Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.144.25.130
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /lib64/python3.6/site-packages/cffi/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /lib64/python3.6/site-packages/cffi/recompiler.py
import os, sys, io
from . import ffiplatform, model
from .error import VerificationError
from .cffi_opcode import *

VERSION_BASE = 0x2601
VERSION_EMBEDDED = 0x2701
VERSION_CHAR16CHAR32 = 0x2801


class GlobalExpr:
    def __init__(self, name, address, type_op, size=0, check_value=0):
        self.name = name
        self.address = address
        self.type_op = type_op
        self.size = size
        self.check_value = check_value

    def as_c_expr(self):
        return '  { "%s", (void *)%s, %s, (void *)%s },' % (
            self.name, self.address, self.type_op.as_c_expr(), self.size)

    def as_python_expr(self):
        return "b'%s%s',%d" % (self.type_op.as_python_bytes(), self.name,
                               self.check_value)

class FieldExpr:
    def __init__(self, name, field_offset, field_size, fbitsize, field_type_op):
        self.name = name
        self.field_offset = field_offset
        self.field_size = field_size
        self.fbitsize = fbitsize
        self.field_type_op = field_type_op

    def as_c_expr(self):
        spaces = " " * len(self.name)
        return ('  { "%s", %s,\n' % (self.name, self.field_offset) +
                '     %s   %s,\n' % (spaces, self.field_size) +
                '     %s   %s },' % (spaces, self.field_type_op.as_c_expr()))

    def as_python_expr(self):
        raise NotImplementedError

    def as_field_python_expr(self):
        if self.field_type_op.op == OP_NOOP:
            size_expr = ''
        elif self.field_type_op.op == OP_BITFIELD:
            size_expr = format_four_bytes(self.fbitsize)
        else:
            raise NotImplementedError
        return "b'%s%s%s'" % (self.field_type_op.as_python_bytes(),
                              size_expr,
                              self.name)

class StructUnionExpr:
    def __init__(self, name, type_index, flags, size, alignment, comment,
                 first_field_index, c_fields):
        self.name = name
        self.type_index = type_index
        self.flags = flags
        self.size = size
        self.alignment = alignment
        self.comment = comment
        self.first_field_index = first_field_index
        self.c_fields = c_fields

    def as_c_expr(self):
        return ('  { "%s", %d, %s,' % (self.name, self.type_index, self.flags)
                + '\n    %s, %s, ' % (self.size, self.alignment)
                + '%d, %d ' % (self.first_field_index, len(self.c_fields))
                + ('/* %s */ ' % self.comment if self.comment else '')
                + '},')

    def as_python_expr(self):
        flags = eval(self.flags, G_FLAGS)
        fields_expr = [c_field.as_field_python_expr()
                       for c_field in self.c_fields]
        return "(b'%s%s%s',%s)" % (
            format_four_bytes(self.type_index),
            format_four_bytes(flags),
            self.name,
            ','.join(fields_expr))

class EnumExpr:
    def __init__(self, name, type_index, size, signed, allenums):
        self.name = name
        self.type_index = type_index
        self.size = size
        self.signed = signed
        self.allenums = allenums

    def as_c_expr(self):
        return ('  { "%s", %d, _cffi_prim_int(%s, %s),\n'
                '    "%s" },' % (self.name, self.type_index,
                                 self.size, self.signed, self.allenums))

    def as_python_expr(self):
        prim_index = {
            (1, 0): PRIM_UINT8,  (1, 1):  PRIM_INT8,
            (2, 0): PRIM_UINT16, (2, 1):  PRIM_INT16,
            (4, 0): PRIM_UINT32, (4, 1):  PRIM_INT32,
            (8, 0): PRIM_UINT64, (8, 1):  PRIM_INT64,
            }[self.size, self.signed]
        return "b'%s%s%s\\x00%s'" % (format_four_bytes(self.type_index),
                                     format_four_bytes(prim_index),
                                     self.name, self.allenums)

class TypenameExpr:
    def __init__(self, name, type_index):
        self.name = name
        self.type_index = type_index

    def as_c_expr(self):
        return '  { "%s", %d },' % (self.name, self.type_index)

    def as_python_expr(self):
        return "b'%s%s'" % (format_four_bytes(self.type_index), self.name)


# ____________________________________________________________


class Recompiler:
    _num_externpy = 0

    def __init__(self, ffi, module_name, target_is_python=False):
        self.ffi = ffi
        self.module_name = module_name
        self.target_is_python = target_is_python
        self._version = VERSION_BASE

    def needs_version(self, ver):
        self._version = max(self._version, ver)

    def collect_type_table(self):
        self._typesdict = {}
        self._generate("collecttype")
        #
        all_decls = sorted(self._typesdict, key=str)
        #
        # prepare all FUNCTION bytecode sequences first
        self.cffi_types = []
        for tp in all_decls:
            if tp.is_raw_function:
                assert self._typesdict[tp] is None
                self._typesdict[tp] = len(self.cffi_types)
                self.cffi_types.append(tp)     # placeholder
                for tp1 in tp.args:
                    assert isinstance(tp1, (model.VoidType,
                                            model.BasePrimitiveType,
                                            model.PointerType,
                                            model.StructOrUnionOrEnum,
                                            model.FunctionPtrType))
                    if self._typesdict[tp1] is None:
                        self._typesdict[tp1] = len(self.cffi_types)
                    self.cffi_types.append(tp1)   # placeholder
                self.cffi_types.append('END')     # placeholder
        #
        # prepare all OTHER bytecode sequences
        for tp in all_decls:
            if not tp.is_raw_function and self._typesdict[tp] is None:
                self._typesdict[tp] = len(self.cffi_types)
                self.cffi_types.append(tp)        # placeholder
                if tp.is_array_type and tp.length is not None:
                    self.cffi_types.append('LEN') # placeholder
        assert None not in self._typesdict.values()
        #
        # collect all structs and unions and enums
        self._struct_unions = {}
        self._enums = {}
        for tp in all_decls:
            if isinstance(tp, model.StructOrUnion):
                self._struct_unions[tp] = None
            elif isinstance(tp, model.EnumType):
                self._enums[tp] = None
        for i, tp in enumerate(sorted(self._struct_unions,
                                      key=lambda tp: tp.name)):
            self._struct_unions[tp] = i
        for i, tp in enumerate(sorted(self._enums,
                                      key=lambda tp: tp.name)):
            self._enums[tp] = i
        #
        # emit all bytecode sequences now
        for tp in all_decls:
            method = getattr(self, '_emit_bytecode_' + tp.__class__.__name__)
            method(tp, self._typesdict[tp])
        #
        # consistency check
        for op in self.cffi_types:
            assert isinstance(op, CffiOp)
        self.cffi_types = tuple(self.cffi_types)    # don't change any more

    def _do_collect_type(self, tp):
        if not isinstance(tp, model.BaseTypeByIdentity):
            if isinstance(tp, tuple):
                for x in tp:
                    self._do_collect_type(x)
            return
        if tp not in self._typesdict:
            self._typesdict[tp] = None
            if isinstance(tp, model.FunctionPtrType):
                self._do_collect_type(tp.as_raw_function())
            elif isinstance(tp, model.StructOrUnion):
                if tp.fldtypes is not None and (
                        tp not in self.ffi._parser._included_declarations):
                    for name1, tp1, _, _ in tp.enumfields():
                        self._do_collect_type(self._field_type(tp, name1, tp1))
            else:
                for _, x in tp._get_items():
                    self._do_collect_type(x)

    def _generate(self, step_name):
        lst = self.ffi._parser._declarations.items()
        for name, (tp, quals) in sorted(lst):
            kind, realname = name.split(' ', 1)
            try:
                method = getattr(self, '_generate_cpy_%s_%s' % (kind,
                                                                step_name))
            except AttributeError:
                raise VerificationError(
                    "not implemented in recompile(): %r" % name)
            try:
                self._current_quals = quals
                method(tp, realname)
            except Exception as e:
                model.attach_exception_info(e, name)
                raise

    # ----------

    ALL_STEPS = ["global", "field", "struct_union", "enum", "typename"]

    def collect_step_tables(self):
        # collect the declarations for '_cffi_globals', '_cffi_typenames', etc.
        self._lsts = {}
        for step_name in self.ALL_STEPS:
            self._lsts[step_name] = []
        self._seen_struct_unions = set()
        self._generate("ctx")
        self._add_missing_struct_unions()
        #
        for step_name in self.ALL_STEPS:
            lst = self._lsts[step_name]
            if step_name != "field":
                lst.sort(key=lambda entry: entry.name)
            self._lsts[step_name] = tuple(lst)    # don't change any more
        #
        # check for a possible internal inconsistency: _cffi_struct_unions
        # should have been generated with exactly self._struct_unions
        lst = self._lsts["struct_union"]
        for tp, i in self._struct_unions.items():
            assert i < len(lst)
            assert lst[i].name == tp.name
        assert len(lst) == len(self._struct_unions)
        # same with enums
        lst = self._lsts["enum"]
        for tp, i in self._enums.items():
            assert i < len(lst)
            assert lst[i].name == tp.name
        assert len(lst) == len(self._enums)

    # ----------

    def _prnt(self, what=''):
        self._f.write(what + '\n')

    def write_source_to_f(self, f, preamble):
        if self.target_is_python:
            assert preamble is None
            self.write_py_source_to_f(f)
        else:
            assert preamble is not None
            self.write_c_source_to_f(f, preamble)

    def _rel_readlines(self, filename):
        g = open(os.path.join(os.path.dirname(__file__), filename), 'r')
        lines = g.readlines()
        g.close()
        return lines

    def write_c_source_to_f(self, f, preamble):
        self._f = f
        prnt = self._prnt
        if self.ffi._embedding is not None:
            prnt('#define _CFFI_USE_EMBEDDING')
        #
        # first the '#include' (actually done by inlining the file's content)
        lines = self._rel_readlines('_cffi_include.h')
        i = lines.index('#include "parse_c_type.h"\n')
        lines[i:i+1] = self._rel_readlines('parse_c_type.h')
        prnt(''.join(lines))
        #
        # if we have ffi._embedding != None, we give it here as a macro
        # and include an extra file
        base_module_name = self.module_name.split('.')[-1]
        if self.ffi._embedding is not None:
            prnt('#define _CFFI_MODULE_NAME  "%s"' % (self.module_name,))
            prnt('static const char _CFFI_PYTHON_STARTUP_CODE[] = {')
            self._print_string_literal_in_array(self.ffi._embedding)
            prnt('0 };')
            prnt('#ifdef PYPY_VERSION')
            prnt('# define _CFFI_PYTHON_STARTUP_FUNC  _cffi_pypyinit_%s' % (
                base_module_name,))
            prnt('#elif PY_MAJOR_VERSION >= 3')
            prnt('# define _CFFI_PYTHON_STARTUP_FUNC  PyInit_%s' % (
                base_module_name,))
            prnt('#else')
            prnt('# define _CFFI_PYTHON_STARTUP_FUNC  init%s' % (
                base_module_name,))
            prnt('#endif')
            lines = self._rel_readlines('_embedding.h')
            i = lines.index('#include "_cffi_errors.h"\n')
            lines[i:i+1] = self._rel_readlines('_cffi_errors.h')
            prnt(''.join(lines))
            self.needs_version(VERSION_EMBEDDED)
        #
        # then paste the C source given by the user, verbatim.
        prnt('/************************************************************/')
        prnt()
        prnt(preamble)
        prnt()
        prnt('/************************************************************/')
        prnt()
        #
        # the declaration of '_cffi_types'
        prnt('static void *_cffi_types[] = {')
        typeindex2type = dict([(i, tp) for (tp, i) in self._typesdict.items()])
        for i, op in enumerate(self.cffi_types):
            comment = ''
            if i in typeindex2type:
                comment = ' // ' + typeindex2type[i]._get_c_name()
            prnt('/* %2d */ %s,%s' % (i, op.as_c_expr(), comment))
        if not self.cffi_types:
            prnt('  0')
        prnt('};')
        prnt()
        #
        # call generate_cpy_xxx_decl(), for every xxx found from
        # ffi._parser._declarations.  This generates all the functions.
        self._seen_constants = set()
        self._generate("decl")
        #
        # the declaration of '_cffi_globals' and '_cffi_typenames'
        nums = {}
        for step_name in self.ALL_STEPS:
            lst = self._lsts[step_name]
            nums[step_name] = len(lst)
            if nums[step_name] > 0:
                prnt('static const struct _cffi_%s_s _cffi_%ss[] = {' % (
                    step_name, step_name))
                for entry in lst:
                    prnt(entry.as_c_expr())
                prnt('};')
                prnt()
        #
        # the declaration of '_cffi_includes'
        if self.ffi._included_ffis:
            prnt('static const char * const _cffi_includes[] = {')
            for ffi_to_include in self.ffi._included_ffis:
                try:
                    included_module_name, included_source = (
                        ffi_to_include._assigned_source[:2])
                except AttributeError:
                    raise VerificationError(
                        "ffi object %r includes %r, but the latter has not "
                        "been prepared with set_source()" % (
                            self.ffi, ffi_to_include,))
                if included_source is None:
                    raise VerificationError(
                        "not implemented yet: ffi.include() of a Python-based "
                        "ffi inside a C-based ffi")
                prnt('  "%s",' % (included_module_name,))
            prnt('  NULL')
            prnt('};')
            prnt()
        #
        # the declaration of '_cffi_type_context'
        prnt('static const struct _cffi_type_context_s _cffi_type_context = {')
        prnt('  _cffi_types,')
        for step_name in self.ALL_STEPS:
            if nums[step_name] > 0:
                prnt('  _cffi_%ss,' % step_name)
            else:
                prnt('  NULL,  /* no %ss */' % step_name)
        for step_name in self.ALL_STEPS:
            if step_name != "field":
                prnt('  %d,  /* num_%ss */' % (nums[step_name], step_name))
        if self.ffi._included_ffis:
            prnt('  _cffi_includes,')
        else:
            prnt('  NULL,  /* no includes */')
        prnt('  %d,  /* num_types */' % (len(self.cffi_types),))
        flags = 0
        if self._num_externpy:
            flags |= 1     # set to mean that we use extern "Python"
        prnt('  %d,  /* flags */' % flags)
        prnt('};')
        prnt()
        #
        # the init function
        prnt('#ifdef __GNUC__')
        prnt('#  pragma GCC visibility push(default)  /* for -fvisibility= */')
        prnt('#endif')
        prnt()
        prnt('#ifdef PYPY_VERSION')
        prnt('PyMODINIT_FUNC')
        prnt('_cffi_pypyinit_%s(const void *p[])' % (base_module_name,))
        prnt('{')
        if self._num_externpy:
            prnt('    if (((intptr_t)p[0]) >= 0x0A03) {')
            prnt('        _cffi_call_python_org = '
                 '(void(*)(struct _cffi_externpy_s *, char *))p[1];')
            prnt('    }')
        prnt('    p[0] = (const void *)0x%x;' % self._version)
        prnt('    p[1] = &_cffi_type_context;')
        prnt('#if PY_MAJOR_VERSION >= 3')
        prnt('    return NULL;')
        prnt('#endif')
        prnt('}')
        # on Windows, distutils insists on putting init_cffi_xyz in
        # 'export_symbols', so instead of fighting it, just give up and
        # give it one
        prnt('#  ifdef _MSC_VER')
        prnt('     PyMODINIT_FUNC')
        prnt('#  if PY_MAJOR_VERSION >= 3')
        prnt('     PyInit_%s(void) { return NULL; }' % (base_module_name,))
        prnt('#  else')
        prnt('     init%s(void) { }' % (base_module_name,))
        prnt('#  endif')
        prnt('#  endif')
        prnt('#elif PY_MAJOR_VERSION >= 3')
        prnt('PyMODINIT_FUNC')
        prnt('PyInit_%s(void)' % (base_module_name,))
        prnt('{')
        prnt('  return _cffi_init("%s", 0x%x, &_cffi_type_context);' % (
            self.module_name, self._version))
        prnt('}')
        prnt('#else')
        prnt('PyMODINIT_FUNC')
        prnt('init%s(void)' % (base_module_name,))
        prnt('{')
        prnt('  _cffi_init("%s", 0x%x, &_cffi_type_context);' % (
            self.module_name, self._version))
        prnt('}')
        prnt('#endif')
        prnt()
        prnt('#ifdef __GNUC__')
        prnt('#  pragma GCC visibility pop')
        prnt('#endif')
        self._version = None

    def _to_py(self, x):
        if isinstance(x, str):
            return "b'%s'" % (x,)
        if isinstance(x, (list, tuple)):
            rep = [self._to_py(item) for item in x]
            if len(rep) == 1:
                rep.append('')
            return "(%s)" % (','.join(rep),)
        return x.as_python_expr()  # Py2: unicode unexpected; Py3: bytes unexp.

    def write_py_source_to_f(self, f):
        self._f = f
        prnt = self._prnt
        #
        # header
        prnt("# auto-generated file")
        prnt("import _cffi_backend")
        #
        # the 'import' of the included ffis
        num_includes = len(self.ffi._included_ffis or ())
        for i in range(num_includes):
            ffi_to_include = self.ffi._included_ffis[i]
            try:
                included_module_name, included_source = (
                    ffi_to_include._assigned_source[:2])
            except AttributeError:
                raise VerificationError(
                    "ffi object %r includes %r, but the latter has not "
                    "been prepared with set_source()" % (
                        self.ffi, ffi_to_include,))
            if included_source is not None:
                raise VerificationError(
                    "not implemented yet: ffi.include() of a C-based "
                    "ffi inside a Python-based ffi")
            prnt('from %s import ffi as _ffi%d' % (included_module_name, i))
        prnt()
        prnt("ffi = _cffi_backend.FFI('%s'," % (self.module_name,))
        prnt("    _version = 0x%x," % (self._version,))
        self._version = None
        #
        # the '_types' keyword argument
        self.cffi_types = tuple(self.cffi_types)    # don't change any more
        types_lst = [op.as_python_bytes() for op in self.cffi_types]
        prnt('    _types = %s,' % (self._to_py(''.join(types_lst)),))
        typeindex2type = dict([(i, tp) for (tp, i) in self._typesdict.items()])
        #
        # the keyword arguments from ALL_STEPS
        for step_name in self.ALL_STEPS:
            lst = self._lsts[step_name]
            if len(lst) > 0 and step_name != "field":
                prnt('    _%ss = %s,' % (step_name, self._to_py(lst)))
        #
        # the '_includes' keyword argument
        if num_includes > 0:
            prnt('    _includes = (%s,),' % (
                ', '.join(['_ffi%d' % i for i in range(num_includes)]),))
        #
        # the footer
        prnt(')')

    # ----------

    def _gettypenum(self, type):
        # a KeyError here is a bug.  please report it! :-)
        return self._typesdict[type]

    def _convert_funcarg_to_c(self, tp, fromvar, tovar, errcode):
        extraarg = ''
        if isinstance(tp, model.BasePrimitiveType) and not tp.is_complex_type():
            if tp.is_integer_type() and tp.name != '_Bool':
                converter = '_cffi_to_c_int'
                extraarg = ', %s' % tp.name
            elif isinstance(tp, model.UnknownFloatType):
                # don't check with is_float_type(): it may be a 'long
                # double' here, and _cffi_to_c_double would loose precision
                converter = '(%s)_cffi_to_c_double' % (tp.get_c_name(''),)
            else:
                cname = tp.get_c_name('')
                converter = '(%s)_cffi_to_c_%s' % (cname,
                                                   tp.name.replace(' ', '_'))
                if cname in ('char16_t', 'char32_t'):
                    self.needs_version(VERSION_CHAR16CHAR32)
            errvalue = '-1'
        #
        elif isinstance(tp, model.PointerType):
            self._convert_funcarg_to_c_ptr_or_array(tp, fromvar,
                                                    tovar, errcode)
            return
        #
        elif (isinstance(tp, model.StructOrUnionOrEnum) or
              isinstance(tp, model.BasePrimitiveType)):
            # a struct (not a struct pointer) as a function argument;
            # or, a complex (the same code works)
            self._prnt('  if (_cffi_to_c((char *)&%s, _cffi_type(%d), %s) < 0)'
                      % (tovar, self._gettypenum(tp), fromvar))
            self._prnt('    %s;' % errcode)
            return
        #
        elif isinstance(tp, model.FunctionPtrType):
            converter = '(%s)_cffi_to_c_pointer' % tp.get_c_name('')
            extraarg = ', _cffi_type(%d)' % self._gettypenum(tp)
            errvalue = 'NULL'
        #
        else:
            raise NotImplementedError(tp)
        #
        self._prnt('  %s = %s(%s%s);' % (tovar, converter, fromvar, extraarg))
        self._prnt('  if (%s == (%s)%s && PyErr_Occurred())' % (
            tovar, tp.get_c_name(''), errvalue))
        self._prnt('    %s;' % errcode)

    def _extra_local_variables(self, tp, localvars):
        if isinstance(tp, model.PointerType):
            localvars.add('Py_ssize_t datasize')

    def _convert_funcarg_to_c_ptr_or_array(self, tp, fromvar, tovar, errcode):
        self._prnt('  datasize = _cffi_prepare_pointer_call_argument(')
        self._prnt('      _cffi_type(%d), %s, (char **)&%s);' % (
            self._gettypenum(tp), fromvar, tovar))
        self._prnt('  if (datasize != 0) {')
        self._prnt('    if (datasize < 0)')
        self._prnt('      %s;' % errcode)
        self._prnt('    %s = (%s)alloca((size_t)datasize);' % (
            tovar, tp.get_c_name('')))
        self._prnt('    memset((void *)%s, 0, (size_t)datasize);' % (tovar,))
        self._prnt('    if (_cffi_convert_array_from_object('
                   '(char *)%s, _cffi_type(%d), %s) < 0)' % (
            tovar, self._gettypenum(tp), fromvar))
        self._prnt('      %s;' % errcode)
        self._prnt('  }')

    def _convert_expr_from_c(self, tp, var, context):
        if isinstance(tp, model.BasePrimitiveType):
            if tp.is_integer_type() and tp.name != '_Bool':
                return '_cffi_from_c_int(%s, %s)' % (var, tp.name)
            elif isinstance(tp, model.UnknownFloatType):
                return '_cffi_from_c_double(%s)' % (var,)
            elif tp.name != 'long double' and not tp.is_complex_type():
                cname = tp.name.replace(' ', '_')
                if cname in ('char16_t', 'char32_t'):
                    self.needs_version(VERSION_CHAR16CHAR32)
                return '_cffi_from_c_%s(%s)' % (cname, var)
            else:
                return '_cffi_from_c_deref((char *)&%s, _cffi_type(%d))' % (
                    var, self._gettypenum(tp))
        elif isinstance(tp, (model.PointerType, model.FunctionPtrType)):
            return '_cffi_from_c_pointer((char *)%s, _cffi_type(%d))' % (
                var, self._gettypenum(tp))
        elif isinstance(tp, model.ArrayType):
            return '_cffi_from_c_pointer((char *)%s, _cffi_type(%d))' % (
                var, self._gettypenum(model.PointerType(tp.item)))
        elif isinstance(tp, model.StructOrUnion):
            if tp.fldnames is None:
                raise TypeError("'%s' is used as %s, but is opaque" % (
                    tp._get_c_name(), context))
            return '_cffi_from_c_struct((char *)&%s, _cffi_type(%d))' % (
                var, self._gettypenum(tp))
        elif isinstance(tp, model.EnumType):
            return '_cffi_from_c_deref((char *)&%s, _cffi_type(%d))' % (
                var, self._gettypenum(tp))
        else:
            raise NotImplementedError(tp)

    # ----------
    # typedefs

    def _typedef_type(self, tp, name):
        return self._global_type(tp, "(*(%s *)0)" % (name,))

    def _generate_cpy_typedef_collecttype(self, tp, name):
        self._do_collect_type(self._typedef_type(tp, name))

    def _generate_cpy_typedef_decl(self, tp, name):
        pass

    def _typedef_ctx(self, tp, name):
        type_index = self._typesdict[tp]
        self._lsts["typename"].append(TypenameExpr(name, type_index))

    def _generate_cpy_typedef_ctx(self, tp, name):
        tp = self._typedef_type(tp, name)
        self._typedef_ctx(tp, name)
        if getattr(tp, "origin", None) == "unknown_type":
            self._struct_ctx(tp, tp.name, approxname=None)
        elif isinstance(tp, model.NamedPointerType):
            self._struct_ctx(tp.totype, tp.totype.name, approxname=tp.name,
                             named_ptr=tp)

    # ----------
    # function declarations

    def _generate_cpy_function_collecttype(self, tp, name):
        self._do_collect_type(tp.as_raw_function())
        if tp.ellipsis and not self.target_is_python:
            self._do_collect_type(tp)

    def _generate_cpy_function_decl(self, tp, name):
        assert not self.target_is_python
        assert isinstance(tp, model.FunctionPtrType)
        if tp.ellipsis:
            # cannot support vararg functions better than this: check for its
            # exact type (including the fixed arguments), and build it as a
            # constant function pointer (no CPython wrapper)
            self._generate_cpy_constant_decl(tp, name)
            return
        prnt = self._prnt
        numargs = len(tp.args)
        if numargs == 0:
            argname = 'noarg'
        elif numargs == 1:
            argname = 'arg0'
        else:
            argname = 'args'
        #
        # ------------------------------
        # the 'd' version of the function, only for addressof(lib, 'func')
        arguments = []
        call_arguments = []
        context = 'argument of %s' % name
        for i, type in enumerate(tp.args):
            arguments.append(type.get_c_name(' x%d' % i, context))
            call_arguments.append('x%d' % i)
        repr_arguments = ', '.join(arguments)
        repr_arguments = repr_arguments or 'void'
        if tp.abi:
            abi = tp.abi + ' '
        else:
            abi = ''
        name_and_arguments = '%s_cffi_d_%s(%s)' % (abi, name, repr_arguments)
        prnt('static %s' % (tp.result.get_c_name(name_and_arguments),))
        prnt('{')
        call_arguments = ', '.join(call_arguments)
        result_code = 'return '
        if isinstance(tp.result, model.VoidType):
            result_code = ''
        prnt('  %s%s(%s);' % (result_code, name, call_arguments))
        prnt('}')
        #
        prnt('#ifndef PYPY_VERSION')        # ------------------------------
        #
        prnt('static PyObject *')
        prnt('_cffi_f_%s(PyObject *self, PyObject *%s)' % (name, argname))
        prnt('{')
        #
        context = 'argument of %s' % name
        for i, type in enumerate(tp.args):
            arg = type.get_c_name(' x%d' % i, context)
            prnt('  %s;' % arg)
        #
        localvars = set()
        for type in tp.args:
            self._extra_local_variables(type, localvars)
        for decl in localvars:
            prnt('  %s;' % (decl,))
        #
        if not isinstance(tp.result, model.VoidType):
            result_code = 'result = '
            context = 'result of %s' % name
            result_decl = '  %s;' % tp.result.get_c_name(' result', context)
            prnt(result_decl)
        else:
            result_decl = None
            result_code = ''
        #
        if len(tp.args) > 1:
            rng = range(len(tp.args))
            for i in rng:
                prnt('  PyObject *arg%d;' % i)
            prnt()
            prnt('  if (!PyArg_UnpackTuple(args, "%s", %d, %d, %s))' % (
                name, len(rng), len(rng),
                ', '.join(['&arg%d' % i for i in rng])))
            prnt('    return NULL;')
        prnt()
        #
        for i, type in enumerate(tp.args):
            self._convert_funcarg_to_c(type, 'arg%d' % i, 'x%d' % i,
                                       'return NULL')
            prnt()
        #
        prnt('  Py_BEGIN_ALLOW_THREADS')
        prnt('  _cffi_restore_errno();')
        call_arguments = ['x%d' % i for i in range(len(tp.args))]
        call_arguments = ', '.join(call_arguments)
        prnt('  { %s%s(%s); }' % (result_code, name, call_arguments))
        prnt('  _cffi_save_errno();')
        prnt('  Py_END_ALLOW_THREADS')
        prnt()
        #
        prnt('  (void)self; /* unused */')
        if numargs == 0:
            prnt('  (void)noarg; /* unused */')
        if result_code:
            prnt('  return %s;' %
                 self._convert_expr_from_c(tp.result, 'result', 'result type'))
        else:
            prnt('  Py_INCREF(Py_None);')
            prnt('  return Py_None;')
        prnt('}')
        #
        prnt('#else')        # ------------------------------
        #
        # the PyPy version: need to replace struct/union arguments with
        # pointers, and if the result is a struct/union, insert a first
        # arg that is a pointer to the result.  We also do that for
        # complex args and return type.
        def need_indirection(type):
            return (isinstance(type, model.StructOrUnion) or
                    (isinstance(type, model.PrimitiveType) and
                     type.is_complex_type()))
        difference = False
        arguments = []
        call_arguments = []
        context = 'argument of %s' % name
        for i, type in enumerate(tp.args):
            indirection = ''
            if need_indirection(type):
                indirection = '*'
                difference = True
            arg = type.get_c_name(' %sx%d' % (indirection, i), context)
            arguments.append(arg)
            call_arguments.append('%sx%d' % (indirection, i))
        tp_result = tp.result
        if need_indirection(tp_result):
            context = 'result of %s' % name
            arg = tp_result.get_c_name(' *result', context)
            arguments.insert(0, arg)
            tp_result = model.void_type
            result_decl = None
            result_code = '*result = '
            difference = True
        if difference:
            repr_arguments = ', '.join(arguments)
            repr_arguments = repr_arguments or 'void'
            name_and_arguments = '%s_cffi_f_%s(%s)' % (abi, name,
                                                       repr_arguments)
            prnt('static %s' % (tp_result.get_c_name(name_and_arguments),))
            prnt('{')
            if result_decl:
                prnt(result_decl)
            call_arguments = ', '.join(call_arguments)
            prnt('  { %s%s(%s); }' % (result_code, name, call_arguments))
            if result_decl:
                prnt('  return result;')
            prnt('}')
        else:
            prnt('#  define _cffi_f_%s _cffi_d_%s' % (name, name))
        #
        prnt('#endif')        # ------------------------------
        prnt()

    def _generate_cpy_function_ctx(self, tp, name):
        if tp.ellipsis and not self.target_is_python:
            self._generate_cpy_constant_ctx(tp, name)
            return
        type_index = self._typesdict[tp.as_raw_function()]
        numargs = len(tp.args)
        if self.target_is_python:
            meth_kind = OP_DLOPEN_FUNC
        elif numargs == 0:
            meth_kind = OP_CPYTHON_BLTN_N   # 'METH_NOARGS'
        elif numargs == 1:
            meth_kind = OP_CPYTHON_BLTN_O   # 'METH_O'
        else:
            meth_kind = OP_CPYTHON_BLTN_V   # 'METH_VARARGS'
        self._lsts["global"].append(
            GlobalExpr(name, '_cffi_f_%s' % name,
                       CffiOp(meth_kind, type_index),
                       size='_cffi_d_%s' % name))

    # ----------
    # named structs or unions

    def _field_type(self, tp_struct, field_name, tp_field):
        if isinstance(tp_field, model.ArrayType):
            actual_length = tp_field.length
            if actual_length == '...':
                ptr_struct_name = tp_struct.get_c_name('*')
                actual_length = '_cffi_array_len(((%s)0)->%s)' % (
                    ptr_struct_name, field_name)
            tp_item = self._field_type(tp_struct, '%s[0]' % field_name,
                                       tp_field.item)
            tp_field = model.ArrayType(tp_item, actual_length)
        return tp_field

    def _struct_collecttype(self, tp):
        self._do_collect_type(tp)
        if self.target_is_python:
            # also requires nested anon struct/unions in ABI mode, recursively
            for fldtype in tp.anonymous_struct_fields():
                self._struct_collecttype(fldtype)

    def _struct_decl(self, tp, cname, approxname):
        if tp.fldtypes is None:
            return
        prnt = self._prnt
        checkfuncname = '_cffi_checkfld_%s' % (approxname,)
        prnt('_CFFI_UNUSED_FN')
        prnt('static void %s(%s *p)' % (checkfuncname, cname))
        prnt('{')
        prnt('  /* only to generate compile-time warnings or errors */')
        prnt('  (void)p;')
        for fname, ftype, fbitsize, fqual in tp.enumfields():
            try:
                if ftype.is_integer_type() or fbitsize >= 0:
                    # accept all integers, but complain on float or double
                    prnt("  (void)((p->%s) | 0);  /* check that '%s.%s' is "
                         "an integer */" % (fname, cname, fname))
                    continue
                # only accept exactly the type declared, except that '[]'
                # is interpreted as a '*' and so will match any array length.
                # (It would also match '*', but that's harder to detect...)
                while (isinstance(ftype, model.ArrayType)
                       and (ftype.length is None or ftype.length == '...')):
                    ftype = ftype.item
                    fname = fname + '[0]'
                prnt('  { %s = &p->%s; (void)tmp; }' % (
                    ftype.get_c_name('*tmp', 'field %r'%fname, quals=fqual),
                    fname))
            except VerificationError as e:
                prnt('  /* %s */' % str(e))   # cannot verify it, ignore
        prnt('}')
        prnt('struct _cffi_align_%s { char x; %s y; };' % (approxname, cname))
        prnt()

    def _struct_ctx(self, tp, cname, approxname, named_ptr=None):
        type_index = self._typesdict[tp]
        reason_for_not_expanding = None
        flags = []
        if isinstance(tp, model.UnionType):
            flags.append("_CFFI_F_UNION")
        if tp.fldtypes is None:
            flags.append("_CFFI_F_OPAQUE")
            reason_for_not_expanding = "opaque"
        if (tp not in self.ffi._parser._included_declarations and
                (named_ptr is None or
                 named_ptr not in self.ffi._parser._included_declarations)):
            if tp.fldtypes is None:
                pass    # opaque
            elif tp.partial or any(tp.anonymous_struct_fields()):
                pass    # field layout obtained silently from the C compiler
            else:
                flags.append("_CFFI_F_CHECK_FIELDS")
            if tp.packed:
                flags.append("_CFFI_F_PACKED")
        else:
            flags.append("_CFFI_F_EXTERNAL")
            reason_for_not_expanding = "external"
        flags = '|'.join(flags) or '0'
        c_fields = []
        if reason_for_not_expanding is None:
            expand_anonymous_struct_union = not self.target_is_python
            enumfields = list(tp.enumfields(expand_anonymous_struct_union))
            for fldname, fldtype, fbitsize, fqual in enumfields:
                fldtype = self._field_type(tp, fldname, fldtype)
                self._check_not_opaque(fldtype,
                                       "field '%s.%s'" % (tp.name, fldname))
                # cname is None for _add_missing_struct_unions() only
                op = OP_NOOP
                if fbitsize >= 0:
                    op = OP_BITFIELD
                    size = '%d /* bits */' % fbitsize
                elif cname is None or (
                        isinstance(fldtype, model.ArrayType) and
                        fldtype.length is None):
                    size = '(size_t)-1'
                else:
                    size = 'sizeof(((%s)0)->%s)' % (
                        tp.get_c_name('*') if named_ptr is None
                                           else named_ptr.name,
                        fldname)
                if cname is None or fbitsize >= 0:
                    offset = '(size_t)-1'
                elif named_ptr is not None:
                    offset = '((char *)&((%s)0)->%s) - (char *)0' % (
                        named_ptr.name, fldname)
                else:
                    offset = 'offsetof(%s, %s)' % (tp.get_c_name(''), fldname)
                c_fields.append(
                    FieldExpr(fldname, offset, size, fbitsize,
                              CffiOp(op, self._typesdict[fldtype])))
            first_field_index = len(self._lsts["field"])
            self._lsts["field"].extend(c_fields)
            #
            if cname is None:  # unknown name, for _add_missing_struct_unions
                size = '(size_t)-2'
                align = -2
                comment = "unnamed"
            else:
                if named_ptr is not None:
                    size = 'sizeof(*(%s)0)' % (named_ptr.name,)
                    align = '-1 /* unknown alignment */'
                else:
                    size = 'sizeof(%s)' % (cname,)
                    align = 'offsetof(struct _cffi_align_%s, y)' % (approxname,)
                comment = None
        else:
            size = '(size_t)-1'
            align = -1
            first_field_index = -1
            comment = reason_for_not_expanding
        self._lsts["struct_union"].append(
            StructUnionExpr(tp.name, type_index, flags, size, align, comment,
                            first_field_index, c_fields))
        self._seen_struct_unions.add(tp)

    def _check_not_opaque(self, tp, location):
        while isinstance(tp, model.ArrayType):
            tp = tp.item
        if isinstance(tp, model.StructOrUnion) and tp.fldtypes is None:
            raise TypeError(
                "%s is of an opaque type (not declared in cdef())" % location)

    def _add_missing_struct_unions(self):
        # not very nice, but some struct declarations might be missing
        # because they don't have any known C name.  Check that they are
        # not partial (we can't complete or verify them!) and emit them
        # anonymously.
        lst = list(self._struct_unions.items())
        lst.sort(key=lambda tp_order: tp_order[1])
        for tp, order in lst:
            if tp not in self._seen_struct_unions:
                if tp.partial:
                    raise NotImplementedError("internal inconsistency: %r is "
                                              "partial but was not seen at "
                                              "this point" % (tp,))
                if tp.name.startswith('$') and tp.name[1:].isdigit():
                    approxname = tp.name[1:]
                elif tp.name == '_IO_FILE' and tp.forcename == 'FILE':
                    approxname = 'FILE'
                    self._typedef_ctx(tp, 'FILE')
                else:
                    raise NotImplementedError("internal inconsistency: %r" %
                                              (tp,))
                self._struct_ctx(tp, None, approxname)

    def _generate_cpy_struct_collecttype(self, tp, name):
        self._struct_collecttype(tp)
    _generate_cpy_union_collecttype = _generate_cpy_struct_collecttype

    def _struct_names(self, tp):
        cname = tp.get_c_name('')
        if ' ' in cname:
            return cname, cname.replace(' ', '_')
        else:
            return cname, '_' + cname

    def _generate_cpy_struct_decl(self, tp, name):
        self._struct_decl(tp, *self._struct_names(tp))
    _generate_cpy_union_decl = _generate_cpy_struct_decl

    def _generate_cpy_struct_ctx(self, tp, name):
        self._struct_ctx(tp, *self._struct_names(tp))
    _generate_cpy_union_ctx = _generate_cpy_struct_ctx

    # ----------
    # 'anonymous' declarations.  These are produced for anonymous structs
    # or unions; the 'name' is obtained by a typedef.

    def _generate_cpy_anonymous_collecttype(self, tp, name):
        if isinstance(tp, model.EnumType):
            self._generate_cpy_enum_collecttype(tp, name)
        else:
            self._struct_collecttype(tp)

    def _generate_cpy_anonymous_decl(self, tp, name):
        if isinstance(tp, model.EnumType):
            self._generate_cpy_enum_decl(tp)
        else:
            self._struct_decl(tp, name, 'typedef_' + name)

    def _generate_cpy_anonymous_ctx(self, tp, name):
        if isinstance(tp, model.EnumType):
            self._enum_ctx(tp, name)
        else:
            self._struct_ctx(tp, name, 'typedef_' + name)

    # ----------
    # constants, declared with "static const ..."

    def _generate_cpy_const(self, is_int, name, tp=None, category='const',
                            check_value=None):
        if (category, name) in self._seen_constants:
            raise VerificationError(
                "duplicate declaration of %s '%s'" % (category, name))
        self._seen_constants.add((category, name))
        #
        prnt = self._prnt
        funcname = '_cffi_%s_%s' % (category, name)
        if is_int:
            prnt('static int %s(unsigned long long *o)' % funcname)
            prnt('{')
            prnt('  int n = (%s) <= 0;' % (name,))
            prnt('  *o = (unsigned long long)((%s) | 0);'
                 '  /* check that %s is an integer */' % (name, name))
            if check_value is not None:
                if check_value > 0:
                    check_value = '%dU' % (check_value,)
                prnt('  if (!_cffi_check_int(*o, n, %s))' % (check_value,))
                prnt('    n |= 2;')
            prnt('  return n;')
            prnt('}')
        else:
            assert check_value is None
            prnt('static void %s(char *o)' % funcname)
            prnt('{')
            prnt('  *(%s)o = %s;' % (tp.get_c_name('*'), name))
            prnt('}')
        prnt()

    def _generate_cpy_constant_collecttype(self, tp, name):
        is_int = tp.is_integer_type()
        if not is_int or self.target_is_python:
            self._do_collect_type(tp)

    def _generate_cpy_constant_decl(self, tp, name):
        is_int = tp.is_integer_type()
        self._generate_cpy_const(is_int, name, tp)

    def _generate_cpy_constant_ctx(self, tp, name):
        if not self.target_is_python and tp.is_integer_type():
            type_op = CffiOp(OP_CONSTANT_INT, -1)
        else:
            if self.target_is_python:
                const_kind = OP_DLOPEN_CONST
            else:
                const_kind = OP_CONSTANT
            type_index = self._typesdict[tp]
            type_op = CffiOp(const_kind, type_index)
        self._lsts["global"].append(
            GlobalExpr(name, '_cffi_const_%s' % name, type_op))

    # ----------
    # enums

    def _generate_cpy_enum_collecttype(self, tp, name):
        self._do_collect_type(tp)

    def _generate_cpy_enum_decl(self, tp, name=None):
        for enumerator in tp.enumerators:
            self._generate_cpy_const(True, enumerator)

    def _enum_ctx(self, tp, cname):
        type_index = self._typesdict[tp]
        type_op = CffiOp(OP_ENUM, -1)
        if self.target_is_python:
            tp.check_not_partial()
        for enumerator, enumvalue in zip(tp.enumerators, tp.enumvalues):
            self._lsts["global"].append(
                GlobalExpr(enumerator, '_cffi_const_%s' % enumerator, type_op,
                           check_value=enumvalue))
        #
        if cname is not None and '$' not in cname and not self.target_is_python:
            size = "sizeof(%s)" % cname
            signed = "((%s)-1) <= 0" % cname
        else:
            basetp = tp.build_baseinttype(self.ffi, [])
            size = self.ffi.sizeof(basetp)
            signed = int(int(self.ffi.cast(basetp, -1)) < 0)
        allenums = ",".join(tp.enumerators)
        self._lsts["enum"].append(
            EnumExpr(tp.name, type_index, size, signed, allenums))

    def _generate_cpy_enum_ctx(self, tp, name):
        self._enum_ctx(tp, tp._get_c_name())

    # ----------
    # macros: for now only for integers

    def _generate_cpy_macro_collecttype(self, tp, name):
        pass

    def _generate_cpy_macro_decl(self, tp, name):
        if tp == '...':
            check_value = None
        else:
            check_value = tp     # an integer
        self._generate_cpy_const(True, name, check_value=check_value)

    def _generate_cpy_macro_ctx(self, tp, name):
        if tp == '...':
            if self.target_is_python:
                raise VerificationError(
                    "cannot use the syntax '...' in '#define %s ...' when "
                    "using the ABI mode" % (name,))
            check_value = None
        else:
            check_value = tp     # an integer
        type_op = CffiOp(OP_CONSTANT_INT, -1)
        self._lsts["global"].append(
            GlobalExpr(name, '_cffi_const_%s' % name, type_op,
                       check_value=check_value))

    # ----------
    # global variables

    def _global_type(self, tp, global_name):
        if isinstance(tp, model.ArrayType):
            actual_length = tp.length
            if actual_length == '...':
                actual_length = '_cffi_array_len(%s)' % (global_name,)
            tp_item = self._global_type(tp.item, '%s[0]' % global_name)
            tp = model.ArrayType(tp_item, actual_length)
        return tp

    def _generate_cpy_variable_collecttype(self, tp, name):
        self._do_collect_type(self._global_type(tp, name))

    def _generate_cpy_variable_decl(self, tp, name):
        prnt = self._prnt
        tp = self._global_type(tp, name)
        if isinstance(tp, model.ArrayType) and tp.length is None:
            tp = tp.item
            ampersand = ''
        else:
            ampersand = '&'
        # This code assumes that casts from "tp *" to "void *" is a
        # no-op, i.e. a function that returns a "tp *" can be called
        # as if it returned a "void *".  This should be generally true
        # on any modern machine.  The only exception to that rule (on
        # uncommon architectures, and as far as I can tell) might be
        # if 'tp' were a function type, but that is not possible here.
        # (If 'tp' is a function _pointer_ type, then casts from "fn_t
        # **" to "void *" are again no-ops, as far as I can tell.)
        decl = '*_cffi_var_%s(void)' % (name,)
        prnt('static ' + tp.get_c_name(decl, quals=self._current_quals))
        prnt('{')
        prnt('  return %s(%s);' % (ampersand, name))
        prnt('}')
        prnt()

    def _generate_cpy_variable_ctx(self, tp, name):
        tp = self._global_type(tp, name)
        type_index = self._typesdict[tp]
        if self.target_is_python:
            op = OP_GLOBAL_VAR
        else:
            op = OP_GLOBAL_VAR_F
        self._lsts["global"].append(
            GlobalExpr(name, '_cffi_var_%s' % name, CffiOp(op, type_index)))

    # ----------
    # extern "Python"

    def _generate_cpy_extern_python_collecttype(self, tp, name):
        assert isinstance(tp, model.FunctionPtrType)
        self._do_collect_type(tp)
    _generate_cpy_dllexport_python_collecttype = \
      _generate_cpy_extern_python_plus_c_collecttype = \
      _generate_cpy_extern_python_collecttype

    def _extern_python_decl(self, tp, name, tag_and_space):
        prnt = self._prnt
        if isinstance(tp.result, model.VoidType):
            size_of_result = '0'
        else:
            context = 'result of %s' % name
            size_of_result = '(int)sizeof(%s)' % (
                tp.result.get_c_name('', context),)
        prnt('static struct _cffi_externpy_s _cffi_externpy__%s =' % name)
        prnt('  { "%s.%s", %s };' % (self.module_name, name, size_of_result))
        prnt()
        #
        arguments = []
        context = 'argument of %s' % name
        for i, type in enumerate(tp.args):
            arg = type.get_c_name(' a%d' % i, context)
            arguments.append(arg)
        #
        repr_arguments = ', '.join(arguments)
        repr_arguments = repr_arguments or 'void'
        name_and_arguments = '%s(%s)' % (name, repr_arguments)
        if tp.abi == "__stdcall":
            name_and_arguments = '_cffi_stdcall ' + name_and_arguments
        #
        def may_need_128_bits(tp):
            return (isinstance(tp, model.PrimitiveType) and
                    tp.name == 'long double')
        #
        size_of_a = max(len(tp.args)*8, 8)
        if may_need_128_bits(tp.result):
            size_of_a = max(size_of_a, 16)
        if isinstance(tp.result, model.StructOrUnion):
            size_of_a = 'sizeof(%s) > %d ? sizeof(%s) : %d' % (
                tp.result.get_c_name(''), size_of_a,
                tp.result.get_c_name(''), size_of_a)
        prnt('%s%s' % (tag_and_space, tp.result.get_c_name(name_and_arguments)))
        prnt('{')
        prnt('  char a[%s];' % size_of_a)
        prnt('  char *p = a;')
        for i, type in enumerate(tp.args):
            arg = 'a%d' % i
            if (isinstance(type, model.StructOrUnion) or
                    may_need_128_bits(type)):
                arg = '&' + arg
                type = model.PointerType(type)
            prnt('  *(%s)(p + %d) = %s;' % (type.get_c_name('*'), i*8, arg))
        prnt('  _cffi_call_python(&_cffi_externpy__%s, p);' % name)
        if not isinstance(tp.result, model.VoidType):
            prnt('  return *(%s)p;' % (tp.result.get_c_name('*'),))
        prnt('}')
        prnt()
        self._num_externpy += 1

    def _generate_cpy_extern_python_decl(self, tp, name):
        self._extern_python_decl(tp, name, 'static ')

    def _generate_cpy_dllexport_python_decl(self, tp, name):
        self._extern_python_decl(tp, name, 'CFFI_DLLEXPORT ')

    def _generate_cpy_extern_python_plus_c_decl(self, tp, name):
        self._extern_python_decl(tp, name, '')

    def _generate_cpy_extern_python_ctx(self, tp, name):
        if self.target_is_python:
            raise VerificationError(
                "cannot use 'extern \"Python\"' in the ABI mode")
        if tp.ellipsis:
            raise NotImplementedError("a vararg function is extern \"Python\"")
        type_index = self._typesdict[tp]
        type_op = CffiOp(OP_EXTERN_PYTHON, type_index)
        self._lsts["global"].append(
            GlobalExpr(name, '&_cffi_externpy__%s' % name, type_op, name))

    _generate_cpy_dllexport_python_ctx = \
      _generate_cpy_extern_python_plus_c_ctx = \
      _generate_cpy_extern_python_ctx

    def _print_string_literal_in_array(self, s):
        prnt = self._prnt
        prnt('// # NB. this is not a string because of a size limit in MSVC')
        for line in s.splitlines(True):
            prnt(('// ' + line).rstrip())
            printed_line = ''
            for c in line:
                if len(printed_line) >= 76:
                    prnt(printed_line)
                    printed_line = ''
                printed_line += '%d,' % (ord(c),)
            prnt(printed_line)

    # ----------
    # emitting the opcodes for individual types

    def _emit_bytecode_VoidType(self, tp, index):
        self.cffi_types[index] = CffiOp(OP_PRIMITIVE, PRIM_VOID)

    def _emit_bytecode_PrimitiveType(self, tp, index):
        prim_index = PRIMITIVE_TO_INDEX[tp.name]
        self.cffi_types[index] = CffiOp(OP_PRIMITIVE, prim_index)

    def _emit_bytecode_UnknownIntegerType(self, tp, index):
        s = ('_cffi_prim_int(sizeof(%s), (\n'
             '           ((%s)-1) | 0 /* check that %s is an integer type */\n'
             '         ) <= 0)' % (tp.name, tp.name, tp.name))
        self.cffi_types[index] = CffiOp(OP_PRIMITIVE, s)

    def _emit_bytecode_UnknownFloatType(self, tp, index):
        s = ('_cffi_prim_float(sizeof(%s) *\n'
             '           (((%s)1) / 2) * 2 /* integer => 0, float => 1 */\n'
             '         )' % (tp.name, tp.name))
        self.cffi_types[index] = CffiOp(OP_PRIMITIVE, s)

    def _emit_bytecode_RawFunctionType(self, tp, index):
        self.cffi_types[index] = CffiOp(OP_FUNCTION, self._typesdict[tp.result])
        index += 1
        for tp1 in tp.args:
            realindex = self._typesdict[tp1]
            if index != realindex:
                if isinstance(tp1, model.PrimitiveType):
                    self._emit_bytecode_PrimitiveType(tp1, index)
                else:
                    self.cffi_types[index] = CffiOp(OP_NOOP, realindex)
            index += 1
        flags = int(tp.ellipsis)
        if tp.abi is not None:
            if tp.abi == '__stdcall':
                flags |= 2
            else:
                raise NotImplementedError("abi=%r" % (tp.abi,))
        self.cffi_types[index] = CffiOp(OP_FUNCTION_END, flags)

    def _emit_bytecode_PointerType(self, tp, index):
        self.cffi_types[index] = CffiOp(OP_POINTER, self._typesdict[tp.totype])

    _emit_bytecode_ConstPointerType = _emit_bytecode_PointerType
    _emit_bytecode_NamedPointerType = _emit_bytecode_PointerType

    def _emit_bytecode_FunctionPtrType(self, tp, index):
        raw = tp.as_raw_function()
        self.cffi_types[index] = CffiOp(OP_POINTER, self._typesdict[raw])

    def _emit_bytecode_ArrayType(self, tp, index):
        item_index = self._typesdict[tp.item]
        if tp.length is None:
            self.cffi_types[index] = CffiOp(OP_OPEN_ARRAY, item_index)
        elif tp.length == '...':
            raise VerificationError(
                "type %s badly placed: the '...' array length can only be "
                "used on global arrays or on fields of structures" % (
                    str(tp).replace('/*...*/', '...'),))
        else:
            assert self.cffi_types[index + 1] == 'LEN'
            self.cffi_types[index] = CffiOp(OP_ARRAY, item_index)
            self.cffi_types[index + 1] = CffiOp(None, str(tp.length))

    def _emit_bytecode_StructType(self, tp, index):
        struct_index = self._struct_unions[tp]
        self.cffi_types[index] = CffiOp(OP_STRUCT_UNION, struct_index)
    _emit_bytecode_UnionType = _emit_bytecode_StructType

    def _emit_bytecode_EnumType(self, tp, index):
        enum_index = self._enums[tp]
        self.cffi_types[index] = CffiOp(OP_ENUM, enum_index)


if sys.version_info >= (3,):
    NativeIO = io.StringIO
else:
    class NativeIO(io.BytesIO):
        def write(self, s):
            if isinstance(s, unicode):
                s = s.encode('ascii')
            super(NativeIO, self).write(s)

def _make_c_or_py_source(ffi, module_name, preamble, target_file, verbose):
    if verbose:
        print("generating %s" % (target_file,))
    recompiler = Recompiler(ffi, module_name,
                            target_is_python=(preamble is None))
    recompiler.collect_type_table()
    recompiler.collect_step_tables()
    f = NativeIO()
    recompiler.write_source_to_f(f, preamble)
    output = f.getvalue()
    try:
        with open(target_file, 'r') as f1:
            if f1.read(len(output) + 1) != output:
                raise IOError
        if verbose:
            print("(already up-to-date)")
        return False     # already up-to-date
    except IOError:
        tmp_file = '%s.~%d' % (target_file, os.getpid())
        with open(tmp_file, 'w') as f1:
            f1.write(output)
        try:
            os.rename(tmp_file, target_file)
        except OSError:
            os.unlink(target_file)
            os.rename(tmp_file, target_file)
        return True

def make_c_source(ffi, module_name, preamble, target_c_file, verbose=False):
    assert preamble is not None
    return _make_c_or_py_source(ffi, module_name, preamble, target_c_file,
                                verbose)

def make_py_source(ffi, module_name, target_py_file, verbose=False):
    return _make_c_or_py_source(ffi, module_name, None, target_py_file,
                                verbose)

def _modname_to_file(outputdir, modname, extension):
    parts = modname.split('.')
    try:
        os.makedirs(os.path.join(outputdir, *parts[:-1]))
    except OSError:
        pass
    parts[-1] += extension
    return os.path.join(outputdir, *parts), parts


# Aaargh.  Distutils is not tested at all for the purpose of compiling
# DLLs that are not extension modules.  Here are some hacks to work
# around that, in the _patch_for_*() functions...

def _patch_meth(patchlist, cls, name, new_meth):
    old = getattr(cls, name)
    patchlist.append((cls, name, old))
    setattr(cls, name, new_meth)
    return old

def _unpatch_meths(patchlist):
    for cls, name, old_meth in reversed(patchlist):
        setattr(cls, name, old_meth)

def _patch_for_embedding(patchlist):
    if sys.platform == 'win32':
        # we must not remove the manifest when building for embedding!
        from distutils.msvc9compiler import MSVCCompiler
        _patch_meth(patchlist, MSVCCompiler, '_remove_visual_c_ref',
                    lambda self, manifest_file: manifest_file)

    if sys.platform == 'darwin':
        # we must not make a '-bundle', but a '-dynamiclib' instead
        from distutils.ccompiler import CCompiler
        def my_link_shared_object(self, *args, **kwds):
            if '-bundle' in self.linker_so:
                self.linker_so = list(self.linker_so)
                i = self.linker_so.index('-bundle')
                self.linker_so[i] = '-dynamiclib'
            return old_link_shared_object(self, *args, **kwds)
        old_link_shared_object = _patch_meth(patchlist, CCompiler,
                                             'link_shared_object',
                                             my_link_shared_object)

def _patch_for_target(patchlist, target):
    from distutils.command.build_ext import build_ext
    # if 'target' is different from '*', we need to patch some internal
    # method to just return this 'target' value, instead of having it
    # built from module_name
    if target.endswith('.*'):
        target = target[:-2]
        if sys.platform == 'win32':
            target += '.dll'
        elif sys.platform == 'darwin':
            target += '.dylib'
        else:
            target += '.so'
    _patch_meth(patchlist, build_ext, 'get_ext_filename',
                lambda self, ext_name: target)


def recompile(ffi, module_name, preamble, tmpdir='.', call_c_compiler=True,
              c_file=None, source_extension='.c', extradir=None,
              compiler_verbose=1, target=None, debug=None, **kwds):
    if not isinstance(module_name, str):
        module_name = module_name.encode('ascii')
    if ffi._windows_unicode:
        ffi._apply_windows_unicode(kwds)
    if preamble is not None:
        embedding = (ffi._embedding is not None)
        if embedding:
            ffi._apply_embedding_fix(kwds)
        if c_file is None:
            c_file, parts = _modname_to_file(tmpdir, module_name,
                                             source_extension)
            if extradir:
                parts = [extradir] + parts
            ext_c_file = os.path.join(*parts)
        else:
            ext_c_file = c_file
        #
        if target is None:
            if embedding:
                target = '%s.*' % module_name
            else:
                target = '*'
        #
        ext = ffiplatform.get_extension(ext_c_file, module_name, **kwds)
        updated = make_c_source(ffi, module_name, preamble, c_file,
                                verbose=compiler_verbose)
        if call_c_compiler:
            patchlist = []
            cwd = os.getcwd()
            try:
                if embedding:
                    _patch_for_embedding(patchlist)
                if target != '*':
                    _patch_for_target(patchlist, target)
                if compiler_verbose:
                    if tmpdir == '.':
                        msg = 'the current directory is'
                    else:
                        msg = 'setting the current directory to'
                    print('%s %r' % (msg, os.path.abspath(tmpdir)))
                os.chdir(tmpdir)
                outputfilename = ffiplatform.compile('.', ext,
                                                     compiler_verbose, debug)
            finally:
                os.chdir(cwd)
                _unpatch_meths(patchlist)
            return outputfilename
        else:
            return ext, updated
    else:
        if c_file is None:
            c_file, _ = _modname_to_file(tmpdir, module_name, '.py')
        updated = make_py_source(ffi, module_name, c_file,
                                 verbose=compiler_verbose)
        if call_c_compiler:
            return c_file
        else:
            return None, updated

def _verify(ffi, module_name, preamble, *args, **kwds):
    # FOR TESTS ONLY
    from testing.udir import udir
    import imp
    assert module_name not in sys.modules, "module name conflict: %r" % (
        module_name,)
    kwds.setdefault('tmpdir', str(udir))
    outputfilename = recompile(ffi, module_name, preamble, *args, **kwds)
    module = imp.load_dynamic(module_name, outputfilename)
    #
    # hack hack hack: copy all *bound methods* from module.ffi back to the
    # ffi instance.  Then calls like ffi.new() will invoke module.ffi.new().
    for name in dir(module.ffi):
        if not name.startswith('_'):
            attr = getattr(module.ffi, name)
            if attr is not getattr(ffi, name, object()):
                setattr(ffi, name, attr)
    def typeof_disabled(*args, **kwds):
        raise NotImplementedError
    ffi._typeof = typeof_disabled
    for name in dir(ffi):
        if not name.startswith('_') and not hasattr(module.ffi, name):
            setattr(ffi, name, NotImplemented)
    return module.lib

Youez - 2016 - github.com/yon3zu
LinuXploit