Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.135.205.102
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/hc_python/lib/python3.8/site-packages/pydantic/v1/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/hc_python/lib/python3.8/site-packages/pydantic/v1/main.py
import warnings
from abc import ABCMeta
from copy import deepcopy
from enum import Enum
from functools import partial
from pathlib import Path
from types import FunctionType, prepare_class, resolve_bases
from typing import (
    TYPE_CHECKING,
    AbstractSet,
    Any,
    Callable,
    ClassVar,
    Dict,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
    TypeVar,
    Union,
    cast,
    no_type_check,
    overload,
)

from typing_extensions import dataclass_transform

from pydantic.v1.class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators
from pydantic.v1.config import BaseConfig, Extra, inherit_config, prepare_config
from pydantic.v1.error_wrappers import ErrorWrapper, ValidationError
from pydantic.v1.errors import ConfigError, DictError, ExtraError, MissingError
from pydantic.v1.fields import (
    MAPPING_LIKE_SHAPES,
    Field,
    ModelField,
    ModelPrivateAttr,
    PrivateAttr,
    Undefined,
    is_finalvar_with_default_val,
)
from pydantic.v1.json import custom_pydantic_encoder, pydantic_encoder
from pydantic.v1.parse import Protocol, load_file, load_str_bytes
from pydantic.v1.schema import default_ref_template, model_schema
from pydantic.v1.types import PyObject, StrBytes
from pydantic.v1.typing import (
    AnyCallable,
    get_args,
    get_origin,
    is_classvar,
    is_namedtuple,
    is_union,
    resolve_annotations,
    update_model_forward_refs,
)
from pydantic.v1.utils import (
    DUNDER_ATTRIBUTES,
    ROOT_KEY,
    ClassAttribute,
    GetterDict,
    Representation,
    ValueItems,
    generate_model_signature,
    is_valid_field,
    is_valid_private_name,
    lenient_issubclass,
    sequence_like,
    smart_deepcopy,
    unique_list,
    validate_field_name,
)

if TYPE_CHECKING:
    from inspect import Signature

    from pydantic.v1.class_validators import ValidatorListDict
    from pydantic.v1.types import ModelOrDc
    from pydantic.v1.typing import (
        AbstractSetIntStr,
        AnyClassMethod,
        CallableGenerator,
        DictAny,
        DictStrAny,
        MappingIntStrAny,
        ReprArgs,
        SetStr,
        TupleGenerator,
    )

    Model = TypeVar('Model', bound='BaseModel')

__all__ = 'BaseModel', 'create_model', 'validate_model'

_T = TypeVar('_T')


def validate_custom_root_type(fields: Dict[str, ModelField]) -> None:
    if len(fields) > 1:
        raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields')


def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]:
    def hash_function(self_: Any) -> int:
        return hash(self_.__class__) + hash(tuple(self_.__dict__.values()))

    return hash_function if frozen else None


# If a field is of type `Callable`, its default value should be a function and cannot to ignored.
ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod)
# When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model
UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra
# (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's
# safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for
# the `BaseModel` class, since that's defined immediately after the metaclass.
_is_base_model_class_defined = False


@dataclass_transform(kw_only_default=True, field_specifiers=(Field,))
class ModelMetaclass(ABCMeta):
    @no_type_check  # noqa C901
    def __new__(mcs, name, bases, namespace, **kwargs):  # noqa C901
        fields: Dict[str, ModelField] = {}
        config = BaseConfig
        validators: 'ValidatorListDict' = {}

        pre_root_validators, post_root_validators = [], []
        private_attributes: Dict[str, ModelPrivateAttr] = {}
        base_private_attributes: Dict[str, ModelPrivateAttr] = {}
        slots: SetStr = namespace.get('__slots__', ())
        slots = {slots} if isinstance(slots, str) else set(slots)
        class_vars: SetStr = set()
        hash_func: Optional[Callable[[Any], int]] = None

        for base in reversed(bases):
            if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel:
                fields.update(smart_deepcopy(base.__fields__))
                config = inherit_config(base.__config__, config)
                validators = inherit_validators(base.__validators__, validators)
                pre_root_validators += base.__pre_root_validators__
                post_root_validators += base.__post_root_validators__
                base_private_attributes.update(base.__private_attributes__)
                class_vars.update(base.__class_vars__)
                hash_func = base.__hash__

        resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True)
        allowed_config_kwargs: SetStr = {
            key
            for key in dir(config)
            if not (key.startswith('__') and key.endswith('__'))  # skip dunder methods and attributes
        }
        config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs}
        config_from_namespace = namespace.get('Config')
        if config_kwargs and config_from_namespace:
            raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs')
        config = inherit_config(config_from_namespace, config, **config_kwargs)

        validators = inherit_validators(extract_validators(namespace), validators)
        vg = ValidatorGroup(validators)

        for f in fields.values():
            f.set_config(config)
            extra_validators = vg.get_validators(f.name)
            if extra_validators:
                f.class_validators.update(extra_validators)
                # re-run prepare to add extra validators
                f.populate_validators()

        prepare_config(config, name)

        untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES

        def is_untouched(v: Any) -> bool:
            return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method'

        if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'):
            annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None))
            # annotation only fields need to come first in fields
            for ann_name, ann_type in annotations.items():
                if is_classvar(ann_type):
                    class_vars.add(ann_name)
                elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)):
                    class_vars.add(ann_name)
                elif is_valid_field(ann_name):
                    validate_field_name(bases, ann_name)
                    value = namespace.get(ann_name, Undefined)
                    allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,)
                    if (
                        is_untouched(value)
                        and ann_type != PyObject
                        and not any(
                            lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types
                        )
                    ):
                        continue
                    fields[ann_name] = ModelField.infer(
                        name=ann_name,
                        value=value,
                        annotation=ann_type,
                        class_validators=vg.get_validators(ann_name),
                        config=config,
                    )
                elif ann_name not in namespace and config.underscore_attrs_are_private:
                    private_attributes[ann_name] = PrivateAttr()

            untouched_types = UNTOUCHED_TYPES + config.keep_untouched
            for var_name, value in namespace.items():
                can_be_changed = var_name not in class_vars and not is_untouched(value)
                if isinstance(value, ModelPrivateAttr):
                    if not is_valid_private_name(var_name):
                        raise NameError(
                            f'Private attributes "{var_name}" must not be a valid field name; '
                            f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"'
                        )
                    private_attributes[var_name] = value
                elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed:
                    private_attributes[var_name] = PrivateAttr(default=value)
                elif is_valid_field(var_name) and var_name not in annotations and can_be_changed:
                    validate_field_name(bases, var_name)
                    inferred = ModelField.infer(
                        name=var_name,
                        value=value,
                        annotation=annotations.get(var_name, Undefined),
                        class_validators=vg.get_validators(var_name),
                        config=config,
                    )
                    if var_name in fields:
                        if lenient_issubclass(inferred.type_, fields[var_name].type_):
                            inferred.type_ = fields[var_name].type_
                        else:
                            raise TypeError(
                                f'The type of {name}.{var_name} differs from the new default value; '
                                f'if you wish to change the type of this field, please use a type annotation'
                            )
                    fields[var_name] = inferred

        _custom_root_type = ROOT_KEY in fields
        if _custom_root_type:
            validate_custom_root_type(fields)
        vg.check_for_unused()
        if config.json_encoders:
            json_encoder = partial(custom_pydantic_encoder, config.json_encoders)
        else:
            json_encoder = pydantic_encoder
        pre_rv_new, post_rv_new = extract_root_validators(namespace)

        if hash_func is None:
            hash_func = generate_hash_function(config.frozen)

        exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'}
        new_namespace = {
            '__config__': config,
            '__fields__': fields,
            '__exclude_fields__': {
                name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None
            }
            or None,
            '__include_fields__': {
                name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None
            }
            or None,
            '__validators__': vg.validators,
            '__pre_root_validators__': unique_list(
                pre_root_validators + pre_rv_new,
                name_factory=lambda v: v.__name__,
            ),
            '__post_root_validators__': unique_list(
                post_root_validators + post_rv_new,
                name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__,
            ),
            '__schema_cache__': {},
            '__json_encoder__': staticmethod(json_encoder),
            '__custom_root_type__': _custom_root_type,
            '__private_attributes__': {**base_private_attributes, **private_attributes},
            '__slots__': slots | private_attributes.keys(),
            '__hash__': hash_func,
            '__class_vars__': class_vars,
            **{n: v for n, v in namespace.items() if n not in exclude_from_namespace},
        }

        cls = super().__new__(mcs, name, bases, new_namespace, **kwargs)
        # set __signature__ attr only for model class, but not for its instances
        cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config))
        if resolve_forward_refs:
            cls.__try_update_forward_refs__()

        # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
        # for attributes not in `new_namespace` (e.g. private attributes)
        for name, obj in namespace.items():
            if name not in new_namespace:
                set_name = getattr(obj, '__set_name__', None)
                if callable(set_name):
                    set_name(cls, name)

        return cls

    def __instancecheck__(self, instance: Any) -> bool:
        """
        Avoid calling ABC _abc_subclasscheck unless we're pretty sure.

        See #3829 and python/cpython#92810
        """
        return hasattr(instance, '__fields__') and super().__instancecheck__(instance)


object_setattr = object.__setattr__


class BaseModel(Representation, metaclass=ModelMetaclass):
    if TYPE_CHECKING:
        # populated by the metaclass, defined here to help IDEs only
        __fields__: ClassVar[Dict[str, ModelField]] = {}
        __include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
        __exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
        __validators__: ClassVar[Dict[str, AnyCallable]] = {}
        __pre_root_validators__: ClassVar[List[AnyCallable]]
        __post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]]
        __config__: ClassVar[Type[BaseConfig]] = BaseConfig
        __json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x
        __schema_cache__: ClassVar['DictAny'] = {}
        __custom_root_type__: ClassVar[bool] = False
        __signature__: ClassVar['Signature']
        __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]]
        __class_vars__: ClassVar[SetStr]
        __fields_set__: ClassVar[SetStr] = set()

    Config = BaseConfig
    __slots__ = ('__dict__', '__fields_set__')
    __doc__ = ''  # Null out the Representation docstring

    def __init__(__pydantic_self__, **data: Any) -> None:
        """
        Create a new model by parsing and validating input data from keyword arguments.

        Raises ValidationError if the input data cannot be parsed to form a valid model.
        """
        # Uses something other than `self` the first arg to allow "self" as a settable attribute
        values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
        if validation_error:
            raise validation_error
        try:
            object_setattr(__pydantic_self__, '__dict__', values)
        except TypeError as e:
            raise TypeError(
                'Model values must be a dict; you may not have returned a dictionary from a root validator'
            ) from e
        object_setattr(__pydantic_self__, '__fields_set__', fields_set)
        __pydantic_self__._init_private_attributes()

    @no_type_check
    def __setattr__(self, name, value):  # noqa: C901 (ignore complexity)
        if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES:
            return object_setattr(self, name, value)

        if self.__config__.extra is not Extra.allow and name not in self.__fields__:
            raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"')
        elif not self.__config__.allow_mutation or self.__config__.frozen:
            raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment')
        elif name in self.__fields__ and self.__fields__[name].final:
            raise TypeError(
                f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment'
            )
        elif self.__config__.validate_assignment:
            new_values = {**self.__dict__, name: value}

            for validator in self.__pre_root_validators__:
                try:
                    new_values = validator(self.__class__, new_values)
                except (ValueError, TypeError, AssertionError) as exc:
                    raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__)

            known_field = self.__fields__.get(name, None)
            if known_field:
                # We want to
                # - make sure validators are called without the current value for this field inside `values`
                # - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts)
                # - keep the order of the fields
                if not known_field.field_info.allow_mutation:
                    raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned')
                dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name}
                value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__)
                if error_:
                    raise ValidationError([error_], self.__class__)
                else:
                    new_values[name] = value

            errors = []
            for skip_on_failure, validator in self.__post_root_validators__:
                if skip_on_failure and errors:
                    continue
                try:
                    new_values = validator(self.__class__, new_values)
                except (ValueError, TypeError, AssertionError) as exc:
                    errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
            if errors:
                raise ValidationError(errors, self.__class__)

            # update the whole __dict__ as other values than just `value`
            # may be changed (e.g. with `root_validator`)
            object_setattr(self, '__dict__', new_values)
        else:
            self.__dict__[name] = value

        self.__fields_set__.add(name)

    def __getstate__(self) -> 'DictAny':
        private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__)
        return {
            '__dict__': self.__dict__,
            '__fields_set__': self.__fields_set__,
            '__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined},
        }

    def __setstate__(self, state: 'DictAny') -> None:
        object_setattr(self, '__dict__', state['__dict__'])
        object_setattr(self, '__fields_set__', state['__fields_set__'])
        for name, value in state.get('__private_attribute_values__', {}).items():
            object_setattr(self, name, value)

    def _init_private_attributes(self) -> None:
        for name, private_attr in self.__private_attributes__.items():
            default = private_attr.get_default()
            if default is not Undefined:
                object_setattr(self, name, default)

    def dict(
        self,
        *,
        include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        by_alias: bool = False,
        skip_defaults: Optional[bool] = None,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
    ) -> 'DictStrAny':
        """
        Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

        """
        if skip_defaults is not None:
            warnings.warn(
                f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
                DeprecationWarning,
            )
            exclude_unset = skip_defaults

        return dict(
            self._iter(
                to_dict=True,
                by_alias=by_alias,
                include=include,
                exclude=exclude,
                exclude_unset=exclude_unset,
                exclude_defaults=exclude_defaults,
                exclude_none=exclude_none,
            )
        )

    def json(
        self,
        *,
        include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        by_alias: bool = False,
        skip_defaults: Optional[bool] = None,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
        encoder: Optional[Callable[[Any], Any]] = None,
        models_as_dict: bool = True,
        **dumps_kwargs: Any,
    ) -> str:
        """
        Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.

        `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.
        """
        if skip_defaults is not None:
            warnings.warn(
                f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
                DeprecationWarning,
            )
            exclude_unset = skip_defaults
        encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)

        # We don't directly call `self.dict()`, which does exactly this with `to_dict=True`
        # because we want to be able to keep raw `BaseModel` instances and not as `dict`.
        # This allows users to write custom JSON encoders for given `BaseModel` classes.
        data = dict(
            self._iter(
                to_dict=models_as_dict,
                by_alias=by_alias,
                include=include,
                exclude=exclude,
                exclude_unset=exclude_unset,
                exclude_defaults=exclude_defaults,
                exclude_none=exclude_none,
            )
        )
        if self.__custom_root_type__:
            data = data[ROOT_KEY]
        return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)

    @classmethod
    def _enforce_dict_if_root(cls, obj: Any) -> Any:
        if cls.__custom_root_type__ and (
            not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY})
            and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY})
            or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES
        ):
            return {ROOT_KEY: obj}
        else:
            return obj

    @classmethod
    def parse_obj(cls: Type['Model'], obj: Any) -> 'Model':
        obj = cls._enforce_dict_if_root(obj)
        if not isinstance(obj, dict):
            try:
                obj = dict(obj)
            except (TypeError, ValueError) as e:
                exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}')
                raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e
        return cls(**obj)

    @classmethod
    def parse_raw(
        cls: Type['Model'],
        b: StrBytes,
        *,
        content_type: str = None,
        encoding: str = 'utf8',
        proto: Protocol = None,
        allow_pickle: bool = False,
    ) -> 'Model':
        try:
            obj = load_str_bytes(
                b,
                proto=proto,
                content_type=content_type,
                encoding=encoding,
                allow_pickle=allow_pickle,
                json_loads=cls.__config__.json_loads,
            )
        except (ValueError, TypeError, UnicodeDecodeError) as e:
            raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls)
        return cls.parse_obj(obj)

    @classmethod
    def parse_file(
        cls: Type['Model'],
        path: Union[str, Path],
        *,
        content_type: str = None,
        encoding: str = 'utf8',
        proto: Protocol = None,
        allow_pickle: bool = False,
    ) -> 'Model':
        obj = load_file(
            path,
            proto=proto,
            content_type=content_type,
            encoding=encoding,
            allow_pickle=allow_pickle,
            json_loads=cls.__config__.json_loads,
        )
        return cls.parse_obj(obj)

    @classmethod
    def from_orm(cls: Type['Model'], obj: Any) -> 'Model':
        if not cls.__config__.orm_mode:
            raise ConfigError('You must have the config attribute orm_mode=True to use from_orm')
        obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj)
        m = cls.__new__(cls)
        values, fields_set, validation_error = validate_model(cls, obj)
        if validation_error:
            raise validation_error
        object_setattr(m, '__dict__', values)
        object_setattr(m, '__fields_set__', fields_set)
        m._init_private_attributes()
        return m

    @classmethod
    def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model':
        """
        Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
        Default values are respected, but no other validation is performed.
        Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
        """
        m = cls.__new__(cls)
        fields_values: Dict[str, Any] = {}
        for name, field in cls.__fields__.items():
            if field.alt_alias and field.alias in values:
                fields_values[name] = values[field.alias]
            elif name in values:
                fields_values[name] = values[name]
            elif not field.required:
                fields_values[name] = field.get_default()
        fields_values.update(values)
        object_setattr(m, '__dict__', fields_values)
        if _fields_set is None:
            _fields_set = set(values.keys())
        object_setattr(m, '__fields_set__', _fields_set)
        m._init_private_attributes()
        return m

    def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model':
        if deep:
            # chances of having empty dict here are quite low for using smart_deepcopy
            values = deepcopy(values)

        cls = self.__class__
        m = cls.__new__(cls)
        object_setattr(m, '__dict__', values)
        object_setattr(m, '__fields_set__', fields_set)
        for name in self.__private_attributes__:
            value = getattr(self, name, Undefined)
            if value is not Undefined:
                if deep:
                    value = deepcopy(value)
                object_setattr(m, name, value)

        return m

    def copy(
        self: 'Model',
        *,
        include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        update: Optional['DictStrAny'] = None,
        deep: bool = False,
    ) -> 'Model':
        """
        Duplicate a model, optionally choose which fields to include, exclude and change.

        :param include: fields to include in new model
        :param exclude: fields to exclude from new model, as with values this takes precedence over include
        :param update: values to change/add in the new model. Note: the data is not validated before creating
            the new model: you should trust this data
        :param deep: set to `True` to make a deep copy of the model
        :return: new model instance
        """

        values = dict(
            self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False),
            **(update or {}),
        )

        # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg
        if update:
            fields_set = self.__fields_set__ | update.keys()
        else:
            fields_set = set(self.__fields_set__)

        return self._copy_and_set_values(values, fields_set, deep=deep)

    @classmethod
    def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny':
        cached = cls.__schema_cache__.get((by_alias, ref_template))
        if cached is not None:
            return cached
        s = model_schema(cls, by_alias=by_alias, ref_template=ref_template)
        cls.__schema_cache__[(by_alias, ref_template)] = s
        return s

    @classmethod
    def schema_json(
        cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any
    ) -> str:
        from pydantic.v1.json import pydantic_encoder

        return cls.__config__.json_dumps(
            cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs
        )

    @classmethod
    def __get_validators__(cls) -> 'CallableGenerator':
        yield cls.validate

    @classmethod
    def validate(cls: Type['Model'], value: Any) -> 'Model':
        if isinstance(value, cls):
            copy_on_model_validation = cls.__config__.copy_on_model_validation
            # whether to deep or shallow copy the model on validation, None means do not copy
            deep_copy: Optional[bool] = None
            if copy_on_model_validation not in {'deep', 'shallow', 'none'}:
                # Warn about deprecated behavior
                warnings.warn(
                    "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning
                )
                if copy_on_model_validation:
                    deep_copy = False

            if copy_on_model_validation == 'shallow':
                # shallow copy
                deep_copy = False
            elif copy_on_model_validation == 'deep':
                # deep copy
                deep_copy = True

            if deep_copy is None:
                return value
            else:
                return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy)

        value = cls._enforce_dict_if_root(value)

        if isinstance(value, dict):
            return cls(**value)
        elif cls.__config__.orm_mode:
            return cls.from_orm(value)
        else:
            try:
                value_as_dict = dict(value)
            except (TypeError, ValueError) as e:
                raise DictError() from e
            return cls(**value_as_dict)

    @classmethod
    def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict:
        if isinstance(obj, GetterDict):
            return obj
        return cls.__config__.getter_dict(obj)

    @classmethod
    @no_type_check
    def _get_value(
        cls,
        v: Any,
        to_dict: bool,
        by_alias: bool,
        include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
        exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
        exclude_unset: bool,
        exclude_defaults: bool,
        exclude_none: bool,
    ) -> Any:
        if isinstance(v, BaseModel):
            if to_dict:
                v_dict = v.dict(
                    by_alias=by_alias,
                    exclude_unset=exclude_unset,
                    exclude_defaults=exclude_defaults,
                    include=include,
                    exclude=exclude,
                    exclude_none=exclude_none,
                )
                if ROOT_KEY in v_dict:
                    return v_dict[ROOT_KEY]
                return v_dict
            else:
                return v.copy(include=include, exclude=exclude)

        value_exclude = ValueItems(v, exclude) if exclude else None
        value_include = ValueItems(v, include) if include else None

        if isinstance(v, dict):
            return {
                k_: cls._get_value(
                    v_,
                    to_dict=to_dict,
                    by_alias=by_alias,
                    exclude_unset=exclude_unset,
                    exclude_defaults=exclude_defaults,
                    include=value_include and value_include.for_element(k_),
                    exclude=value_exclude and value_exclude.for_element(k_),
                    exclude_none=exclude_none,
                )
                for k_, v_ in v.items()
                if (not value_exclude or not value_exclude.is_excluded(k_))
                and (not value_include or value_include.is_included(k_))
            }

        elif sequence_like(v):
            seq_args = (
                cls._get_value(
                    v_,
                    to_dict=to_dict,
                    by_alias=by_alias,
                    exclude_unset=exclude_unset,
                    exclude_defaults=exclude_defaults,
                    include=value_include and value_include.for_element(i),
                    exclude=value_exclude and value_exclude.for_element(i),
                    exclude_none=exclude_none,
                )
                for i, v_ in enumerate(v)
                if (not value_exclude or not value_exclude.is_excluded(i))
                and (not value_include or value_include.is_included(i))
            )

            return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args)

        elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False):
            return v.value

        else:
            return v

    @classmethod
    def __try_update_forward_refs__(cls, **localns: Any) -> None:
        """
        Same as update_forward_refs but will not raise exception
        when forward references are not defined.
        """
        update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,))

    @classmethod
    def update_forward_refs(cls, **localns: Any) -> None:
        """
        Try to update ForwardRefs on fields based on this Model, globalns and localns.
        """
        update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns)

    def __iter__(self) -> 'TupleGenerator':
        """
        so `dict(model)` works
        """
        yield from self.__dict__.items()

    def _iter(
        self,
        to_dict: bool = False,
        by_alias: bool = False,
        include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
    ) -> 'TupleGenerator':
        # Merge field set excludes with explicit exclude parameter with explicit overriding field set options.
        # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case.
        if exclude is not None or self.__exclude_fields__ is not None:
            exclude = ValueItems.merge(self.__exclude_fields__, exclude)

        if include is not None or self.__include_fields__ is not None:
            include = ValueItems.merge(self.__include_fields__, include, intersect=True)

        allowed_keys = self._calculate_keys(
            include=include, exclude=exclude, exclude_unset=exclude_unset  # type: ignore
        )
        if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none):
            # huge boost for plain _iter()
            yield from self.__dict__.items()
            return

        value_exclude = ValueItems(self, exclude) if exclude is not None else None
        value_include = ValueItems(self, include) if include is not None else None

        for field_key, v in self.__dict__.items():
            if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None):
                continue

            if exclude_defaults:
                model_field = self.__fields__.get(field_key)
                if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v:
                    continue

            if by_alias and field_key in self.__fields__:
                dict_key = self.__fields__[field_key].alias
            else:
                dict_key = field_key

            if to_dict or value_include or value_exclude:
                v = self._get_value(
                    v,
                    to_dict=to_dict,
                    by_alias=by_alias,
                    include=value_include and value_include.for_element(field_key),
                    exclude=value_exclude and value_exclude.for_element(field_key),
                    exclude_unset=exclude_unset,
                    exclude_defaults=exclude_defaults,
                    exclude_none=exclude_none,
                )
            yield dict_key, v

    def _calculate_keys(
        self,
        include: Optional['MappingIntStrAny'],
        exclude: Optional['MappingIntStrAny'],
        exclude_unset: bool,
        update: Optional['DictStrAny'] = None,
    ) -> Optional[AbstractSet[str]]:
        if include is None and exclude is None and exclude_unset is False:
            return None

        keys: AbstractSet[str]
        if exclude_unset:
            keys = self.__fields_set__.copy()
        else:
            keys = self.__dict__.keys()

        if include is not None:
            keys &= include.keys()

        if update:
            keys -= update.keys()

        if exclude:
            keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)}

        return keys

    def __eq__(self, other: Any) -> bool:
        if isinstance(other, BaseModel):
            return self.dict() == other.dict()
        else:
            return self.dict() == other

    def __repr_args__(self) -> 'ReprArgs':
        return [
            (k, v)
            for k, v in self.__dict__.items()
            if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr)
        ]


_is_base_model_class_defined = True


@overload
def create_model(
    __model_name: str,
    *,
    __config__: Optional[Type[BaseConfig]] = None,
    __base__: None = None,
    __module__: str = __name__,
    __validators__: Dict[str, 'AnyClassMethod'] = None,
    __cls_kwargs__: Dict[str, Any] = None,
    **field_definitions: Any,
) -> Type['BaseModel']:
    ...


@overload
def create_model(
    __model_name: str,
    *,
    __config__: Optional[Type[BaseConfig]] = None,
    __base__: Union[Type['Model'], Tuple[Type['Model'], ...]],
    __module__: str = __name__,
    __validators__: Dict[str, 'AnyClassMethod'] = None,
    __cls_kwargs__: Dict[str, Any] = None,
    **field_definitions: Any,
) -> Type['Model']:
    ...


def create_model(
    __model_name: str,
    *,
    __config__: Optional[Type[BaseConfig]] = None,
    __base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None,
    __module__: str = __name__,
    __validators__: Dict[str, 'AnyClassMethod'] = None,
    __cls_kwargs__: Dict[str, Any] = None,
    __slots__: Optional[Tuple[str, ...]] = None,
    **field_definitions: Any,
) -> Type['Model']:
    """
    Dynamically create a model.
    :param __model_name: name of the created model
    :param __config__: config class to use for the new model
    :param __base__: base class for the new model to inherit from
    :param __module__: module of the created model
    :param __validators__: a dict of method names and @validator class methods
    :param __cls_kwargs__: a dict for class creation
    :param __slots__: Deprecated, `__slots__` should not be passed to `create_model`
    :param field_definitions: fields of the model (or extra fields if a base is supplied)
        in the format `<name>=(<type>, <default default>)` or `<name>=<default value>, e.g.
        `foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format
        `<name>=<Field>` or `<name>=(<type>, <FieldInfo>)`, e.g.
        `foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or
        `foo=(str, FieldInfo(title='Foo'))`
    """
    if __slots__ is not None:
        # __slots__ will be ignored from here on
        warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning)

    if __base__ is not None:
        if __config__ is not None:
            raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together')
        if not isinstance(__base__, tuple):
            __base__ = (__base__,)
    else:
        __base__ = (cast(Type['Model'], BaseModel),)

    __cls_kwargs__ = __cls_kwargs__ or {}

    fields = {}
    annotations = {}

    for f_name, f_def in field_definitions.items():
        if not is_valid_field(f_name):
            warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning)
        if isinstance(f_def, tuple):
            try:
                f_annotation, f_value = f_def
            except ValueError as e:
                raise ConfigError(
                    'field definitions should either be a tuple of (<type>, <default>) or just a '
                    'default value, unfortunately this means tuples as '
                    'default values are not allowed'
                ) from e
        else:
            f_annotation, f_value = None, f_def

        if f_annotation:
            annotations[f_name] = f_annotation
        fields[f_name] = f_value

    namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__}
    if __validators__:
        namespace.update(__validators__)
    namespace.update(fields)
    if __config__:
        namespace['Config'] = inherit_config(__config__, BaseConfig)
    resolved_bases = resolve_bases(__base__)
    meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__)
    if resolved_bases is not __base__:
        ns['__orig_bases__'] = __base__
    namespace.update(ns)
    return meta(__model_name, resolved_bases, namespace, **kwds)


_missing = object()


def validate_model(  # noqa: C901 (ignore complexity)
    model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None
) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]:
    """
    validate data against a model.
    """
    values = {}
    errors = []
    # input_data names, possibly alias
    names_used = set()
    # field names, never aliases
    fields_set = set()
    config = model.__config__
    check_extra = config.extra is not Extra.ignore
    cls_ = cls or model

    for validator in model.__pre_root_validators__:
        try:
            input_data = validator(cls_, input_data)
        except (ValueError, TypeError, AssertionError) as exc:
            return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_)

    for name, field in model.__fields__.items():
        value = input_data.get(field.alias, _missing)
        using_name = False
        if value is _missing and config.allow_population_by_field_name and field.alt_alias:
            value = input_data.get(field.name, _missing)
            using_name = True

        if value is _missing:
            if field.required:
                errors.append(ErrorWrapper(MissingError(), loc=field.alias))
                continue

            value = field.get_default()

            if not config.validate_all and not field.validate_always:
                values[name] = value
                continue
        else:
            fields_set.add(name)
            if check_extra:
                names_used.add(field.name if using_name else field.alias)

        v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_)
        if isinstance(errors_, ErrorWrapper):
            errors.append(errors_)
        elif isinstance(errors_, list):
            errors.extend(errors_)
        else:
            values[name] = v_

    if check_extra:
        if isinstance(input_data, GetterDict):
            extra = input_data.extra_keys() - names_used
        else:
            extra = input_data.keys() - names_used
        if extra:
            fields_set |= extra
            if config.extra is Extra.allow:
                for f in extra:
                    values[f] = input_data[f]
            else:
                for f in sorted(extra):
                    errors.append(ErrorWrapper(ExtraError(), loc=f))

    for skip_on_failure, validator in model.__post_root_validators__:
        if skip_on_failure and errors:
            continue
        try:
            values = validator(cls_, values)
        except (ValueError, TypeError, AssertionError) as exc:
            errors.append(ErrorWrapper(exc, loc=ROOT_KEY))

    if errors:
        return values, fields_set, ValidationError(errors, cls_)
    else:
        return values, fields_set, None

Youez - 2016 - github.com/yon3zu
LinuXploit