decimal, numeric) -> BigDecimal
  #
  # Computes the cosine of +decimal+ to the specified number of digits of
  # precision, +numeric+.
  #
  # If +decimal+ is Infinity or NaN, returns NaN.
  #
  #   BigMath.cos(BigMath.PI(4), 16).to_s
  #   #=> "-0.999999999999999999999999999999856613163740061349e0"
  #
  def cos(x, prec)
    raise ArgumentError, "Zero or negative precision for cos" if prec <= 0
    return BigDecimal("NaN") if x.infinite? || x.nan?
    n    = prec + BigDecimal.double_fig
    one  = BigDecimal("1")
    two  = BigDecimal("2")
    x = -x if x < 0
    if x > (twopi = two * BigMath.PI(prec))
      if x > 30
        x %= twopi
      else
        x -= twopi while x > twopi
      end
    end
    x1 = one
    x2 = x.mult(x,n)
    sign = 1
    y = one
    d = y
    i = BigDecimal("0")
    z = one
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      sign = -sign
      x1  = x2.mult(x1,n)
      i  += two
      z  *= (i-one) * i
      d   = sign * x1.div(z,m)
      y  += d
    end
    y
  end

  # call-seq:
  #   atan(decimal, numeric) -> BigDecimal
  #
  # Computes the arctangent of +decimal+ to the specified number of digits of
  # precision, +numeric+.
  #
  # If +decimal+ is NaN, returns NaN.
  #
  #   BigMath.atan(BigDecimal('-1'), 16).to_s
  #   #=> "-0.785398163397448309615660845819878471907514682065e0"
  #
  def atan(x, prec)
    raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
    return BigDecimal("NaN") if x.nan?
    pi = PI(prec)
    x = -x if neg = x < 0
    return pi.div(neg ? -2 : 2, prec) if x.infinite?
    return pi / (neg ? -4 : 4) if x.round(prec) == 1
    x = BigDecimal("1").div(x, prec) if inv = x > 1
    x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5
    n    = prec + BigDecimal.double_fig
    y = x
    d = y
    t = x
    r = BigDecimal("3")
    x2 = x.mult(x,n)
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      t = -t.mult(x2,n)
      d = t.div(r,m)
      y += d
      r += 2
    end
    y *= 2 if dbl
    y = pi / 2 - y if inv
    y = -y if neg
    y
  end

  # call-seq:
  #   PI(numeric) -> BigDecimal
  #
  # Computes the value of pi to the specified number of digits of precision,
  # +numeric+.
  #
  #   BigMath.PI(10).to_s
  #   #=> "0.3141592653589793238462643388813853786957412e1"
  #
  def PI(prec)
    raise ArgumentError, "Zero or negative precision for PI" if prec <= 0
    n      = prec + BigDecimal.double_fig
    zero   = BigDecimal("0")
    one    = BigDecimal("1")
    two    = BigDecimal("2")

    m25    = BigDecimal("-0.04")
    m57121 = BigDecimal("-57121")

    pi     = zero

    d = one
    k = one
    t = BigDecimal("-80")
    while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      t   = t*m25
      d   = t.div(k,m)
      k   = k+two
      pi  = pi + d
    end

    d = one
    k = one
    t = BigDecimal("956")
    while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      t   = t.div(m57121,n)
      d   = t.div(k,m)
      pi  = pi + d
      k   = k+two
    end
    pi
  end

  # call-seq:
  #   E(numeric) -> BigDecimal
  #
  # Computes e (the base of natural logarithms) to the specified number of
  # digits of precision, +numeric+.
  #
  #   BigMath.E(10).to_s
  #   #=> "0.271828182845904523536028752390026306410273e1"
  #
  def E(prec)
    raise ArgumentError, "Zero or negative precision for E" if prec <= 0
    BigMath.exp(1, prec)
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit