Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.142.251.204
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /lib/python3.6/site-packages/chardet/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /lib/python3.6/site-packages/chardet/sbcharsetprober.py
######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Universal charset detector code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 2001
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
#   Mark Pilgrim - port to Python
#   Shy Shalom - original C code
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301  USA
######################### END LICENSE BLOCK #########################

from .charsetprober import CharSetProber
from .enums import CharacterCategory, ProbingState, SequenceLikelihood


class SingleByteCharSetProber(CharSetProber):
    SAMPLE_SIZE = 64
    SB_ENOUGH_REL_THRESHOLD = 1024  #  0.25 * SAMPLE_SIZE^2
    POSITIVE_SHORTCUT_THRESHOLD = 0.95
    NEGATIVE_SHORTCUT_THRESHOLD = 0.05

    def __init__(self, model, reversed=False, name_prober=None):
        super(SingleByteCharSetProber, self).__init__()
        self._model = model
        # TRUE if we need to reverse every pair in the model lookup
        self._reversed = reversed
        # Optional auxiliary prober for name decision
        self._name_prober = name_prober
        self._last_order = None
        self._seq_counters = None
        self._total_seqs = None
        self._total_char = None
        self._freq_char = None
        self.reset()

    def reset(self):
        super(SingleByteCharSetProber, self).reset()
        # char order of last character
        self._last_order = 255
        self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
        self._total_seqs = 0
        self._total_char = 0
        # characters that fall in our sampling range
        self._freq_char = 0

    @property
    def charset_name(self):
        if self._name_prober:
            return self._name_prober.charset_name
        else:
            return self._model['charset_name']

    @property
    def language(self):
        if self._name_prober:
            return self._name_prober.language
        else:
            return self._model.get('language')

    def feed(self, byte_str):
        if not self._model['keep_english_letter']:
            byte_str = self.filter_international_words(byte_str)
        if not byte_str:
            return self.state
        char_to_order_map = self._model['char_to_order_map']
        for i, c in enumerate(byte_str):
            # XXX: Order is in range 1-64, so one would think we want 0-63 here,
            #      but that leads to 27 more test failures than before.
            order = char_to_order_map[c]
            # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
            #      CharacterCategory.SYMBOL is actually 253, so we use CONTROL
            #      to make it closer to the original intent. The only difference
            #      is whether or not we count digits and control characters for
            #      _total_char purposes.
            if order < CharacterCategory.CONTROL:
                self._total_char += 1
            if order < self.SAMPLE_SIZE:
                self._freq_char += 1
                if self._last_order < self.SAMPLE_SIZE:
                    self._total_seqs += 1
                    if not self._reversed:
                        i = (self._last_order * self.SAMPLE_SIZE) + order
                        model = self._model['precedence_matrix'][i]
                    else:  # reverse the order of the letters in the lookup
                        i = (order * self.SAMPLE_SIZE) + self._last_order
                        model = self._model['precedence_matrix'][i]
                    self._seq_counters[model] += 1
            self._last_order = order

        charset_name = self._model['charset_name']
        if self.state == ProbingState.DETECTING:
            if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
                confidence = self.get_confidence()
                if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
                    self.logger.debug('%s confidence = %s, we have a winner',
                                      charset_name, confidence)
                    self._state = ProbingState.FOUND_IT
                elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
                    self.logger.debug('%s confidence = %s, below negative '
                                      'shortcut threshhold %s', charset_name,
                                      confidence,
                                      self.NEGATIVE_SHORTCUT_THRESHOLD)
                    self._state = ProbingState.NOT_ME

        return self.state

    def get_confidence(self):
        r = 0.01
        if self._total_seqs > 0:
            r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
                 self._total_seqs / self._model['typical_positive_ratio'])
            r = r * self._freq_char / self._total_char
            if r >= 1.0:
                r = 0.99
        return r

Youez - 2016 - github.com/yon3zu
LinuXploit